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a b s t r a c t 

In traditional 2D animation several intermediate frames are drawn between two consecutive key frames. 

This process can be very time-consuming and tedious for the animator. In this paper we present a semi- 

automatic inbetweening method that is tightly coupled with the animation production pipeline. We ex- 

ploit the fact that artists typically start with an outline of the drawing to help preview the illustration, 

and use these guidelines to improve the curve correspondence inference. The method is based on a two- 

level matching algorithm, where the first one finds correspondences between the guidelines, and the 

second one between the final art. This separation further aids the artist by using transformed guidelines 

and drawings from preceding frames to guide the creation of new ones, acting as a digital light table. 

We show the robustness of our method with a variety of animation examples, including sequences from 

animation books and professional animators. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

When an artist is drawing, he usually starts with an outline that

pproximately describes the shapes with guidelines, with as few

etails as possible. These guidelines help the artist in previewing

he final art, and in avoiding asymmetries in the result. Moreover

n cartoon animations, a great amount of drawings (frames) are

ecessary to create the illusion of movement when presented in

equence. Since the difference between two successive frames is

sually small, it is common to start with a larger separation that

ives a hint about the overall movements being depicted, these

rames are called key frames . Posteriorly, the intermediate frames

re drawn, in a process known as inbetweening , which is usu-

lly accomplished manually, requiring a great effort [1] . There are

ome methods used to preview the animation during its creation.

 common practice is to draw the frames on onionskin papers,

nd increase its translucence using a light table, such that previ-

us frames are visible during the drawing of the current frame.

n computer aided animation systems this mechanism is usually

imulated by displaying some frames in a sequence with varying

pacity. Nevertheless, this does not reduce the burden of drawing
ll inbetween frames. 

✩ This article was recommended for publication by Prof P Poulin. 
∗ Corresponding author. 

E-mail address: leocarvalho84@gmail.com (L. Carvalho). 
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To aggravate the issue, with the development of different media

evices, the frame rate is increasing, and some expect that it will

chieve up to 120 frames per second in future standards [2] . This

hift leads to smoother animations at the cost of requiring an even

reater amount of frames. Even though this effort may be dramat-

cally reduced with the aid of computational methods, it is not a

rivial task. 

Almost three decades ago Catmull [3] already discussed the

roblems of computer-assisted animation, stating that one of the

reatest challenges in this area is automatic inbetweening. This is

ue to the fact that cartoons represent three-dimensional charac-

ers projected into a two-dimensional space, implying in loss of

nformation. To achieve an automatic solution, a model describing

he characters as imagined by the animators must be known. Cat-

ull listed some approaches that may be used to solve this issue:

nfer missing information from the drawings; manual specification

f the missing data; break the characters into layers; use of skele-

ons; 3D outlines; and restricting the animation. The challenges

nd approaches discussed by Catmull are still valid today. We fol-

ow more than one of these guidelines in our work. We use layer

ivision, and an approach similar to the use of skeletons, but with

ore flexibility, allowing the animation of non-rigid elements. 

Most computer-aided inbetweening solutions require the spec-

fication of correspondence between curves from pairs of key

rames. Ideally the correspondence is one-to-one, but in practice

here are hidden lines, or cases where one line breaks into two or

ore from one key frame to the next. Finding them automatically

http://dx.doi.org/10.1016/j.cag.2017.04.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2017.04.001&domain=pdf
mailto:leocarvalho84@gmail.com
http://dx.doi.org/10.1016/j.cag.2017.04.001
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Fig. 1. Overview of the proposed method, where 5 new frames are generated between the two key frames. The input is given by guidelines and final art for the key frames. 

These guidelines are commonly used by the animators to aid the drawing. Our method also use them to guide a transformation from one key frame to the next. This 

transformation helps the matching and interpolation of the shapes in the final arts. 
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and precisely is a crucial step for inbetweening methods. This is

the main problem we tackle in this work. Once established, each

pair of corresponding curves may be interpolated to generate the

intermediate frames. 

We present a system to assist in the process of creating a clas-

sical animation. Fig. 1 illustrates an example of the input and

output of our method. Once the artist finishes the initial guide-

lines of a new frame, the system finds correspondences with the

guidelines of the preceding frame. The advantage of this early

matching approach is two-fold: first, it allows warping the preced-

ing final frame to guide the drawing of the new frame’s final art,

serving as an improved digital light table; second, it greatly im-

proves the matching algorithm of the final art strokes, allowing for

larger movements and distortions between frames. After comput-

ing the final correspondences, any number of intermediate frames

can be generated by interpolating the strokes. The artist can also

create layers to better organize the drawings and further aid the

inference of intermediate frames. The goal of our method is not

to entirely substitute a human animator, but to reduce repetitive

tasks. The artist can still make adjustments and corrections to fine-

tune the results. 

As aforementioned animators usually draw guidelines prior to

the final drawings that compose animations. Our main contribu-

tion is a method that exploits this fact to: 

• give the animator visual hints of how to draw the next key-

frame; 
• automatically generate intermediate frames; 
• allow for large displacements; 
• provide control over occlusion. 

2. Related work 

Many works target automatic (or semi-automatic) inbetweening

of 2D cartoons. The first appeared more than 40 years ago [4,5] . In

this section we discuss those most closely related to our approach.

Some authors studied the problems involved in 2D animation

systems. For example Durand [6] discussed some requirements for

a computer aided 2D animation system, where the preferred ap-

proach among those cited by Catmull was the restriction of the

class of animations that may be drawn. Correspondences are man-

ually defined, and then interpolated using splines in variable time

increments. Patterson and Willis [7] made a new analysis of com-

puter aided animation, where the inbetweening problem is divided
nto two sub-problems: how the silhouettes change, and how parts

f the drawing occlude one another. Their approach uses a hierar-

hy display model, we use a similar hierarchical approach. 

Some work uses auxiliary structures to aid inbetweening,

imilar to what we do with guidelines. Burtnyk and Wein [8] use

keletons to guide the movement of final art shapes during inbe-

weening. The strokes are described according to coordinate sys-

ems defined by the skeletons, which consist of line segments.

he results are limited to simple animations, however. Reeves

9] presents an inbetweening method improving the control over

nterpolation. The animator specifies the key frames and a set of

oving points constraints, consisting of curves in space and time,

nd controlling the trajectory and dynamics of certain points in

he key frames. Although it provides a good animation control,

he method requires a lot of manual work. Fiore et al. [10] de-

eloped a semi automatic inbetweening method based on mod-

lling and 2.5D animation techniques, handling problems such as

elf-occlusion and silhouette changes. They used 3D skeletons and

 hierarchical structure to guide the animation of characters with

any parts. However, the user needs to handle control points used

n the curve representation, manually define corresponding curves,

nd specify the skeleton’s influence regions. We also use a hierar-

hical structure to work with complex objects and characters, but

n our case the skeleton is replaced by the guideline information

nd we avoid almost completely manual correspondences. 

Another popular direction for 2D animation, or deformation,

s as-rigid-as-possible (ARAP) methods. Igarashi et al. [11] intro-

uced a method to deform 2D shapes using some pre-defined ver-

ices as hard constraints. They are, however, limited to shapes that

ave a simple closed boundary. Later, Sýkora et al. [12] proposed

 method without hard constraints to deform 2D shapes. They fol-

owed a two step approach, where the first pushes the vertices to

ew positions, and the second regularizes the locations to better

reserve the shape. Even though these methods allow for large de-

ormations and try to preserve the shape as best as possible, they

annot handle well non planar deformations, and non-rigid trans-

ormations are only barely handled, thus limiting the types of pos-

ible animations. 

The inbetweening problem requires the solution of sub-

roblems, like finding correspondences and morphing shapes.

here are many works that focus on a specific sub-problem.

ederberg and Greenwood [13] study how to smoothly transform

wo polygonal two-dimensional shapes, using a physically based

ethod, where figures are bended as if they are made of wires,
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ith the minimum amount of work. An automatic matching algo-

ithm is described by Song et al. [14] , using the relation between

eature points in the input curves as a parameter for the match-

ng. In this algorithm cartoon matching is formulated as a many-

o-many labeling problem, and the correspondence is constructed

sing a local shape descriptor. In the work of Xie [15] affine

ransformations are used to find corresponding shapes between

wo-dimensional figures, and generate intermediate frames. This

ethod, however, is not capable of handling cases where there is a

arge distortion between frames, and it does not handle occlusions.

regler et al. [16] present a technique where the movement of

gures in cartoons is tracked and transfered to three-dimensional

odels, two-dimensional drawings and photographies. Non-rigid

ovements are tracked using a combination of affine and inbe-

weening of key-shapes. Melikhov et al. [17] present a system to

nterpolate key frames, preserving the artistic style of hand-made

rawings, with smooth and natural movements. Skeletons are used

o morph the texture around strokes. Each frame is represented

y a graph, which is used to find matchings between figures.

e Juan and Bodenheimer [18] describe two semi-automatic tech-

iques that allow the re-use of traditional animation. Cartoon im-

ges are segmented from their backgrounds, and inbetween con-

ours are calculated using implicit surfaces and a non-rigid elastic

egistration algorithm. 

Noris et al. [19] present a method to generate temporal noise-

ree inbetweens from sketchy animations by combining motion

xtraction and inbetweening techniques, while preserving the

ketchy style of the input frames. Their input is a complete anima-

ion, from which some key frames are selected. Motion is then ex-

racted and applied to frames, which are matched and interpolated.

his is similar to our work, but they focus on sketchy animations,

hile aim at creating animations with clean drawings assisted by

uidelines (more on this discussion in Section 7.2 ). In a similar

ashion, Ben-Zvi et al. [20] proposed a method to create line-drawn

ideo stylization. Their method predicts stroke matching, merging

nd splitting. In a video, the frames are usually very close in time,

ut suffer abrupt topological changes. Their method tries to deal

ith this noisy behavior of extracted curves, and track them along

any frames. In our case, our input does not contain this noisy

ehavior, but frames are further apart in time and curves can un-

ergo large deformations from one keyframe to the next. Yu et al.

21] focused on finding corresponding objects in two-dimensional

nimations using local shape descriptors to help matching similar

bjects in two frames. 

A recent work focus on topological aspects of vector graphics.

alstein et al. [22] created a data structure to control vector graph-

cs animation with time-varying topology, which allows changes

ike merging, splitting and appearing/disappearing using topolog-

cal information from the frames. These features may be edited in

oth space and time. Drawings are represented using a representa-

ion from their previous work, Vector Graphics Complexes [23] . We

se a similar structure in this work to create curves and regions. 

Other authors developed complete systems for the creation of

artoon animations. TicTacToon [24] is a system for professional

D animations. Drawings are made directly within the system,

nd may be automatically inbetweened. Unfortunately, the authors

hemselves state that their automatic process is as slow as drawing

he intermediate frames by hand. Reeth [25] developed a 2 1/2D

nimation system called RUFIAS, with several methods to create

nimations. This system includes a drawing method using skele-

ons, that may be used in animations. The animations are con-

rolled by several parameters defined by the animators using this

ystem. Kort [26] presented an algorithm for computer aided inbe-

weening and its integration in a pen-based graphical user inter-

ace. The correspondences are inferred from a cost function based

n the relation between the curves. Their algorithm is embedded
n a user interface, so that artists may control the results. More re-

ently, Whited et al. [27] presented an interactive tool for tight in-

etweening, where a set of user-guided semi-automatic techniques

as developed. The authors also present a novel technique for

troke interpolation, where stroke motion is constructed from log-

rithmic spiral vertex trajectories to achieve more natural trajecto-

ies. As stated by the authors, however, in tight inbetweening the

eyframes are very similar, usually having the same topology and

trokes that are very close in shape, and when this is not the case

heir method requires some user intervention to guide the match-

ng. In our case, we are not limited to tight inbetweening, thus the

eyframes are usually much less similar and farther apart. 

Recently Xing et al. [28] developed a system to auto-complete

and-drawn animations. It is related to our work, as it uses in-

ormation from previous frames to help the artist on the draw-

ng of current frame. Our system is complementary since we are

ore interested in smoothly interpolating the key frames, while

ing et al.’s method focus on aiding the artist on drawing the key

rames. We further position our work in regards to this related

ork in Section 7.2 . 

. 2D curve representation 

Even though there is more than one possible representation

or 2d curves, we opted to use vector graphics, a popular choice

mong many other animation methods. Frisken [29] describes an

lgorithm where a parametric curve is generated on-the-fly from

 sequence of digitized points. We use this algorithm to trans-

orm the user input into a set of curves, where each curve c is

epresented as a list of n c segments, described by 3 n c + 1 control

oints c[0] , c[1] , . . . , c[3 n c ] . The i th segment is a cubic Bézier curve

enoted by B i defined by the control points c[3 i ] , c[3 i + 1] , c[3 i +
] , c[3 i + 3] . Several graphics creation tools and file formats use

his kind of curve, such that it is straightforward to import/export

urves from our system to other tools. 

Each segment is parametrized from the domain [0, 1] using the

efinition of cubic Bézier curves. We can parametrize the com-

lete curve by dividing the domain [0, 1] in n c sub-intervals, which

re mapped to each segment. One simple way of doing this di-

ision is by selecting a sequence 0 = t 0 < t 1 < · · · < t n c = 1 , and

apping the interval I i = [ t i , t i +1 ] to segment B i , such that c(t) =
 i ((t − t i ) / (t i +1 − t i )) , where t ∈ I i . One convenient way to define

 i is by making I i proportional to the arc length. 

We are interested in the calculation of the distance between

wo curves c i and c j . The method used in this work is described

ext. First, define the functions dfw and dbw , that represent dis-

ances between curves in different orientations: 

fw (c i , c j ) = 

∑ 

k ∈ I 
d(p i [ k ] − p̄ i , p j [ k ] − p̄ j ) , 

bw (c i , c j ) = 

∑ 

k ∈ I 
d(p i [ k ] − p̄ i , p j [ n − 1 − k ] − p̄ j ) , 

here each curve is uniformly sampled using n points, with n =
 · max (n c i , n c j ) (which gives a reasonable approximation of the

hape of the curves, as 5 points usually describe the shape of a

ubic segment fairly well), I = [0 , . . . , n − 1] , p i [ k ] = c i (k/ (n − 1)) ,

p̄ i = 

1 
n 

∑ 

k ∈ [0 , ... ,n −1] p i [ k ] (similarly for curve c j ), and d(u, v ) is the

uclidean distance between points u and v . These functions are

sed to check which orientation is better suited when interpolat-

ng c i and c j . After calculating these functions, we define the dis-

ance as: 

(c i , c j ) = 

{
1 
n 

∑ 

k ∈ I d(p i [ k ] , p j [ k ]) if f w < bw, 
1 
n 

∑ 

k ∈ I d(p i [ k ] , p j [ n − 1 − k ]) otherwise, 
(1) 

here f w = dfw (c i , c j ) and bw = dbw (c i , c j ) . 
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Fig. 2. Applying non-linear transformation T to the curve on the left (red) resulting 

on the curve on the right (blue). White dots and dashed lines show the control 

points and control polygon, respectively, for each curve. We apply T on samples of 

the red curve (black dots), the resulting points are close to the blue curve. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Pipeline of the proposed method. The guidelines from 

two frames are processed to calculate a transformation M ◦A . 

which is applied to key frame i to generate a warped drawing (red). Corre- 

spondences are then found between the transformed frame i and key frame j , and 

are used to generate the intermediate frames. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this 

article.) 
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We also tried to use other distance functions, such as Hausdorff

distance, but we achieved better results using Eq. (1) , mismatch-

ing of curves was more frequent when using Hausdorff distance.

In addition the information provided by functions dfw and dbw

are useful to determine the curves orientation when curves are in-

terpolated, as will be described in Section 4.4 . 

Given a transformation T : R 

2 → R 

2 . we also need to compute

a transformed curve Tc . If T is a linear transformation, the curve

Tc can be obtained simply by applying T to the control points of

c . But it usually will not work for non-linear transformations. So,

we use a recursive fitting algorithm to find a curve formed by the

cubic segments whose image is close to Tc . The algorithm is the

following: given a transformation T and a cubic Bézier segment c ,

calculate the control points of a cubic Bézier curve Tc , where Tc [0]

:= T ( c [0]), Tc [3] := T ( c [3]), and Tc [1], Tc [2] are calculated minimiz-

ing the sum in a least square sense: 

S = 

n ∑ 

i =0 

‖ T c(i/n ) − T (c(i/n )) ‖ 

2 , 

for a fixed number n , we used n = 9 , which usually captures

well the distortion caused by T . We compare the normalized er-

ror 
√ 

S / ‖ b‖ , where b is the residual vector of the linear system,

against a fixed threshold ε. If it is above ε then c is split into two

cubic Bézier curves, one equal to c ( t ) for t ∈ [0, 0.5] and the other

equal to c ( t ) for t ∈ [0.5, 1], and the process is repeated for these

smaller curves. This process is applied to all cubic segments of a

curve. For this work we used ε = 1 . Fig. 2 illustrates a result of

this operation. For a more detailed explanation of a similar adap-

tive fitting method, please refer to method described by Schneider

[30] . 

4. Method 

Each key frame is separated into two parts. The first is the set

of guidelines. The second is the detailed drawing, which we call

the final art. Fig. 3 depicts the complete pipeline of the proposed

method. 
The central problem is to find correspondences between one

ey frame and the next. For this purpose we could use directly the

nal art, but it usually includes a set of small details that are hard

o handle. By contrast, the guidelines are simpler while still con-

eying the basis shape of the drawings, making it easier to extract

he movement information between two key frames, and use it to

implify the inference of curve correspondences between consecu-

ive keyframes. 

Our system first receives as input two consecutive key frames

 and j , and automatically creates pairs ( g i , g j ) of correspond-

ng guidelines ( Section 4.1 ). Then, a similarity transformation A

s computed and applied to the guideline strokes of key frame

 ( Section 4.2 ). We further refine this transformation by calculat-

ng a non-linear morph function M that approximates both sets of

uideline strokes ( j and transformed i ). If the key frame i already

ontains its final art, it is transformed by the morph function M ◦A

nabling a visual feedback to help the artist draw key frame j. It

s important to observe that our final goal is to create inbetween

rames that interpolate the final art, not the guidelines. Therefore,

e proceed by computing the correspondences between the final

rt of frame j and transformed frame i ( Section 4.3 ). Finally, we

efine a function for each pair of correlated strokes ( c i , c j ) to inter-

olate intermediate frames as needed ( Section 4.4 ). 

.1. Processing guidelines 

The first step is to create the guidelines for a pair of consecutive

ey frames. These guidelines are expected to be much simpler than

he final art, simple enough to describe only an average change

etween key frames. Each guideline from one key frame may
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Fig. 4. The similarity transformation A and MFFD Transformation M are calculated 

from the guidelines (top) and they are composed and applied to the first key frame 

(middle). On the bottom, the transformed key frame (red) is compared with the 

second key frame (black). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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c  
orrespond to a guideline of the next key frame. This correspon-

ence does not have to be one-to-one, i.e., there may be guidelines

ithout correspondence from one key frame to the next, but the

lgorithm works best if the number of guidelines is the same (or

t least approximately) in all key frames. 

The more information we have about the curves movements,

he more reliable is the correspondence inference result. However,

uring this first step we still do not have such information. So,

o compute the matching, we first align the guidelines of each

ey frame and look for a rotation and scale that best describe the

ovement, as detailed next. 

The guidelines of each key frame are translated, such that the

arycenter of all guidelines in one frame is moved to the origin of

 

2 . This barycenter is calculated as the average of all control points

efining the guidelines of one key frame. This operation helps the

earch for corresponding guidelines, avoiding miscalculations due

o a possible translation. 

Next, the control points of all guidelines in key frame i are

caled, such that the key frames have similar dimensions. The scale

actor is defined by max (w j , h j ) / max (w i , h i ) , where w i , h i are the

imensions of the minimum bounding box containing all control

oints of the guidelines in key frame i , and similarly for w j , h j . 

A bipartite graph K N i ,N j 
is defined, where each vertex of the

raph represents a guideline, so N i and N j represent the number

f guidelines in i and j, respectively, and each edge connects one

uideline from i to one in j. The edge connecting guideline g i with

 j is attributed the weight −d(g i , g j ) , where d is the distance func-

ion defined in Eq. (1) (see Fig. 6 top for an example). 

We then use Kuhn’s [31] augmenting path algorithm to find the

atch P with maximum weight and maximum cardinality, result-

ng in a possible correspondence between guidelines from i and j .

owever, j could be rotated creating mismatches. Thus, we rotate i

y a set of angles α · k , k ∈ { 1 , 2 , . . . , 360 ◦/α} , calculate P for each

ngle, and keep the one with the maximum weight. In this work

e use α = 45 ◦. 

.2. Calculating transformations 

Once we have the correspondences between guidelines from

wo sequential key frames, it is necessary to find a transformation

hat morphs the guidelines from key frame i to their corresponding

uidelines in key frame j . This process is described next. 

Let g i , g j be a pair of corresponding guidelines, and p i , p j be the

ample of g i and g j that are used in the calculation of the distance

etween these curves, with points in p j reversed if dfw (g i , g j ) >

bw (g i , g j ) . A similarity transformation A is computed (i.e., a com-

ination of rotation, translation and scale) minimizing the sum: 

∑ 

p i ,p j ) ∈ G 

n ∑ 

k =0 

‖ Ap i [ k ] − p j [ k ] ‖ 

2 , 

here n is the number of samples used for each pair ( p i , p j ), and

 is the union of all pairs ( p i , p j ). We solve for the elements of A

sing a least-squared approach [32] . 

This operation is denoted by 

 = similarity (G 

i , G 

j ) , (2)

here G 

i is the union of all samples of guidelines in key frame i ,

imilarly for G 

j . 

This transformation roughly places one set over the other, but

heir shapes are still different, since we are restricted to a similar-

ty. 

To further approximate the two sets, a second transformation

 is computed using an MFFD (multilevel free-form deforma-

ion) [33] . This method takes a set of point pairs in the plane and

enerates a C 2 -continuous one-to-one function moving each point
s close as possible to its pair. A 2D B-spline approximation is ap-

lied to a hierarchy of control grids, minimizing the distance be-

ween points from the two input sets. The guidelines are resam-

led such that two consecutive sample points from Ag i and from

 j fit inside a cell of the finest control grid used for the calculation

f the morph, and the sets G 

i and G 

j are update accordingly. The

ransformation M is calculated to morph the points AG 

i to G 

j , and

an be applied to any point in the domain of the drawing (a virtual

anvas). 

By applying the composition M ◦A to the curves in the final art

f the first frame, we get a distorted drawing similar to the draw-

ng in the second key frame. Fig. 4 shows an example of this oper-

tion. 

It is important to compute the similarity transformation A prior

o M because in some cases the animation is predominantly a sim-

le rotation and/or scale between the key frames, so AG 

i will be

uch closer to G 

j , reducing the distortion caused by M . This is il-

ustrated on Fig. 5 . 

.3. Computing drawing correspondences 

At this point, the transformed drawing of the key frame i is very

imilar to the drawing of the next key frame. This is crucial to help

he next step of our method, i.e., the computation of correspon-

ences between the final art curves. 

To find this correspondences another bipartite graph matching

roblem is solved, where each vertex of the graph is a curve from

he final art drawing, and each edge connects curves from the two

ey frames. We define a bipartite graph K N i ,N j 
where N i and N j 

re now the number of final art curves of i and j , respectively.

ach edge has a weight defined as minus the distance between the

urves, as the one used when matching guidelines. Applying the
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Fig. 5. When the animation is predominantly a rotation and scale, the morphed 

drawing will be much less distorted when A is calculated and applied before M 

(bottom right) compared to the result of applying M only (top right). 

Fig. 6. Bipartite graph matching example. Vertices are represented with circles, and 

the edge weight is proportional to its length. We want to match white vertices 

with black vertices. Edges are marked with lines. Thick black lines are the matching 

result. On top, the matching algorithm using all edges. On bottom, distant vertices 

were removed from the graph and are not considered by the matching algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Curves (in blue) may be interpolated in two ways according to the order of 

the control points (interpolated curves are shown in red). Arrows indicate the ori- 

entation used for each curve. The preferred way is found by comparing the values 

of dfw and dbw of these curves. In this case it is the one on the left. (For interpre- 

tation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 8. Equalizing the number of segments of two curves. 
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maximum cardinality and maximum weight matching algorithm,

we find the correspondences between strokes in the final art. 

All the same, sometimes it may match curves that are too far

apart, which usually is undesirable. Fig. 6 illustrates this case. This

situation usually occurs when curves from one key frame are not

present in the other key frame. To avoid these unwanted matches

it is enough to not include edges that correspond to distances

above a given threshold. The threshold is defined as a percent-

age value of the maximum distance between curves. The user can

dynamically adjust this threshold until the result includes all the

correct correspondences and avoids incorrect ones. This is the only

parameter in the system that must be set by the user. 

Since N i and N j can be different and some edges are not in-

cluded, it may happen that some curves are not matched. This

is common, for example, when curves represent parts of the ob-

ject that are occluded in one of the key frames. These curves will

simply be ignored by our interpolation, so the animator must han-

dle them manually, by editing the intermediate frames to add the

missing strokes. However, in most cases the user can avoid this

situation by using layers, see Section 5.3 . 

4.4. Interpolating key frames 

Finally, intermediate frames are calculated by interpolating cor-

responding curves from the key frames. There are several ap-

proaches that can be used for this purpose, like the methods devel-

oped by Sederberg and Greenwood [34] , Cong and Parvin [35] , Fu
t al. [36] , and Whited and Rossignac [37] . We use a method that

orks by matching similar shapes based on the method by Seder-

erg and Greenwood [13] , it is simple and yields satisfactory re-

ults. Nonetheless, the overall algorithm does not depend on it, so

t could be replaced by other methods if some specific features are

esired. The method we employ is described next. 

Suppose we want to interpolate curves c i and c j . First of all,

here are two options for matching the two curves: using the same

rientation for both of them, or inverting the orientation of one of

hem, see Fig. 7 . To check which one produces the best match we

ompare the values of dfw (c i , c j ) and dbw (c i , c j ) . If dfw (c i , c j ) >

bw (c i , c j ) , then the control points of one of the curves are re-

ersed. 

A straightforward way to interpolate the curves is to match

ach cubic segment from one curve to the other. Nevertheless, usu-

lly they do not match naturally, i.e., the curves contain different

umbers of segments, or even when they are equal, one segment

ay be mapped into a much smaller (or larger) one. To solve this

ssue, it is necessary to equalize the number of segments and keep

ach pair with similar shapes. This operation is illustrated in Fig. 8 ,

nd is detailed next. 

Fig. 8 (a) shows an example of two curves, and the end-points of

heir cubic Bézier segments. Let 0 = t a 
0 

< t a 
1 

< · · · < t a n a 
= 1 , be the

equence used in the parametrization of curve c i (see Section 3 ),

here n a is the number of cubic Bézier segments in c i , and like-

ise 0 = t b 
0 

< t b 
1 

< · · · < t b n b 
= 1 for curve c j . Curves c i and c j are

niformly sampled, using n = 5 · max (n a , n b ) . Not all end-points

orrespond to one of the samples positions, in fact most of the

oints are very unlikely to be included in the uniform sampling,
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Fig. 9. G1 continuity enforced at a control point. On top: a curve with G1 discon- 

tinuity at the point marked with a large circle. On bottom: resulting curve after 

forcing G1 continuity. 
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Fig. 10. Result of the function interp : the leftmost and the rightmost curves are 

interpolated using seven different values for α ∈ [0, 1]. 

Fig. 11. Example of curve interpolation using different rotation centers (marked as 

circles). On the left, the center points for both frames are the same. On the right, 

the center points are located in extreme points of the curves, giving a different 

result. 
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o we add these end-points. To avoid very small components, if an

nd-point is too close (given a certain tolerance) to another sam-

le, it replaces this sample. This is done when | t − t k | < 0 . 2 / (n −
) , where t is the parameter used for the sample, and t k the pa-

ameter of the end-point, for each curve c i and c j . We then apply

he algorithm proposed by Sederberg and Greenwood [13] , which

ives us a matching between pairs of sample points. Fig. 8 (b)

hows the result of the matching of sampling points (including the

nd-points). From the resulting matching, we use only the pairs

hat contain at least one end-point, creating two sequences of pa-

ameters 0 < ̃

 t a 
0 

< · · · < ̃

 t a 
˜ n 

= 1 and 0 < ̃

 t b 
0 

< · · · < ̃

 t b 
˜ n 

= 1 , such that

he sample c i ( ̃ t a 
k 
) matches c j ( ̃ t b 

k 
), for k ∈ [0 , . . . , ̃  n ] , where ˜ n + 1

amples were considered. Then we create curve ˜ c i that is equal

o c i , but with ˜ n cubic Bézier segments, created by cutting c i at

very value t a 
k 

that is not an end-point, likewise for curve c j , cre-

ting curve ˜ c j . Fig. 8 (c) shows this operation. Now we have a pair

f curves with the same number of control points and each pair of

egments have similar shape. 

Now define the function interp (c 1 , c 2 , α) that computes a

ew curve that is an interpolation of curves c 1 and c 2 , both

ith the same number of control points. The parameter α ∈
0, 1] controls the interpolation such that interp (c 1 , c 2 , 0) = c 1 

nd interp (c 1 , c 2 , 1) = c 2 . First, the control points of curves c 1 

nd c 2 are interpolated with parameter α, and then G1 conti-

uity is enforced for each control point if curves c 1 and c 2 are

oth G1 continuous at the corresponding control points (it is

ot a problem if at least one of the curves is not G1). To guar-

ntee G1 continuity at a control point q , it should be forced

o be collinear with the previous point p and with the next 

oint r . We accomplish this by moving p to q − ‖ u ‖ 
‖ d‖ d, and r to

 + 

‖ v ‖ 
‖ d‖ d, where u = p − q, v = r − q and d = r − p. Fig. 9 shows an

xample of this operation. Some results of function interp can be

een in Fig. 10 . 

For frame k between i and j , we want to find curve c k from

n interpolation of corresponding curves c i and c j . Let ˜ c i and ˜ c j be

he result of the method described above to equalize the number

f control points of curves c i and c j . Let A be the similarity trans-

ormation mapping guidelines computed in the beginning of the

ethod ( Section 4.2 ). The resulting curve c k is defined then by 

 k = A k ( interp (A ( ̃  c i ) , ̃  c j , α)) , (3)

here A ( ̃ c i ) is the curve obtained by applying transformation A to

he control points of ˜ c i , and A k is a similarity transformation that

oves the interpolated curve to an intermediate position between

he original curves c i and c j . The parameter α ∈ (0, 1) is further

escribed in Section 5.1 . To calculate A k , let s , θ and t be the pa-

ameters of A 

−1 (the inverse of A ), representing its scale, angle of

otation and translation, respectively. Define A i α to be the similar-

ty transformation with scale parameter (1 − α) s + α, rotation an-
le (1 − α) θ, and translation vector (1 − α) t . This is equivalent to

he interpolation of A 

−1 with the identity transformation. 

As these transformations are centered at the point (0, 0), if α
s varied between 0 and 1 while applying A i α to a point, an un-

esirable trajectory is usually created, because the shape rotates

round (0, 0) instead of its center of rotation. To correct this the

ser may specify centers of rotations, which are used to translate

he resulting points to a desirable position. Let o i and o j be the

enters of rotations of the two key frames being processed, o α =
(1 − α) o i + αo j , and T be a translation with direction o α − A iα(o j ) .

inally, define A k = A iα ◦ T . Fig. 11 shows the result of a complete

nterpolation between two curves, using rotation centers in differ-

nt positions. 

. Extensions 

In this section we present three extensions to render or system

ore useful and flexible: control of animation speed; definition of

egions; and layer hierarchy. 

.1. Timing 

It is essential for the animator to be able to control the timing,

.e., speed up or down the current animation. Even more, the ani-

ation may have varying speed, for example, a bouncing ball must

resent an accelerated movement when falling, and a decelerated

ovement when rising, otherwise it will not look natural. 

In this work the user can control the timing by

dding/removing frames between key frames (causing a linear

hange of speed between key frames), and by manipulating

urves that guide the spacing of frames, allowing for non linear

cceleration. For every pair of key frames there is a curve, which

s initially an identity function, such that the speed is constant
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Fig. 12. A falling ball with constant speed (left) and accelerated (right). The balls 

were painted translucent to aid visualization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Correspondences between regions. Matched curves are marked with the 

same colors. The gray lines indicate new correspondences for unmatched interme- 

diate curves (in black). Note how a new curve c 3 
j 

appears on the right region, thus 

it is matched to a single vertex on the left. When animating the vertex will expand 

to become a curve. 

Fig. 14. Drawing (on the left) with its four layers (on the right). 

Fig. 15. Example of an animation with two keyframes where elements cross each 

other, without the use of layers (top) and with the use of layers (bottom). Note how 

without layers the curves are wrongly matched when generating the inbetweens. 

The last drawing to right in each row is the first keyframe warped to the space of 

the second keyframe. There are only two guidelines in this animation, one in green 

for the face and one in blue for the house. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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from one key frame to the next. This curve is defined by a cubic

Bézier segment, whose first and last control points are fixed to

(0, 0) and (1, 1), respectively, and the other control points can be

manipulated (but restricted to the unit square). It is possible to

make an accelerated/decelerated movement by bending this curve

below/above the identity line. 

The curve is used to define the parameter α used when interpo-

lating the key frames (see Section 4.4 ), such that α = C((k − i ) / ( j −
i )) , where C is the curve parametrized by x -coordinate. 

Fig. 12 shows an example of a falling ball with different speed. 

5.2. Regions 

To allow for colored objects, the artist may select a sequence of

curves to define the contour of a region, which may be colored as

desired. The curves may be removed from the drawing, but kept in

the representation of the regions. In addition, straight segments are

added between consecutive curves to fill the gap between them,

such that it is possible to create regions with open contours, even

though they are represented as closed ones. 

After the curves are matched it is necessary also to infer the

correspondence of regions. Once more, the bipartite matching al-

gorithm is used. Each node of the graph now represents a region,

and the edges connect each pair of regions that have at least one

pair of matched curves in common. The edge weights are given

by minus the distance between regions, defined as the maximum

between the distances of the corresponding curves (as before, con-

sidering the first frame being morphed by M ◦A ). 

To interpolate regions, we need to interpolate all the curves

used in their contours. Some curves from the regions may not be

matched by the previous algorithm ( Section 4.3 ), so new matches

are inferred for them. Let R i be a region defined by m i con-

tour curves c 1 
i 
, c 2 

i 
, . . . , c 

m i 
i 

, and R j a region defined by m j curves

c 1 
j 
, c 2 

j 
, . . . , c 

m j 

j 
. Suppose, without loss of generality, that the curves

follow the same orientation. Let (c 
p 
i 
, c 

q 
j 
) be a pair of matched

curves, and (c r 
i 
, c s 

j 
) be the next pair of matched curves following

the orientation of the regions. Note that they might be disjoint

pairs, in this case a new correspondence is created by matching

the curve formed by the sequence of curves between c 
p 
i 

and c r 
i 

with the curve formed by the sequence between c 
q 
j 

and c s 
j 
. If there

is no curve between c 
p 
i 

and c r 
i 
, then a new curve is created formed

by a single point (the intersection point between these curves),

i.e., during the animation these curves will shrink to the size of

a point. Likewise for curves c 
q 
j 

and c s 
j 
. Finally, the new matched
urves are interpolated using the method described in Section 4.4 .

ig. 13 illustrates this process. 

.3. Layer hierarchy 

Drawings often contain overlapping curves from different parts

f what is being depicted. This may mislead the search of

orresponding curves, where undesired pairs may be formed if

heir match weight is smaller than the weight of the expected

airs. To improve the animator’s control, our system allows split-

ing parts of the drawing into layers, and the inbetweening method

s applied separately for each layer. Fig. 14 shows an example of

ow a drawing may be separated into layers. 

The layer composition not only avoids the formation of un-

anted pairs, but it also allows elements to cross each other (see

ig. 15 ), which is more convenient than restricting the animations

o non-crossing elements. Furthermore, separating drawings into

ayers is a process typically used by artists [1] . 
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Fig. 16. Character turning his head. 

Fig. 17. Walking horse. 
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Sometimes it is useful to specify a correlation between the lay-

rs, such that the movement from one “parent” layer is applied

o “children” layers. This leads to a hierarchy of layers, where

he transformations applied to a layer is also applied to its sub-

ayers. If the current layer is not a sub-layer, then the previous Eqs.

2) and ( 3 ) are used. Otherwise the equations have to be reformu-

ated. Suppose the layer currently being processed is a sub-layer of

ayer p . First, the similarity transformation ( Eq. (2) ) is redefined as

 = similarity (A p (G 

i ) , G 

j ) , (4)

here A p is the similarity transformation from layer p . Eq. (3) is

ccordingly changed to 

 k = A kp ◦ A k ( interp (A ◦ A p ( ̃  c i ) , ̃  c j , α)) , (5)

here A kp corresponds to the intermediate transformation A k cal-

ulated for layer p . When computing A k , the center of rotation

hanges to o α = (1 − α) A p (o i ) + αo j . 

It is also important to control the ordering between layers, such

hat one can specify if one layer should appear in front or behind

nother layer. This ordering may change during the animation, for

xample, an arm may appear in front of the body at some frames

ut it may move behind the body at a later time. To control the or-

ering, each layer has an index for each frame, working as a third

imension, such that layers with lower indices are placed behind

ayers with higher indices. It is only necessary to specify the index

or the key frames, as intermediate indices are interpolated from

he key frames indices using the α parameter. 

. Results 

The proposed method was implemented in C++ and embedded

n an application, where the artist can draw curves (using the ap-

roach by Frisken [29] ), create regions by selecting their boundary

urves, define the colors that are used, erase curves or regions, ad-

ust control points, adjust the points of rotation, and manage layers

add, remove, hide, change position, create sub layers). There are

wo types of virtual pens that can be used, one for the guidelines,

nd another for the final art. Regions can only be created from final

rt curves. After finishing one key frame, and the guidelines of the

ext, the system automatically calculates and displays the warped

ersion of the first frame, working as a virtual light table. For all

xamples we achieved interactive timings (less than one second to

btain all inbetween frames). All the results were done with an

ntel Core i7, with 16 GB of RAM, but we achieved similar perfor-

ance even with a simple netbook. The actual animations have

ore inbetween frames than shown here, they were simplified to

ave space. Nevertheless the key frames are completely shown, al-

ays depicted inside a rectangle. Guidelines are colored coded to

ndicate the correspondences. 

Figs. 14 and 16 are an artist reproduction inspired by the an-

mation series The Legend of Korra. Fig. 16 illustrates the result

or two frames of a character face. The set of guidelines is sim-

le (19 strokes) but it is sufficient to define the morph between

he frames. Some details are partially occluded in the first frame,

uch as the wrinkle under the right eye, and the part behind the

ar. Thanks to the layer separation that was not a problem for the

ethod. 

Fig. 17 shows some frames from a walking horse sequence. Five

nbetween frames were generated for each pair of key frame. The

rrows indicate the sequence of the frames. Even though there are

arge occlusions when the legs cross each other, they are correctly

andled as they are separated into layers. 

We asked some professional animators to test the system, cre-

ting some animations. Fig. 18 shows a sample animation created

y a professional animator, using 7 layers. In Fig. 19 there is a sam-

le animation created by another professional animator. It has only
wo key frames, but the artist decided to divide them into 28 lay-

rs to create different shadings. In Fig. 20 , there is a reproduction

rom the animation Fullmetal Alchemist: Brotherhood. 

The next results were created based in examples from The An-

mator’s Survival Kit [1] . Fig. 21 shows a sneaking man, with 3

ey frames, and 5 intermediate frames between each pair of key

rames. This example presents a large distortion between the draw-

ngs. Nevertheless, it is appropriately handled by our method. In

ig. 22 , a woman is moving a hand and hips, where 8 key frames

ere used, with 3 intermediate frames between each pair of key

rames. The arm movement is properly inferred by separating the

rm into sub-layers, and putting the center of rotation of each sub-

ayer at a joint. In Fig. 23 , there is a man screaming, where 8 key

rames were used, with 3 intermediate frames between each pair

f key frames. 

Table 1 provides more information about each example. Note

ow all inbetweens for all examples were processed in under one

econd. 

. Discussion 

.1. Limitations 

Our method is able to handle quite large changes, such as in

ig. 21 . However, as usual in computer aided inbetweening meth-

ds, the technique is not able to deal with exaggerated changes

n the drawing. As the input is two-dimensional, it does not hold
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Fig. 18. Sample animation. ©Diogo Viegas. 

Fig. 19. Sample animation. ©Leandro Araujo. 

Fig. 20. Reproduction from the animation Fullmetal Alchemist: Brotherhood. Guidelines are displaced for clarity purposes. Animation follows left to right, top to bottom. 
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Fig. 21. Sneaking man. 
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ll the necessary information to properly handle the shape of the

lements in the intermediate frames. 

The method described works fine when the movement in a

ayer from one key frame to the next can be described approxi-
Fig. 22. Woman dancing and moving hand. Anim
ately by a similarity transformation, otherwise the algorithms are

rone to provide undesirable matchings. The drawing must be or-

anized into layers in order to work for more complex movements.

his is illustrated in Fig. 24 . 

Another common limitation for all 2D animation systems is

hen large parts of the subject are completely occluded from one

rame to the other. Our system can handle that, but it may gen-

rate a not reasonable result. It can work if the occluding and oc-

luded parts are located in different layers and their shapes are

ot related, as for example, the horse legs in Fig. 17 . Similarly, if

n eye is hidden by its own face, it should be located in another

ayer, as occurred between the second and third key frames in the

ast example ( Fig. 22 ), when the woman turned her head revealing

er right eye. Also, between the last pair of key frames in Fig. 22 ,

he right hand changes orientation, such that the palm of the hand

s visible in one key frame, but the back of the hand is visible in

he other. This part of the animation can be seen more detailed

n Fig. 25 . In this case, the interpolated frames do not reflect the

roper hand movement. 

These artefacts usually happen in only a few specific places, and

hey can be manually corrected by the artist. Although this might

eem to be a laborious task, it is much simpler than creating all in-

etween frames manually. Actually, once the artist gets used to the

ystem, he can even predict where this might happen and handle

t promptly. 

Finally, our method to control the animation timing does not

ake into account G1 continuity, so the artist has to be careful to

ot create acceleration jumps when passing through a keyframe.

his could be better addressed, but we have actually noted no such

ssues without having to actually put any additional manual effort

o create smooth passages. 
ation follows left to right, top to bottom. 
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Fig. 23. Screaming man. Animation follows left to right, top to bottom. 
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7.2. Comparison with previous works 

In this section we briefly compare our work with two closely

related methods. The first is Xing et al.’s [28] . Their main goal is

to accelerate the production of key frames. Even though we also

provide some aid in drawing subsequent key frames with the dig-

ital light table idea, our main concern is to generate a smooth 

sequence of inbetweenings. Observing Xing et al.’s results, the

jumps between keyframes are quite evident (see the walking ex-

ample), while our final animations are continuously smooth, that

is, once the animation is produced it should not be possible to

point out which are the original key frames. This lack of tempo-

ral smoothing might also be perceived in more complex scenes as

a stretching/shrinking effect (Jerry’s example). In all, we do not ar-

gue that our method should replace Xing et al.’s, but rather com-

plement it, as our main contributions touch different animation is-

sues. 

Another popular approach is as-rigid-as-possible (ARAP) trans-

formations [12] . Even though it works well for some applications,

there are a few drawbacks for generating inbetweens: the registra-

tion is seldom exact (it oscillates near the target but never con-

verges perfectly), thus it might lead to jumps when passing from
Table 1 

Statistics for the results. Columns are: animation name

ber of guidelines for each keyframe; number of curves 

of intermediate generated frames; distance threshold; 

Fig Layers Guidelines C&

Tenzin 16 7 12 12

Horse 17 3 18 50

Diogo Viegas 18 7 32 56

Leandro Araujo 19 28 51 29

Edward 20 17 46 28

Sneaking man 21 5 22 56

Woman 22 6 14 58

Screaming 23 5 7 38
ne keyframe to the next; it usually takes a few seconds to con-

erge; it might get trapped in local minima. We have also experi-

ented using the ARAP technique as a first approximation to help

he matching algorithm (instead of the similarity transformation

or example), but the method also contains a number of parame-

ers that do not work well for all cases, such as: image resolution;

rid size; block matching parameters; and number of iterations.

ig. 26 illustrates the use of the ARAP method and how chang-

ng a single parameter might influence in the resulting transfor-

ation. Even though we could probably make the approach work

or all our examples, it would often entail adjusting some param-

ters. One of our goals is to exactly avoid parameter tweaking for

ach new animation, and as previously discussed, the only one that

eeds intervention is the matching distance threshold. 

As in our method, Noris et al. [19] also employ a two step ap-

roach: a global registration followed by a stroke matching algo-

ithm. Their first step uses a modification of the ARAP [12] method

iscussed above. Their stroke matching algorithm, however, works

n a greedy-like manner for pairs of frames F 1 and F 2 , by finding

or each stroke in F 1 the best match in F 2 using a criterion based

n the Hausdorff distance. Moreover, some strokes from the second

rame might be left unmatched. Differently, our bipartite graph
; corresponding Figure; number of layers; num- 

and regions; number of keyframes; total number 

and total time to generate all inbetweens. 

R KF Inbetweens ε(%) Time (ms) 

7 3 48 20 320 

 9 40 20 189 

 4 30 40 125 

1 2 37 50 404s 

1 3 65 55 858 

 3 78 55 193 

 8 35 40 282 

 8 70 58 224 
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Fig. 24. Red lines on top: failure case, the matching algorithm fails when the mo- 

tion in one single layer is more complex than a similarity transformation. Blue lines 

on bottom: the same example, separated into layers to correct the matching. (For 

interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 25. Wrong prediction on the hand. As the movement is more complex and we 

do not have volume information the resulting animation is not what the animator 

expects. 

Fig. 26. Using the ARAP approach as an alternative to compute the rough align- 

ment for the guidelines between a source and target frame. Each row represents 

a different example. From left to right: guidelines from the first frame (source); 

transformation using cell size 16 × 16; transformation using cell size 30 × 30; and 

guidelines from the second frame (target). The smaller cell size works for the sec- 

ond example (bottom row) but does not work for the first one (top row). For the 

larger cell size, it is the other way around. Cell size was the only parameter that 

was modified for this example. For more explanations on the parameters, we refer 

the reader to the original paper [12] . . 
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trategy finds the best mutual correspondences between pairs of

rames, and not only from one frame to the next, tackling the is-

ue of lack of smoothness across multiple frames as reported by

oris et al. [19] . Nevertheless, this issue is much less perceptible

n a sketchy sequence than in clean drawings, thus our need for

xtra care in the matching algorithm. 

. Conclusion and future works 

We presented a system to create 2D animations using a new

ethod to automatically generate inbetween frames by processing

he guidelines of the drawings. Drawing the guidelines impose very
ittle extra work for the animator. Even though the guidelines are

sually drawn before the actual drawing, the artist could also de-

ide to draw them on top of the final art (but the initial preview

ould not be available in this case). Furthermore, we opt for the

se of layers, that also follows the traditional animation pipeline,

nstead of restricting the classes of possible animations. The sys-

em generates a preview of a frame, which works as a virtual light

able, and at the same time is used to infer the movement infor-

ation between the frames. We were able to produce several com-

elling animations using our system even in difficult situations,

uch as large movements and distortions, and even correctly han-

ling occlusion cases for many situations. Only a few minor issues

re left for the artist to handle, considerable reducing the produc-

ion time. 

The procedure is not meant to replace other methods, but to be

sed in conjunction with them to improve the results. Most limi-

ations can be avoided or reduced by using other methods in each

art of the pipeline. The method worked well even using simple al-

orithms that would not be suitable to be used directly with the fi-

al art (without using the information from the guidelines). There-

ore we believe our method can greatly reduce the artists effort

hile, at the same time, staying within the traditional animation

ipeline. 

As future work we will investigate how to handle more topolog-

cal events appropriately, such as the case where curves break into

wo or more parts, to give more flexibility to the artist. We allow

or some topological changes when dealing with regions, but more

vents could be incorporated using ideas from the work of Dal-

tein et al. [22] , for example. In fact, using a more powerful vector

epresentation such as Vector Graphics Complexes [23] may be a

ood alternative for the use of layers in some cases, as it allows

or features such as sharing edges, and 3-way vertex split. Vector

raphics Complexes can also better incorporate the semantics of

he drawing as opposed to plain vector graphics representations,

uch as SVGs. As a consequence, it could also be a great direction

o improve the correspondence algorithm. 

The method described by Xing et al. [28] is also an interest-

ng direction to draw the key frames more efficiently, and possi-

ly enhance the correspondence algorithms. Another direction to

mprove the correspondence solution is by employing an itera-

ive method, alternating between the matching algorithm and the

ransformation computation. Another possibility is using the work

f Noris et al. [38] , where a drawing is segmented using scribbles.

his idea could be incorporated in our work to define the layers in

n alternative way, for example. 

Finally, a user study would be very useful to further validate

he contributions of the method and the usability of the system,

nd to guide new future research directions. 

cknowledgements 

This research was partially supported by CNPq-Brazil. We

hank Diogo Viegas and Leandro Araujo for testing the system and

aking animation samples. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.compfluid.2016.08.006 

eferences 

[1] Williams R . The Animator’s Survival Kit. second. Faber & Faber; 2009 . 

[2] Parameter values for ultra-high definition television systems for production
and international programme exchange. International Telecomunication Union;

2012. Recommendation ITU-R BT.2020. 
[3] Catmull E . The problems of computer-assisted animation. SIGGRAPH Comput

Graph 1978;12(3):348–53 . 

http://dx.doi.org/10.1016/j.compfluid.2016.08.006
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0001
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0001
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0002
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0002


44 L. Carvalho et al. / Computers & Graphics 65 (2017) 31–44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[

[  

 

 

 

[  

 

[  

 

 

 

[  

 

 

 

[  

 

 

 

 

 

 

 

 

 

[  

 

 

[  
[4] Miura T , Iwata J , Tsuda J . An application of hybrid curve generation: cartoon
animation by electronic computers. In: Proceedings of the AFIPS spring joint

computing conference. In: AFIPS Conference proceedings, vol. 30. Washington
D.C.: AFIPS / ACM / Thomson Book Company; 1967. p. 141–8 . 

[5] Burtnyk N , Wein M . Computer-Generated Key Frame Animation. J Soc Motion
Pict Telev Eng 1971;80(3):149–53 . 

[6] Durand CX . The “toon” project: requirements for a computerized 2D animation
system. Comput Graph 1991;15(2):285–93 . 

[7] Patterson J , Willis P . Computer-assisted animation: 2D or not 2D. Comput J

1995;37(10):829–39 . 
[8] Burtnyk N , Wein M . Interactive skeleton techniques for enhancing motion dy-

namics in key frame animation. Commun ACM 1976;19(10):564–9 . 
[9] Reeves WT . Inbetweening for computer animation utilizing moving point con-

straints. SIGGRAPH Comput Graph 1981;15(3):263–9 . 
[10] Fiore FD , Schaeken P , Elens K , Reeth FV . Automatic inbetweening in computer

assisted animation by exploiting 2.5D modelling techniques. In: Proceedings of

the fourteenth conference on computer animation (CA20 01); 20 01. p. 192–200 .
[11] Igarashi T , Moscovich T , Hughes JF . As-rigid-as-possible shape manipulation.

ACM Trans Graph 2005;24(3):1134–41 . 
[12] Sýkora D , Dingliana J , Collins S . As-rigid-as-possible image registration for

hand-drawn cartoon animations. In: Proceedings of the international sympo-
sium on non-photorealistic animation and rendering; 2009. p. 25–33 . 

[13] Sederberg TW , Greenwood E . A physically based approach to 2&ndash;d shape

blending, vol. 26. New York, NY, USA: ACM; 1992. p. 25–34 . 
[14] Song Z , Yu J , Zhou C , Wang M . Automatic cartoon matching in comput-

er-assisted animation production. Neurocomputing 2013;120(0):397–403 . Im-
age Feature Detection and Description. 

[15] Xie M . Feature matching and affine transformation for 2D cell animation. Vis
Comput 1995;11(8):419–28 . 

[16] Bregler C , Loeb L , Chuang E , Deshpande H . Turning to the masters: motion

capturing cartoons. In: Proceedings of the 29th annual conference on computer
graphics and interactive techniques. SIGGRAPH ’02;. New York, NY, USA: ACM;

2002. p. 399–407 . 
[17] Melikhov K , Tian F , Soon SH , Chen Q , 0 0 02 JQ . Frame skeleton based au-

to-inbetweening in computer assisted CEL animation. In: Proceedings of the
IEEE international conference on , cyberworlds computer society; 2004.

p. 216–23 . 

[18] de Juan CN , Bodenheimer B . Re-using traditional animation: methods for
semi-automatic segmentation and inbetweening. In: Proceedings of the

2006 ACM SIGGRAPH/Eurographics symposium on computer animation. SCA
’06;. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association; 2006.

p. 223–32 . 
[19] Noris G , Sýkora D , Coros S , Whited B , Simmons M , Hornung A , et al. Tem-

poral noise control for sketchy animation. In: Proceedings of the ACM SIG-

GRAPH/Eurographics symposium on non-photorealistic animation and render-
ing. NPAR ’11. New York, NY, USA: ACM; 2011. p. 93–8 . 

[20] Ben-Zvi N, Bento J, Mahler M, Hodgins J, Shamir A. Line-drawing video styliza-
tion. Comput Graph Forum 2016;35(6):18–32. doi: 10.1111/cgf.12729 . 
[21] Yu J , Liu D , Tao D , Seah HS . Complex object correspondence construction in
two-dimensional animation. IEEE Trans Image Process 2011;20(11):3257–69 . 

22] Dalstein B , Ronfard R , van de Panne M . Vector graphics animation with time–
varying topology. ACM Trans Graph 2015;34(4) . 

23] Dalstein B , Ronfard R , van de Panne M . Vector graphics complexes. ACM Trans
Graph 2014;33(4) . 

[24] Fekete J-D , Bizouarn E , Cournarie E , Galas T , Taillefer F . Tictactoon: a paperless
system for professional 2D animation. In: Proceedings of the 22nd annual con-

ference on computer graphics and interactive techniques SIGGRAPH ’95. New

York, NY, USA: ACM; 1995. p. 79–90 . 
25] Reeth FV . Integrating 2 1/2-D computer animation techniques for support-

ing traditional animation. In: Proceedings of the computer animation CA ’96.
Washington, DC, USA: IEEE Computer Society; 1996. p. 118–25 . 

26] Kort A . Computer aided inbetweening. In: Proceedings of the 2nd interna-
tional symposium on non-photorealistic animation and rendering NPAR ’02.

New York, NY, USA: ACM; 2002. p. 125–32 . 

[27] Whited B , Noris G , Simmons M , Sumner R , Gross M , Rossignac J . Betweenit: an
interactive tool for tight inbetweening. Comput Graph Forum (Proc Eurograph-

ics) 2010;29(2):605–14 . 
28] Xing J , Wei L-Y , Shiratori T , Yatani K . Autocomplete hand-drawn animations.

ACM Trans Graph 2015;34(6) 169:1–169:11 . 
[29] Frisken SF . Efficient curve fitting. J Graph Tools 2008;13(2):37–54 . 

[30] Schneider PJ . chap. an algorithm for automatically fitting digitized curves. In:

Graphics Gems. San Diego, CA, USA: Academic Press Professional, Inc.; 1990.
p. 612–26 . ISBN 0-12-286169-5. 

[31] Kuhn HW. The hungarian method for the assignment problem. Nav Res Logist
Q 1955;2(1–2):83–97. doi: 10.10 02/nav.380 0 020109 . 

32] Cohen-Or D , Greif C , Ju T , Mitra NJ , Shamir A , Sorkine-Hornung O , et al. A
sampler of useful computational tools for applied geometry, computer graph-

ics, and image processing. A K Peters/CRC Press; 2015 . 

[33] Lee S-Y , Chwa K-Y , Shin SY . Image metamorphosis using snakes and free-form
deformations. In: Proceedings of the 22nd annual conference on computer

graphics and interactive techniques. SIGGRAPH ’95. New York, NY, USA: ACM;
1995. p. 439–48 . 

[34] Sederberg TW , Greenwood E . Shape blending of 2-D piecewise curves. In:
Proceedings of the mathematical methods for curves and surfaces; 1995.

p. 497–506 . 

[35] Cong G , Parvin B . A new regularized approach for contour morphing. In: Pro-
ceedings of the 20 0 0 conference on computer vision and pattern recognition

(CVPR 20 0 0), 13–15 June 20 0 0, Hilton Head, SC, USA. IEEE Computer Society;
20 0 0. p. 1458–63 . 

36] Fu H , Tai C , Au OK . Morphing with laplacian coordinates and spatial-temporal
texture. In: Proceedings of the pacific graphics posters; 2005. p. 100–2 . 

[37] Whited B , Rossignac J . B-morphs between b-compatible curves in the plane.

In: Proceedings of the SIAM/ACM joint conference on geometric and physical
modeling. SPM ’09. New York, NY, USA: ACM; 2009. p. 187–98 . 

38] Noris G , Skora D , Shamir A , Coros S , Whited B , Simmons M , et al. Smart scrib-
bles for sketch segmentation. Comput Graph Forum 2012;31(8):2516–27 . 

http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0003
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0003
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0003
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0003
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0004
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0004
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0004
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0005
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0005
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0006
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0006
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0006
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0007
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0007
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0007
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0008
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0008
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0009
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0009
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0009
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0009
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0009
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0010
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0010
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0010
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0010
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0011
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0011
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0011
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0011
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0012
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0012
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0012
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0013
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0013
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0013
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0013
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0013
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0013
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0014
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0014
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0015
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0015
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0015
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0015
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0015
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0016
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0016
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0016
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0016
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0016
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0016
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0017
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0017
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0017
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0018
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0018
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0018
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0018
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0018
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0018
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0018
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0018
http://dx.doi.org/10.1111/cgf.12729
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0020
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0020
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0020
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0020
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0020
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0021
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0021
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0021
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0021
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0022
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0022
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0022
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0022
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0023
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0023
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0023
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0023
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0023
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0023
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0024
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0024
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0025
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0025
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0026
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0026
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0026
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0026
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0026
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0026
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0026
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0027
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0027
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0027
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0027
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0027
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0028
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0028
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0029
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0029
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0029
http://dx.doi.org/10.1002/nav.3800020109
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0031
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0031
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0031
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0031
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0031
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0031
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0031
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0031
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0032
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0032
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0032
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0032
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0033
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0033
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0033
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0034
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0034
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0034
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0035
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0035
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0035
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0035
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0036
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0036
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0036
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0037
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0037
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0037
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0037
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0037
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0037
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0037
http://refhub.elsevier.com/S0097-8493(17)30039-0/sbref0037

	DiLight: Digital light table - Inbetweening for 2D animations using guidelines
	1 Introduction
	2 Related work
	3 2D curve representation
	4 Method
	4.1 Processing guidelines
	4.2 Calculating transformations
	4.3 Computing drawing correspondences
	4.4 Interpolating key frames

	5 Extensions
	5.1 Timing
	5.2 Regions
	5.3 Layer hierarchy

	6 Results
	7 Discussion
	7.1 Limitations
	7.2 Comparison with previous works

	8 Conclusion and future works
	 Acknowledgements
	 Supplementary material
	 References


