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Abstract. Diffusion-Weighted MRI (DW-MRI) measures local water
diffusion in biological tissue, which reflects the underlying fiber structure.
In order to enhance the fiber structure in the DW-MRI data we consider
both (convection-)diffusions and Hamilton-Jacobi equations (erosions)
on the space R

3
� S2 of 3D-positions and orientations, embedded as a

quotient in the group SE(3) of 3D-rigid body movements. These left-
invariant evolutions are expressed in the frame of left-invariant vector
fields on SE(3), which serves as a moving frame of reference attached to
fiber fragments. The linear (convection-)diffusions are solved by a convo-
lution with the corresponding Green’s function, whereas the Hamilton-
Jacobi equations are solved by a morphological convolution with the
corresponding Green’s function. Furthermore, we combine dilation and
diffusion in pseudo-linear scale spaces on R

3
� S2. All methods are tested

on DTI-images of the brain. These experiments indicate that our tech-
niques are useful to deal with both the problem of limited angular res-
olution of DTI and the problem of spurious, non-aligned crossings in
HARDI.

Keywords: DTI, HARDI, DW-MRI, sub-Riemannian geometry, scale
spaces, Lie groups, Hamilton-Jacobi equations, erosion.

1 Introduction

Diffusion-Weighted Magnetic Resonance Imaging (DW-MRI) involves magnetic
resonance techniques for non-invasively measuring local water diffusion in tissue.
Local water diffusion profiles reflect underlying biological fiber structure. For
instance in the brain, diffusion is less constrained parallel to nerve fibers than
perpendicular to them.

The diffusion of water molecules in tissue over time t is described by a transi-
tion density function pt, cf. [2]. Diffusion Tensor Imaging (DTI), introduced by
Basser et al. [3], assumes that pt can be described for each position y ∈ R

3 by
an anisotropic Gaussian. If {Yt} denotes the stochastic process describing the
movement of water-molecules in R

3, then one has

pt(Yt = y′ | Y0 = y) = (4πt)−
3
2 |det(D(y))|− 1

2 e−
(y′−y)T (D(y))−1(y′−y)

4t ,
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where D is a tensor field of positive definite symmetric tensors on R
3 estimated

from the MRI data. In a DTI-visualization one plots the surfaces

y + {v ∈ R
3 | vT D−1(y)v = μ2}, (1)

where μ > 0 is fixed and y ∈ Ω with Ω some compact subset of R
3. From now

on we refer to these surfaces as DTI-glyphs.
The drawback of this anisotropic Gaussian function approximation is the lim-

ited angular resolution of the corresponding probability density U : R
3

� S2 →
R

+ on positions and orientations

U(y,n) =
3

4π
∫

Ω
trace{D(y′)}dy′ nT D(y)n, y ∈ R

3,n ∈ S2. (2)

Thereby unprocessed DTI is not capable of representing crossing fibers [2].
High Angular Resolution Diffusion Imaging (HARDI) is another recent DW-

MRI technique for imaging water diffusion processes in fibrous tissues. HARDI
provides for each position in R

3 and for each orientation in S2 an MRI signal at-
tenuation profile, which can be related to the local diffusivity of water molecules
in the corresponding direction. As a result, HARDI images are distributions
(y,n) �→ U(y,n) over positions and orientations. HARDI is not restricted to
functions on S2 induced by a quadratic form and is thus capable of reflecting
crossing information. See Fig. 1, where a HARDI data set is depicted using glyph
visualization as defined below. In HARDI modeling the Fourier transform of the
estimated transition densities is typically considered at a fixed characteristic
radius (generally known as the b-value), cf. [8].

Definition 1. A glyph of a distribution U : R
3 × S2 → R

+ on positions and
orientations is a surface Sμ(U)(y) = {y+ μ U(y,n) n | n ∈ S2} ⊂ R

3 for some
y ∈ R

3, and some suitably chosen μ > 0. A glyph visualization of the distribution
U : R

3 × S2 → R
+ is a visualization of a field y �→ Sμ(U)(y) of glyphs.

For the purpose of detecting and visualizing biological fibers, DTI and HARDI
data should be enhanced by fiber propagation models such that fiber junctions
are more visible and high frequency noise and non-aligned glyphs are reduced.
Promising research has been done on constructing diffusion/regularization pro-
cesses on the 2-sphere defined at each spatial locus separately [8,13] as an essen-
tial pre-processing step for robust fiber tracking. In these approaches position-
and orientation space are decoupled, and diffusion is only performed over the
angular part, disregarding spatial context. Consequently, these methods tend to
fail precisely at the interesting locations where fibres cross or bifurcate.

In contrast to previous work on enhancement of DW-MRI [8,13,15,5], we con-
sider both the spatial and the orientational part to be included in the domain,
so a HARDI dataset is considered as a function U : R

3 × S2 → R
+. Further-

more, we explicitly employ the proper underlying group structure, that arises by
embedding the coupled space of positions and orientations

R
3

� S2 := SE(3)/({0} × SO(2))
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fibertrackingDTI HARDI

Fig. 1. This figure shows glyph visualizations of HARDI and DTI-images of a 2D-slice
in the brain where neural fibers in the corona radiata cross with neural fibers in the
corpus callosum. Here DTI and HARDI are visualized differently; HARDI is visualized
according to Def. 1, whereas DTI is visualized using Eq. (1).

as the partition of left cosets into the group SE(3) = R
3

� SO(3) of 3D-rigid
motions. The group product on SE(3) is given by

(x, R) (x′, R′) = (x + Rx′, RR′),

for all positions x,x′ ∈ R
3 and rotations R, R′ ∈ SO(3). Throughout this article

we use the following identification between the DW-MRI image (y,n) → U(y,n)
and functions Ũ : SE(3) → R given by

Ũ(y, R) = U(y, Rez) with ez = (0, 0, 1)T . (3)

The general advantage of our approach on SE(3) is that we can enhance the origi-
nal HARDI/DTI data using orientational and spatial neighborhood information
simultaneously. This can create crossings in DTI data and allows a reduction
of scanning directions in areas where the random walks that underly (hypo-
elliptic) diffusion [11, ch:4.2] on R

3
� S2 yield reasonable fiber extrapolations,

cf. [11,19,18] and see Fig. 2. HARDI already produces more detailed information
about complex-fiber structures. Application of the same (hypo-elliptic) diffusion
on HARDI then removes spurious crossings, see Fig. 3 and [19]. Here we will
address the following issues that arise from our previous work [18,11,19]:

– Can we replace the grey-scale transformations [18,11,19] by Hamilton-Jacobi
equations (erosions) on R

3
� S2 to visually sharpen the fibers in the data?

– Can we find the viscosity solutions of these Hamilton-Jacobi equations?
– Can we find analytic approximations for the viscosity solutions of these left-

invariant Hamilton-Jacobi equations on R
3

� S2, similar to the analytic ap-
proximations of the linear left-invariant diffusions, cf. [11, ch:6.2]?

– Can we combine left-invariant diffusions and left-invariant dilations in a
pseudo-linear scale space on R

3
� S2, generalizing [14] to DW-MRI images?

To address these issues, we introduce besides linear scale spaces, morphological
and pseudo-linear scale spaces, all defined on (R3

� S2) × R
+:

(y,n, t) �→ W (y,n, t) for all y ∈ R
3,n ∈ S2, t > 0,

where the input DW-MRI image serves as initial condition W (y,n, 0) = U(y,n).
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Fig. 2. DTI and HARDI data containing fibers of the corpus callosum and the corona
radiata in a human brain, with b-value 1000s/mm2 on voxels of (2mm)3, cf. [18]. We
visualize a 10× 16-slice of interest (162 samples on S2 using icosahedron tessellations)
from 104 × 104 × 10 × (162 × 3) datasets. Top row: region of interest with fractional
anisotropy intensities with colorcoded DTI-principal directions. Middle row, DTI data
U visualized according to Eq.(1) resp. Def. 1. Bottom row: HARDI data (Q-ball with
l ≤ 4, [8]) of the same region, hypo-elliptically diffused DTI data (y,n) �→ W (y, n, t),
Eq. (9). We applied min-max normalization of W (y, ·, t) for all positions y.

HARDI data (Linear hypoelliptic diffusion (HARDI) )   
data)  ) 

H 2 2

dddddddddddddddddddaaaaaaaaaaaaaaaaaaaattttttttttttttttttaaaaaaaaaaaaaaaa))))))))))))))))))))  ))))))))))))))))))))) 

Fig. 3. Same settings as Fig:2, except for a different b-value and region of interest. The
(hypo-elliptic) diffusion, Eq. (9), is applied to the HARDI dataset.



Fiber Enhancement in Diffusion-Weighted MRI 5

To get a preview of how these evolutions perform on the same neural DTI
dataset (different slice) considered in [18], see Fig. 4, where we used

V(U)(y,n) =

(
U(y,n) − Umin(y)

Umax(y) − Umin(y)

)2

, with Umin
max

(y) = min
max

{U(y,n) | n ∈ S2}. (4)

Fig. 4. DTI data of corpus callosum and corona radiata fibers in a human brain with
b-value 1000s/mm2 on voxels of (2mm)3. Top row: DTI-visualization according to
Eq. (1). The yellow box contains 13 × 22 × 10 glyphs with 162 orientations of the
input DTI-data depicted in the left image of the middle row. This input-DTI image
U is visualized using Eq. (2) and Rician noise ηr [11, Eq. 90] with σ = 10−4 has been
included. Operator V is defined in Eq. (4). Middle row, right: output of pseudo-linear
scale space, Eq. (12). Bottom row, left: output erosion, Eq. (11) using the diffused
DTI-data set as input, Eq. (9) with (D44 = 0.04, D33 = 1, t = 1), right: output of
non-linear diffusions with adaptive scalar diffusivity explained in our companion work
[7]. All evolutions are implemented by finite difference schemes, [9], with step size Δt.

1.1 Motivation for Morphological Scale Spaces on R
3

� S2

Typically, if linear diffusions are directly applied to DTI the fibers visible in DTI
are propagated in too many directions. Therefore we combined these diffusions
with monotonic transformations in the codomain R

+, such as squaring input and
output cf. [11,19,18]. Visually, this produces anatomically plausible results, cf. Fig. 2
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and Fig. 3, but does not allow large global variations in the data. This is often
problematic around ventricle areas in the brain, where the glyphs are usually larger
than those along the fibers as can be seen in the top row of Fig. 4. In order to
achieve a better way of sharpening the data where global maxima do not domi-
nate the sharpening of the data, cf. Fig.5, we propose morphological scale spaces
on R

3
�S2 where transport takes place orthogonal to the fibers, both spatially and

spherically, see Fig. 7. The result of such an erosion after application of a linear
diffusion is depicted down left in Fig. 4, where the diffusion has created crossings
in the fibers and where the erosion has visually sharpened the fibers.

Fig. 5. From left to right. Noisy artificial dataset, output diffused dataset (thresh-
olded), squared output diffused dataset as in [18,11,19], R

3
�S2-eroded output, Eq.(11),

diffused dataset, Eq. (9).

2 A Moving Frame of Reference for Scale Spaces on
R

3
� S2

Evolutions on DW-MRI must commute with rotations and translations. There-
fore our evolutions on DW-MRI and the underlying metric-tensor are expressed
in a local frame of reference attached to fiber fragments. This frame of reference
{A1, . . . ,A6} consists of 6 left-invariant vector fields on SE(3) given by

AiŨ(y, R) = lim
h↓0

Ũ((y, R) ehAi) − Ũ((y, R) e−hAi)
2h

(5)

where {A1, . . . , A6} is the basis for the Lie-algebra at the unity element and
Te(SE(3)) � A �→ eA ∈ SE(3) is the exponential map in SE(3). For more ex-
plicit, non-trivial, analytical formulas of the exponential map and corresponding
left-invariant vector fields (5) we refer to [11, ch:3.3,Eq. 23–25,ch:5.1 Eq. 54].
However, these technical formulas are only needed for analytic approximation of
Green’s functions, see [11, ch:6]. In practice one uses finite difference approxima-
tions [11, ch:7], where spherical interpolation in between higher order tessellation
of the icosahedron can be done by means of the discrete spherical harmonic trans-
form [11, ch:7.1] or by triangular interpolation [7]. For an intuitive preview of this
moving frame of reference attached to points in R

3
�S2 = (SE(3)/({0}×SO(2)))

we refer to Fig. 7.
The associated left-invariant dual frame {dA1, . . . , dA6} is determined by

〈dAi,Aj〉 := dAi(Aj) = δi
j , i, j = 1, . . . , 6, (6)
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where δi
j = 1 if i = j and zero else. Then all possible left-invariant metric tensors

on SE(3) are given by G(y,Rn) =
6∑

i,j=1

gij dAi
∣
∣
(y,Rn)

⊗ dAj
∣
∣
(y,Rn)

with gij ∈ C

and where y ∈ R
3, n ∈ S2, and where Rn ∈ SO(3) is any rotation that maps ez

onto the normal n ∈ S2, i.e.

Rnez = n. (7)

Necessary and sufficient conditions on gij to induce a well-defined left-invariant
metric on R

3
� S2 are derived in [9, App.E]. It turns out that the matrix [gij ]

must be constant and diagonal gij = 1
Dii δij , i, j = 1 . . . , 6 with Dii ∈ R

+ ∪∞,
with D11 = D22, D44 = D55, D66 = 0. The metric is thereby parameterized by
the values of D11, D33 and D44, and we write the metric as a tensor product of
left-invariant co-vectors:

G =
1

D11
(dA1⊗ dA1 +dA2⊗ dA2) +

1

D33
(dA3⊗ dA3) +

1

D44
(dA4⊗ dA4+ dA5⊗ dA5)

The metric tensor on the quotient R
3

� S2 = (SE(3)/({0} × SO(2))) now reads

G(y,n)

⎛

⎝
5∑

i=1

ciAi|(y,n) ,

5∑

j=1

djAi|(y,n)

⎞

⎠ =
c1d1+c2d2

D11
+

c3d3

D33
+

c4d4+c5d5

D44
, (8)

where vector fields are described by the differential operators on C1(R3 × S2):

(Aj |(y,n) U)(y,n) = lim
h→0

U(y+hRnej ,n)−U(y−hRnej ,n)
2h ,

(A3+j |(y,n) U)(y,n) = lim
h→0

U(y,(RnRej ,h)ez)−U(y,(RnRej ,−h)ez)

2h , j = 1, 2, 3,

where Rej ,h denotes the counter-clockwise rotation around axis ej by angle h,
with e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T . The induced metric is well-
defined on the quotient R

3
�S2 since the choice of Rn, as defined in Eq.(7), does

not matter as the metric tensor is isotropic in the planes depicted in Fig. 7. In
the remainder of this article we sometimes use short notation Ai for Ai|(y,n).

3 The Evolution Equations for Scale Spaces on DW-MRI

The spherical and the spatial Laplacian can be expressed in the left-invariant
vector fields as ΔS2 = (A4)2 + (A5)2 and ΔR3 = (A1)2 + (A2)2 + (A3)2. These
Laplacians generate diffusion over S2 and R

3 separately and are thereby likely to
destroy the fiber structure in DW-MRI, [11]. Therefore we introduce the follow-
ing evolutions (with time t > 0) for respectively, linear contour enhancement1:

{
∂W
∂t (y,n, t) = ((D33(A3)2 + D44 ΔS2) W )(y,n, t) ,

W (y,n, 0) = U(y,n) ,
(9)

1 Eq. (9) boils down to hypo-elliptic diffusion and corresponds to Brownian motion
on R

3
� S2 [11, ch:4.2], generalizing some of the results in [17,10,4] to 3D.
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for linear contour completion2:
{

∂W
∂t (y,n, t) = ((−A3 + D44 ΔS2) W )(y,n, t) ,

W (y,n, 0) = U(y,n) ,
(10)

and for morphological scale spaces:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂W
∂t (y,n, t) = ± 1

2η

(
G−1

(y,n)( dW (·, ·, t)|y,n , dW (·, ·, t)|y,n)
)η

= ± 1
2η

(
D11

(|A1W (y,n, t)|2 + |A2W (y,n, t)|2)+
D44

(|A4W (y,n, t)|2 + |A5W (y,n, t)|2) )η ,
W (y,n, 0) = U(y,n),

(11)

with η ∈ [12 , 1], cf. Fig. 6. Finally, for pseudo-linear scale spaces:
⎧
⎨

⎩

∂W
∂t (y,n, t) = ((D33(A3)2 + D44ΔS2)W )(y,n, t)+

C
(
D33|A3W (y,n, t)|2 + D44

(|A4W (y,n, t)|2 + |A5W (y,n, t)|2)) ,
W (y,n, 0) = U(y,n),

(12)

where C > 0 balances between infinitesimal dilation and diffusion. These evo-

Fig. 6. The effect of η ∈ [ 1
2
, 1] on angular erosion Eq. (11), D44 = 0.4, D11 = 0 and

t = 0.4. Left: original glyph, right eroded glyphs (normalized) for η = 0.5, . . . , 1.0.

lutions are either solved by (morphological) convolution with the corresponding
Green’s function or by finite difference schemes. To get an intuition on the un-
derlying geometrical ideas behind these evolutions see Fig. 7.

4 Solving the Evolutions by Convolution on R
3

� S2

Operators on DW-MRI data must commute with rotations and translations.
This means they must be left-invariant, i.e. they must commute with Lg for all
g = (x, R) ∈ SE(3), where

(LgU)(y,n) = U(g−1 · (y,n)) = U(R−1(y − x), R−1n),

for all U ∈ L2(R3
� S2), (y,n) ∈ R

3
� S2. According to the theorem below, all

reasonable linear, left-invariant operators on DW-MRI are R
3
�S2-convolutions.

2 Eq. (10) boils down to hypo-elliptic convection-diffusion, direction process on R
3
�S2

[11, ch:4.2], generalizing [16,12].
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diffusion

erosion

diffu
sion

erosion

Fig. 7. A curve [0, 1] � s �→ γ(s) = (x(s),n(s)) → R
3

� S2 consists of a spatial part
s �→ x(s) (left) and an angular part s �→ n(s) (right). Along this curve we have the
moving frame of reference {Ai|γ̃(s)}5

i=1 with γ̃(s) = (x(s), Rn(s)) where Rn(s) ∈ SO(3)

is any rotation such that Rn(s)ez = n(s) ∈ S2. Here Ai, with Ai = Ai|(0,I) denote the
left-invariant vector fields in SE(3), Eq. (5). To ensure that the diffusions and erosions
do not depend on the choice Rn(s) ∈ SO(3), Eq. (7), these left-invariant evolution
equations must be isotropic in the tangent planes span{A1,A2} and span{A4,A5}.
Diffusion/convection primarily takes place along A3 in space and (outward) in the
plane span{A4,A5} tangent to S2. Erosion takes place both inward in the tangent
plane span{A1,A2} in space and inward in the plane span{A4,A5}.

Theorem 1. Let K be a bounded operator from L2(R3
� S2) into L∞(R3

� S2).
Then there exists an integrable kernel k : (R3

� S2) × (R3
� S2) → C such that

‖K‖2 = sup
(y,n)∈R3�S2

∫

R3�S2

|k(y,n ; y′,n′)|2dy′dσ(n′) < ∞, and we have

(KU)(y,n) =
∫

R3�S2
k(y,n ; y′,n′)U(y′,n′)dy′dσ(n′) ,

for almost every (y,n) ∈ R
3

� S2 and all U ∈ L2(R3
� S2). Now Kk := K is

left-invariant iff k is left-invariant, meaning

∀g∈SE(3)∀y,y′∈R3∀n,n′∈S2 : k(g · (y,n) ; g · (y′,n′)) = k(y,n ; y′,n′).

Then to each positive left-invariant kernel k : R
3

� S2 × R
3

� S2 → R
+ with∫

R3

∫
S2 k(0, ez ; y,n)dσ(n)dy = 1 we associate a unique probability density

p : R
3

� S2 → R
+ by means of p(y,n) = k(y,n ; 0, ez). The convolution now

reads

KkU(y,n) = (p ∗R3�S2 U)(y,n) =
∫

R3

∫

S2

p(RT
n′(y− y′), RT

n′n)U(y′,n′)dσ(n′)dy′,

where σ is the surface measure on S2 and where Rn′ ∈ SO(3) s.t. n′ = Rn′ez.

For a proof see [11]. Consequently, the linear scale spaces (9) and (10) are
solved by R

3
� S2 convolution with the corresponding Green’s functions! Next
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we extend the ideas in [6,1] and replace the (+, ·)-algebra by the (max, +)-algebra
to solve the morphological scale spaces (11) by dilation and erosion on R

3
� S2

given by

(k− ⊕R3�S2 U)(y, n) = sup
(y′,n′)∈R3�S2

[
k−(RT

n′(y− y′), RT
n′n) + U(y′,n′)

]
,

(k+ 	R3�S2 U)(y,n) = inf
(y′,n′)∈R3�S2

[
k+(RT

n′(y− y′), RT
n′n) + U(y′,n′)

]
.

(13)

where dilation kernels k− are negative and erosion kernels k+ are positive.

Definition 2. A viscosity solution of Eq. (11) is a bounded and continuous weak
solution W : (R3

� S2) × R
+ → R of (11) such that

1. for any smooth function V : (R3
� S2)×R

+ → R s.t. W − V attains a local
maximum at (y0,n0, t0) one has ∂V

∂t
(y0,n0, t0) ∓ (H(dV (·, ·, t)))(y0,n0) ≤ 0.

2. for any smooth function V : (R3
� S2)×R

+ → R s.t. W − V attains a local
minimum at (y0,n0, t0) one has ∂V

∂t
(y0,n0, t0) ∓ (H(dV (·, ·, t)))(y0,n0) ≥ 0.

with Hamiltonian H(dV (·, ·, t)) = 1
2η

(
G−1(dV (·, ·, t), dV (·, ·, t)))η and with gra-

dient dV (y,n, t) =
∑5

i=1 AiV (·, t)|(y,n) dAi
∣
∣
(y,n)

.

Theorem 2. The unique viscosity solutions of the Hamilton-Jacobi-Bellman
equations on R

3
�S2, Eq. (11), are resp. given by (+ case) left-invariant erosion

W (y,n, t) = (kD11,D44,η,+
t �R3�S2 U)(y,n) (14)

and (− case) left-invariant dilation W (y,n, t) = (kD11,D44,η,−
t ⊕R3�S2 U)(y,n)

where kD11,D44,η,−
t = −kD11,D44,η,+

t and where

kD11,D44,η,+
t (y,n) := inf

γ = (x(·), R(·)) ∈ C∞((0, t), SE(3)),
γ(0) = (0, I = Rez ), γ(t) = (y, Rn),

〈 dA3
∣
∣
∣
γ

, γ̇〉 = 〈 dA6
∣
∣
∣
γ

, γ̇〉 = 0

t∫

0

Lη(γ(p), γ̇(p))
(

dp

ds

) 1
2η−1

dp ,

(15)
with spatial arclength s > 0 (of x(·)) and with Lagrangian

Lη(γ(p), γ̇(p)) := 2η−1
2η

(
1

D11 ((γ̇1(p))2 + (γ̇2(p))2)+ 1
D44 ((γ̇4(p))2+(γ̇5(p))2)

) η
2η−1

= 2η−1
2η

with γ̇i(p) = 〈dAi
∣
∣
γ(p)

, γ̇(p)〉 and with R
3

� S2-“erosion arclength” p given by

p(τ) =
τ∫

0

√
Gγ(τ̃)(γ̇(τ̃ ), γ̇(τ̃ )) dτ̃ =

τ∫

0

√
∑

i∈{1,2,4,5}

|〈dAi|γ(τ̃),γ̇(τ̃)〉|2
Dii dτ̃ . (16)

For proof see our technical report [9, App.B]. The Lagrangian in Theorem 2
relates to the Hamiltonian in Def. 2 by Fenchel transform [1] on the Lie algebra
of left-invariant vector fields on SE(3), for all 1

2 ≤ η ≤ 1, cf. [9, App.B,ch:8.3].
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A sub-Riemannian manifold is a Riemannian manifold with the extra con-
straint that certain subspaces of the tangent space are prohibited. For example,
curves in (SE(3), dA1, dA2, dA6) are curves γ̃ : [0, 1] → SE(3) such that

〈dA1
∣
∣
γ̃(s)

, ˙̃γ(s)〉 = 〈dA2
∣
∣
γ̃(s)

, ˙̃γ(s)〉 = 〈dA6
∣
∣
γ̃(s)

, ˙̃γ(s)〉 = 0, (17)

for all s ∈ [0, 1]. Curves satisfying (17) are called horizontal curves in
SE(3) and we depicted such a curve in Fig. 7.

In [11, ch:6.2] we have analytically approximated the Green’s functions of
contour completion, Eq. (10) and contour enhancement, Eq. (9) that take place
on the sub-Riemannian manifold (SE(3), dA1, dA2, dA6). These Green’s func-
tions coincide with the diffusion kernels for respectively the direction process
and Brownian motion om R

3 × S2 in probability theory, [9, ch:8]. Moreover,
in [9, App. A, B, C] we applied similar techniques to approximate the dila-
tion/erosion kernels that describe the growth of balls in the sub-Riemannian
manifold (SE(3), dA3, dA6), cf. Theorem 2. Again there exists a connection with
probability theory as these erosion kernels coincide with transition-cost densities
of Bellman-processes defined on (SE(3), dA3, dA6), see [9, ch:8.3].

The next theorem provides some of the approximations for the Green’s func-
tions, cf. [11, ch:6.2], [9, App.B]:

Theorem 3. Let 1 ≥ η > 1
2 , D11 > 0, D33 > 0, D44 > 0. Then for the morpho-

logical erosion (+) and dilation kernel (-) on R
3

� S2 one can use the following
approximation

kD11,D44,±
t (y,n) ≈ (2η−1)(c−2η t)

− 1
2η−1

±2η

(( |c1|2+|c2|2
D11

+
|c4|2+|c5|2

D44

)2

+
|c3|2

D11D44

) η
2(2η−1)

for t > 0 small, where ñ(β̃, γ̃)) = (sin β̃,− cos β̃ sin γ̃, cos β̃ cos γ̃)T , c > 0, with
β̃ ∈ (−π

2 , π
2 ), γ̃ ∈ (−π

2 , π
2 ). For the Green’s functions of Eq. (9), the heat kernels,

we have the approximation

pD33,D44

t (y,n) ≈ 1
16π2(D33)2(D44)2t4

e−

√
|c1|2+|c2|2

D33D44 + |c6|2
D44 +

(
(c3)2

D33 + |c4|2+|c5|2
D44

)2

4t .

In both cases the functions ci := ci(y, α̃ = 0, β̃, γ̃) are given by

c(1) := (c1, c2, c3)T = y− 1
2 c(2) × y + q̃−2(1 − ( q̃

2 ) cot( q̃
2 )) c(2) × (c(2) × y),

c(2) := (c4, c5, c6)T = q̃
sin(q̃) ( sin γ̃ cos2( β̃

2 ) , sin β̃ cos2( γ̃
2 ) , 1

2 sin γ̃ sin β̃ )T

with q̃ = arcsin
√

cos4(γ̃/2) sin2(β̃) + cos2(β̃/2) sin2(γ̃).

For η = 1
2 we obtain the erosion kernel approximation (take η ↓ 1

2 in Theorem 3):

k
D11,D44, 1

2 ,−
t (y,n) ≈

⎧
⎨

⎩
∞ if

√(
|c1|2+|c2|2

D11 + |c4|2+|c5|2
D44

)2

+ |c3|2
D11D44 ≥ t2 ,

0 else.
(18)



12 R. Duits et al.

The solutions of the pseudo-linear spaces, Eq. (12), are given by

W (y,n, t) = χ−1
C ( (et(D33(A3)2+D44ΔS2) ◦ χC ◦ U)(y,n) ),

i.e. a linear hypo-elliptic diffusion conjugated with the grey-value transformation
χC(I) = eC I−1

eC−1 if C �= 0 and χC(I) = I if C = 0, I ∈ R
+, cf. [9, ch], [14].

Fig. 8. 1st row: Input DTI-data. 2nd row: Output squared linear diffusion on squared
data-set. 3rd row: Output erosion applied to the diffused dataset in the 2nd row.

5 Conclusion

We have developed crossing preserving, rotation- and translation covariant scale
spaces on DW-MRI. The underlying evolutions are convection-diffusion equa-
tions and Hamilton-Jacobi-Bellman equations of respectively stochastic and cost
processes cf. [9], on the space of positions and orientations R

3
� S2. These scale

spaces are expressed in a moving frame of reference allowing (hypo-elliptic) dif-
fusion along fibers and erosion orthogonal to fibers. They extrapolate complex
fiber-structures (crossings) from DTI, while reducing non-aligned crossings in
HARDI. They can be implemented by finite difference methods [7] (e.g. Fig. 4
and Fig. 8), or by convolutions with analytic kernels (e.g. Fig. 1 and 2).
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