
ADVANCED DIRECT MANIPULATION
OF FEATURE MODELS

Rafael Bidarra, Alex Noort
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, The Netherlands

A.R.Bidarra@tudelft.nl, A.Noort@ewi.tudelft.nl

Daniel Lourenço, Pedro Oliveira
Instituto Superior Técnico, Technical University of Lisbon, Portugal

daniel.antunes.lourenco@gmail.com, pedro.vcm.oliveira@gmail.com

Keywords: Feature modelling, direct manipulation, user interaction, handles, constraints

Abstract: In current commercial feature modelling systems, support for direct manipulation of features is not
commonly available. As a result, re-designing is time-consuming due to the inefficient feedback, the
insight given is rather poor, and user interaction often lacks intuitiveness. This is partly due to the
lack of speed of current constraint solvers, but also to deficient interactive facilities. In this paper,
we argue that providing advanced direct manipulation facilities for feature models is possible and
can significantly speed up the product design process, by giving designers a much more intuitive
interface, with immediate feedback and deeper insight into the consequences of each modelling
action. An approach to such a direct manipulation interface is presented that brings together the
advantages of direct manipulation of feature models with the necessary emphasis on fundamental
feature modelling paradigms like feature parametrisation and feature validity maintenance. In
particular, it offers a powerful combination of various 3D handles for real-valued feature parameters,
with a preview overlay facility for all modelling operations. Details are provided on how this
approach was successfully implemented in a prototype feature modelling system.

1 Introduction

Feature modelling is a design paradigm that
comes as an alternative to the traditional
geometry-based design systems. The founding
idea of feature modelling is to focus the modelling
tasks of the designer on a higher level, facilitat-
ing the specification of many different aspects in
a product model, and gaining insight into their
inter-relations (Shah and Mäntylä, 1995). This
is achieved by enabling the designer to associate
functional information to the shape information
in the product model.

Although one cannot find a consensual definition
of the concept of feature, one that nicely fits to
this research defines a feature as ”a representation
of shape aspects of a product that are mappable
to a generic shape and are functionally signifi-
cant for some product life-cycle phase” (Bidarra
and Bronsvoort, 2000). In contrast to conven-

tional CAD systems, in which the design focus
mainly lies on geometry, in a feature modelling
system the designer builds a model out of fea-
tures, each of which has a well-defined semantics.
As an example, for manufacturing planning pur-
poses it would be appropriate to provide the de-
signer with features that correspond to the man-
ufacturing processes available to manufacture the
product being designed (e.g. slots and holes).

Feature model semantics is mostly represented by
a variety of constraints. Constraints can be used
in feature modelling systems to express charac-
teristics of the model (e.g. to specify some fea-
ture faces to be co-planar, or restrict a given di-
mension to a certain range). But, above all, con-
straints are used as the internal constituents of
features that express their semantics (e.g. a hole
feature could have constraints to position and ori-
ent it, or constraints that express the physical lim-
its of the drilling machinery available). Because
of this central role of constraints, feature mod-



elling systems have to make an intensive use of
constraint solving techniques. In particular, geo-
metric constraints and geometric constraint solv-
ing techniques are very common.

To ensure that feature model semantics is main-
tained, the validity of the feature model has to
be checked after each model modification. Fea-
ture model validity is usually checked by solv-
ing the constraints in the model: a valid feature
model is a feature model that satisfies all its con-
straints. Modelling systems which guarantee fea-
ture model semantics to be maintained through-
out the modelling process are called semantic fea-
ture modelling systems (Bidarra and Bronsvoort,
2000). So constraints play an important role dur-
ing model creation and modification.

Quite some research work has been done on tech-
niques to enable constraint solvers to be used
in interactive applications, such as user inter-
face onstruction (Borning and Duisberg, 1986;
Freeman-Benson, 1993; Hosobe, 2001), and ge-
ometric modelling systems (Hsu et al., 1997;
van Emmerik, 1991). However, in current mod-
elling systems, the specification and the modifi-
cation of feature parameters that determine its
position/orientation and its dimensions, is still
mostly done through the input of values in di-
alog boxes, after which the model is updated ac-
cordingly (Parametric Technology Corporation,
2006; SolidWorks Corporation, 2006; UGS Cor-
poration, 2006). The main disadvantages of this
approach are:

inefficient feedback, making the design task
much slower. Each time the designer changes
the parameters of a feature he has to wait for
the whole system of constraints to be solved
and only then can he see the effect of his
changes and check the validity of the model.

lack of insight on the consequences of the mod-
elling operation. When changing a parameter
the user can only see the original and resulting
model of the operation. In other words, there
is no explicit feedback on which features were
affected and how.

non-intuitiveness due to the fact that the user
is simply editing values in dialog boxes that
do not express how the feature is affected by
the parameter.

As a result of these drawbacks, all too often de-
signers are forced into using a trial-and-error ap-
proach to find the right feature parameter to be

changed or to find the right value for the param-
eter.

Good interactive facilities for direct manipula-
tion of features should always deal with the three
drawbacks mentioned above. In this research, we
developed a new approach that allows the de-
signer to select a parameter of a feature in the
model, and subsequently modify its value interac-
tively, while being provided with real-time feed-
back on the consequences of the operation. When
the designer is satisfied with the model, he can
choose to provisionally accept the changes and,
eventually, let the system check the model valid-
ity.

The most crucial aspect of this approach consists
of being able to provide real-time feedback on
the changes effected to the feature model. Since
this visual feedback has to be generated several
times per second to support interactive modifica-
tion of a feature parameter value, all geometric
constraints have to be solved at that same pace.
To achieve this, we developed a technique that
(i) reduces the time needed to solve a geomet-
ric model, (ii) can be applied with a variety of
constraint solvers, and (iii) can be easily imple-
mented. This technique has been recently pre-
sented in (Lourenço et al., 2006), which contains
a detailed description of our model compilation
and constraint solving approach, together with a
performance analysis of its prototype implemen-
tation.

In this paper we focus on how our approach
solves the other two drawbacks mentioned above.
Throughout the paper, we deal with the situation
in which a real-valued feature parameter that de-
termines a dimension, or the position or orienta-
tion of a feature in a feature model, is interac-
tively manipulated by a designer. All aspects of
our approach described in the paper were imple-
mented in Spiff, a prototype feature modeling
system developed at Delft University of Technol-
ogy.

We first introduce various aspects involved in our
approach to direct manipulation of features (Sec-
tion 2). Next we propose several types of fea-
ture handles (Section 3), and describe how they
are utilised to yield advanced interactive facilities
(Section 4). Finally, some conclusions are drawn
(Section 5).



(a) (b)




Figure 1: A through hole feature (a), and its param-
eters (b).

2 Direct manipulation of

features

Features can be modified by manipulating their
parameters. Although a parameter of a feature
can also be a face of another feature to which it is
attached, or with respect to which it is positioned,
this paper only deals with manipulation of real-
valued feature parameters, such as the dimension
of a feature, the distance of a feature with respect
to a face of another feature, etc. An example of a
through hole feature with its parameters is given
in Figure 1, showing the typical entry fields for
the various parameter values.

2.1 Feature manipulation phases

Direct manipulation of a real-valued feature pa-
rameter consists of two phases. In the selection

phase, the parameter to be manipulated has to
be selected. In the interaction phase, the value
of the parameter is interactively changed by the
designer, and the feature model is updated ac-
cordingly by the system.

In the interaction phase, the designer changes the
value of a feature parameter, by using the mouse
to drag an icon that represents the feature pa-
rameter on the displayed feature model. During
the dragging, the model and its visualization are
updated continuously to reflect the modifications.

The interaction phase needs to be performed real-
time, since the designer needs the feedback of the
image of the changed model on the display while
dragging the mouse. Real-time here means fast
enough to preserve the illusion of movement, i.e.

the illusion that consecutive images of the same
object in a somewhat different position, show a
moving object. This illusion is preserved when
the system displays more than 10 frames (or im-
ages) per second (Card et al., 1983).

2.2 Model validity maintenance

Manipulating the parameter of a feature in a
model may turn a valid feature model into an
invalid one (see Section 1), e.g. because an un-
desirable interaction occurs between two features,
or a dimension does not satisfy its dimension con-
straint anymore.

An invalid situation should preferably be detected
during the manipulation of the model, and the de-
signer should preferably be immediately informed
on it. In case that it is not feasible to detect the
invalid situation during the manipulation of the
model, for example, because it takes too much
time to check the validity of the model, the valid-
ity of the model should be checked as soon as the
manipulation of the model is ended.

However, in case a model has become invalid dur-
ing manipulation of a feature parameter, further
manipulation should not be prohibited, because
the model may turn valid again if the value of
the parameter is changed even more. For exam-
ple, if the model of Figure 1 would also contain
a through slot that is positioned to the left of
the hole, and the through slot would be moved
to the right by manipulating its position param-
eter, then, as the through slot and the hole start
to overlap, the model becomes invalid, but the
model turns valid again when the through slot is
moved beyond the hole.

If the model is invalid at the moment that the ma-
nipulation of a feature parameter is ended, then
some validity maintenance mechanism (Bidarra
and Bronsvoort, 2000) should be triggered to as-
sist the designer to make the model valid again.

2.3 Constraint management

To solve the geometric constraints in the model,
a constraint management scheme is used. The
constraint management scheme maps a high-level
constraint model, containing the complex de-
sign constraints, into a large low-level constraint
model, containing primitive constraints, that can



be solved by the constraint solvers used, and up-
dates the high-level constraint model based on the
solved low-level constraint model.

Fortunately, in the interaction phase of direct
manipulation, only part of the constraint model
needs to be solved. Since only one feature pa-
rameter is changed during the interaction phase,
typically, large parts of the model do not change,
i.e. they are rigid. Such rigid parts can, therefore,
be represented by a single constraint variable in
the low-level constraint graph, thus avoiding the
need to solve all constraints within the parts.

Constraint management for interactive feature
manipulation identifies all rigid parts of the
model, and maps each one to a separate con-
straint variable in the low-level constraint model
that is solved in the interaction phase. The re-
sulting, simple, constraint model is then used to
find the relative position and orientation of the
rigid parts during the interaction phase, given
the current value of the feature parameter that is
changed. Again, this model compilation and con-
straint solving approach is described in (Lourenço
et al., 2006), to which the reader is referred for
many details on its fundamentals, implementa-
tion and performance.

3 Types of feature handles

Not all parameters of features have a direct ge-
ometric meaning. For such parameters, it is not
possible to assign a feature handle with a natural
behaviour. A good example of this situation is
a feature that has a volume parameter. On the
other hand, most parameters do have a simple ge-
ometric meaning, e.g. the width of a protrusion
or the rotation angle of the same protrusion. As
stated before, in this paper we deal only with such
real-valued parameters. For these, four types of
handles were identified that cover most direct ma-
nipulation needs:

• Linear handles

• Angular handles

• Planar handles

• Slider handles

In this approach all handles of a feature are speci-
fied by their relation with reference elements (e.g.
reference points and reference lines) of the fea-
ture. With these references the system will be

(a) Linear (b) Angular

(c) Planar (d) Slider

Figure 2: Types of handles.

able to know the placement of the handles as well
as their behaviour as they are being manipulated.
One reference that is needed for the specification
of any type of handle is the point that specifies its
position in the model. These references are spec-
ified at the feature definition like any other ref-
erences - using constraints. One very important
consequence of the definition using references is
that the position and orientation of the handles
will be solely determined by the constraint solver.

We will now look with more detail into each of
the proposed handles:

• A linear handle is a handle that moves along
a straight line and reacts linearly with the
mouse movement. Besides the reference point
representing the position, it also contains a
reference line representing the line on which
the handle moves. When the handle is
dragged, the new mouse position is projected
against the reference line, and the parameter
variation is given by the difference between
the computed position and the previous posi-
tion of the handle. See Figure 2(a).

• An angular handle is a handle that moves
along an arc in a way that the user is able to
specify an angle parameter. This handle has
a reference line besides the position reference



that represents the axis of rotation around
which the angular handle revolves. When the
handle is dragged, the new mouse position is
projected onto the plane perpendicular to the
axis of rotation which passes through the cur-
rent position of the handle thereby comput-
ing point1. To determine the change in the
parameter affected by this handle an angle is
computed. This angle is the angle between
two lines in the plane just mentioned which
pass each through the axis of rotation and
through the original position of the handle and
point1 respectively. See Figure 2(b).

• A planar handle behaves somewhat like a lin-
ear handle with the difference that, instead
of having its movement restricted to a line,
its movement is restricted to a plane (having
two linear degrees of freedom). For this type
of handle two reference lines will be needed
to determine the plane on which it can move.
One thing that differs from this handle to all
the others is the fact that by manipulating
it the user is affecting two parameters of the
feature at the same time instead of one. To
determine the change in the parameter values
a computation similar to the one used for the
linear handle will happen with the difference
that the mouse position will now be projected
onto each of the reference lines corresponding
to each of the parameters affected. The mo-
tivation for the existence of this handle is to
enable the user to change the position of fea-
tures that have it specified by two distances
to external faces. See Figure 2(c).

• A slider handle is also similar to a linear han-
dle but, in this case, the line will simply be
a vertical line on the viewport with no con-
nection to the actual feature geometry be-
ing changed by such parameter manipulation.
Therefore this handle, unlike any of the other
handles, will contain solely a reference point
for its position and no reference lines. The
slider handle suits nicely to provide direct ma-
nipulation to parameters that have no simple
nor easy-to-localize geometric meaning, as the
corner radius in the pocket of Figure 2(d).

By combining these four kinds of handles in fea-
ture class definitions, the parameterization of a
large variety of feature classes is easily made
ready for the advanced direct manipulation facili-
ties described in the next section. Figure 3 shows
a few examples of such feature classes.

(a) Base Block feature with handles
for width, height and length

(b) Block Protrusion feature with
handles for width, height, length, ro-
tation and position

(c) Rounded Rectangular Pocket fea-
ture with handles for width, height,
length, rotation, position and corner
radius

Figure 3: Examples of handle specifications for three
different feature classes.

4 Advanced interactive facilities

The direct manipulation approach developed
should overcome the three disadvantages of tradi-
tional feature manipulation mentioned in Section



1. In other words, it is required that (i) feedback
is efficient, (ii) that insight into the modelling op-
eration consequences is provided, and (iii) that
the relation between what’s manipulated and the
way it affects the feature becomes intuitive. In
this section we describe how this was achieved.

For efficient feedback every modelling operation
leads to an immediate preview of the result of the
operation to the user. This preview is provided
through a transparent overlay display of the re-
sulting model. The user has insight on the con-
sequences of the operation, which become clear
through the comparison of the original model
with the simultaneously displayed preview. The
manipulation is intuitive because of the feature
handles’ characteristics. The deployed feature
handles (see Section 3) take into account that
each feature parameter has a specific semantics.
This semantics will be expressed through the han-
dle’s behaviour, positioning and iconic represen-
tation.

We now give a brief description of how the user
interacts with the feature model under this ap-
proach, in a way that materializes the require-
ments presented previously. For this, the example
given in Figure 4 will be used.

• When a user selects a feature to be edited it is
highlighted with a transparent overlay with a
distinguishing color and its available handles
are displayed on the screen; see Figure 4.(b).

• The user may then edit the handles by drag-
ging them. When the user does so the display
is updated according to the change in the pa-
rameter. When this happens, all the features
which were affected by the variation of the pa-
rameter also appear as a transparent overlay;
; see Figure 4.(c). These changes are not final
and can be undone.

• When the user chooses to Apply the modelling
operations, changes which have been made
(and highlighted) previously become final and
the full model display is updated with the new
parameter values; see Figure 4.(d).

• When the user chooses to Dismiss the mod-
elling operation, the changes which have been
made since the last Apply are undone.

As described in Section 2.1, two important phases
exist in the flow of events for handle manipula-
tion: the selection phase, when the user selects a
parameter of a feature to be edited, and the in-
teraction phase, each time the respective handle
is dragged.

(a) Initial model (b) selection of the pocket

(c) dragging of the pocket (d) Final model

Figure 4: Interactively modifying a feature: the
through hole, positioned relatively to the pocket, is
highlighted and dragged together with it.

Figure 5 is a high level diagram of the flow of
events that happens when the user selects a fea-
ture to be edited. Here, the user selection leads
to the activation of all the handles of the feature
– the handle is displayed and registered in the
Operator (a control entity). The feature is also
highlighted with a transparent overlay.

The flow of events that results from a single drag
event of the user is depicted in figure 6. The drag
event is reported to the Operator with the infor-
mation of the new mouse position. The operator
sends a message to the Handle which leads to the
computation of the new value of the parameter
and to its update in the model. This computation
is obviously done taking into account the handle
behaviour (see section 3). After the new value is
set, the Operator orders the Constraint Manager
to solve the model. This solving process is done
with the incremental constraint management so-
lution specially optimized for direct manipulation
described in (Lourenço et al., 2006). The sim-
ple idea of this process is to add a preprocessing
step when a parameter is first manipulated that
boosts the constraint solving performance to fur-
ther changes in that same parameter. With the
new model values resulting from the constraint



User

User Interface Handle

select feature
for editing

Feature

prepare to edit
activate

draw handle

Operator Camera

register handle

draw selected feature overlay

Figure 5: Interaction diagram of what happens when
the user selects a feature for editing.

Figure 6: Interaction diagram of what happens when
the user drags a handle.

solving process a transparent preview of the re-
sult of the operation is rendered and displayed.

5 Conclusions

In this paper a new approach to the direct manip-
ulation of feature models was presented. Several
types of handles for parameters with a simple and
intuitive geometric meaning were introduced. In
addition, a slider handle was developed, for sit-
uations in which the feature class designer wants
to add direct manipulation to a generic parame-
ter lacking an easy-to-localize geometric meaning.
The main aspects of the new approach were dis-
cussed, together with its prototype implementa-
tion within the Spiff feature modelling system,
demonstrating its value and feasibility.

The definition of handles at the feature class level
is such that handles only depend on reference ele-
ments that are specified as any others in the sys-
tem. This solution has the advantage of having
the position and orientation of handle references
automatically computed in the constraint solving
process.

For an effective and insightful feedback on the
modelling operations, a transparent preview of
the model is overlaid as the user directly manip-
ulates a feature through its handles. In this way

the user can clearly see the effects of the mod-
elling operations and compare the result with the
original situation.

The prototype implementation has been success-
ful in making the manipulation of feature mod-
els a very intuitive process, effectively improving
the user experience and, therefore, confirming the
high potential of the approach.

REFERENCES

Bidarra, R. and Bronsvoort, W. F. (2000). Seman-
tic feature modelling. Computer-Aided Design,
32(3):201–225.

Borning, A. and Duisberg, R. (1986). Constraint-
based tools for building user interfaces. ACM
Transactions on Graphics, 5(4):345–374.

Card, S., Moran, T., and Newell, A. (1983).
The Psychology of Human-Computer Interac-
tion. Lawrance Erlbaum Associates, Hillsdale,
N.J.

Freeman-Benson, B. N. (1993). Converting an exist-
ing user interface to use constraints. In Pro-
ceedings of the ACM Symposium on User In-
terface Software and Technology, pages 207–215.
ACM Press.

Hosobe, H. (2001). A modular geometic constraint
solver for user interface applications. In Proceed-
ings of the 14th annual ACM symposium on User
interface software and technology, pages 91–100.
ACM.

Hsu, C., Huang, Z., Beier, E., and Brüderlin, B.
(1997). A constraint-based manipulator toolset
for editing 3d objects. In Proceedings of the
fourth ACM symposium on Solid modeling and
applications, pages 168–180. ACM.

Lourenço, D., Oliveira, P., Noort, A., and Bidarra, R.
(2006). Constraint solving for direct manipula-
tion of features. Journal of Artificial Intelligence
for Engineering Design, Analysis and Manufac-
turing, 20(4):369–382.

Parametric Technology Corporation (2006).
Pro/ENGINEER product information.
http://www.ptc.com.

Shah, J. J. and Mäntylä, M. (1995). Parametric and
Feature-based CAD/CAM. John Wiley & Sons,
Inc., New York.

SolidWorks Corporation (2006). Solid-
works 2006 product information.
http://www.solidworks.com.

UGS Corporation (2006). Unigraphics NX product
information. http://www.ugs.com.

van Emmerik, M. J. G. M. (1991). Interactive design
of 3D models with geometric constraints. The
Visual Computer, 7(5/6):309–325.


