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Performance capture systems are used to acquire high-quality animated 3D
surfaces, usually in form of a dense 3D triangle mesh. Extracting a more
compact, yet faithful representation is often desirable, but existing solutions
for animated sequences are surface-based, which leads to a limited approxi-
mation power in the case of extreme simplification. We introduce animated
sphere-meshes, which are meshes indexing a set of animated spheres. Our
solution is the first to output an animated volumetric structure to approx-
imate animated 3D surfaces and optimizes for the sphere approximation,
connectivity, and temporal coherence. As a result, our algorithm produces
a multi-resolution structure from which a level of simplification can be se-
lected in real-time, preserving a faithful approximation of the input, even at
the coarsest levels. We demonstrate the use of animated sphere-meshes for
low-cost approximate collision detection. Additionally, we propose a skin-
ning decomposition, which automatically rigs the input mesh to the chosen
level of detail. The resulting set of weights are smooth, compress the ani-
mation, and enable easy edits.
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1. INTRODUCTION

Modern performance capture systems automatically generate high-
resolution 3D animated meshes from real-world objects and char-
acters [Vlasic et al. 2008; de Aguiar et al. 2008]. However, the
resulting output sequences are mostly targeted for "replay"; each
frame is represented independently.

In this context, high-level control mechanisms, based on geomet-
ric approximation, are often desirable to perform shape and motion
processing, analysis and editing. The underlying structures should
capture the global spatial embedding of the animated shape and
remain coarse enough to act as intuitive intermediate representa-
tions to edit the sequence. A number of such approaches have been
proposed to reconstruct control structures having a shape-driven
3D spatial embedding such as an animation skeleton or a defor-
mations cage. The former offers a natural layout to model articu-
lated objects while the latter is more suited for volume evolution
modeling and maps better to non-tubular geometries. Ideally, one
would like to benefit from both worlds, using a medial structure,
such as the medial axis transform [Blum 1967] (MAT), which pro-
vides both explicitly an inner skeleton and local thickness mod-
els. At a coarse scale, such a solution would be a valid alterna-
tive to both cages and skeletons. At finer scales, the volumetric
nature of the medial axis is problematic, requiring an untractable
amount of values, which describe geometry far away from the lo-
cation of interest (i. e., the surface). In the case of static meshes,
sphere-meshes [Thiery et al. 2013] tackle this problem. A sphere-
mesh is a multi-resolution mesh structure (edges, faces) indexing
a set of spheres, which are optimized to properly approximate the
input geometry locally, when linearly interpolated on the sphere-
mesh simplices. Such a volume approximation compactly repre-
sents the shape as a convolution surface or a (simpler) primitive
sum, proving useful for a variety of applications such as surface
analysis [Siddiqi and Pizer 2008], shadowing [Wang et al. 2006] or
proximity queries [Stolpner et al. 2012].

Unfortunately, volumetric structures and abstractions, such as
the MAT or 3D “blobs” [Muraki 1991], exist mostly for static
shapes. For example, the MAT cannot be used to represent consis-
tently animated 3D data, since the MAT of a shape varies strongly
and in unexpected ways along the animation, even for smooth and
isometric transformations of the shape.

In this paper, we approximate animated mesh sequences with
animated sphere-meshes. Our algorithm outputs a nested hierar-
chy of simplified animated sphere-meshes that evolve from sur-
face structures at fine scales to more volumetric structures at coarse
scales, keeping a consistent connectivity during the entire animated
sequence. Our work is the first to provide a time-consistent vol-
umetric approximation of an animated surface mesh at different
levels of detail. Existing applications using this representation can
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Fig. 1. Our algorithm takes as input an animated surface mesh (a), and outputs an animated sphere-mesh: a non-manifold mesh indexing a set of animated
spheres (b): spheres in red, edges in yellow, triangles in blue). The input animation can be approximated efficiently by interpolating the spheres on the
simplices of the sphere-mesh (c): interpolated edges in grey, interpolated triangles in blue). We perform a skinning decomposition of the animation (d) using a
sphere-mesh to define a level of detail. The resulting weight maps allow us to efficiently compress the data via linear blend skinning and to define new poses.

thus trivially be used directly on our data, when they could pre-
viously use static or manually-designed animated convolution sur-
faces only. We illustrate this point with an application to approx-
imate collision detection. As a second application, we show how
to perform automatic rigging of the input animation using our ani-
mated sphere-mesh as a rigging structure for the original data. The
resulting skinning weights are smooth enough for high-end shape
modeling applications and reproduce faithfully the complex defor-
mations learned from the input animation. Additionally, we intro-
duce mixed weights to benefit from geometrically salient structures
in regions which lack detailed motions along the animation.

Specifically, we make the following contributions (see Fig. 1):
—an approximation algorithm to build an animated sphere-mesh

from the input (Sec. 3);
—a spherical quadric error metric for animated meshes (Sec. 3);
—an error-minimization algorithm (Sec. 4.1.1), which is compati-

ble with temporal-coherence optimization (Sec. 4.2);
—an optional connectivity improvement (Sec. 4.3);
—a skinning decomposition method (Sec. 6.2), based on the cho-

sen simplification level of the animated sphere-mesh, resulting
in smooth weights considering either animation or geometric
weights, depending on their appropriateness.

We present the results for our approximation (Sec. 5) and skinnning
decomposition (Sec. 6.2), before discussing our work (Sec. 7).

2. RELATED WORK

Animated-mesh simplification. Contrary to static-mesh sim-
plification [Talton 2004], few approaches address animated-mesh
simplification. Furthermore, the output of existing methods is gen-
erally an animated triangle mesh [Mohr and Gleicher 2003; DeCoro
and Rusinkiewicz 2005; Kircher and Garland 2005; Landreneau
and Schaefer 2009; Zhang et al. 2010], or a set of triangle meshes
with minimal frame-to-frame connectivity transformations [Houle
and Poulin 2001; Huang et al. 2005; Payan et al. 2007]. Most of
these techniques rely on a quadric error metric (QEM) [Garland and
Heckbert 1997] to define the cost of collapsing an edge to a 3D ver-
tex by summing the QEMs over all frames. Such a solution exhibits
two major advantages. First, edge decimation is fast and efficient,
which is crucial for processing large animations; Second, starting
from consistent meshes and decimating corresponding edges in all
frames simultaneously, maintains the output connectivity along the
animation, which simplifies storage and editing. We build upon
such a solution but, in contrast to previous approaches, we opt for
an animated volumetric approximation, which has been shown to
be favorable for coarse simplifications [Thiery et al. 2013].

Skinning from animations. For purely geometric animated-
mesh compression, most work focuses on algebraic approxima-
tions (generally assimilated by non-linear dimensionality reduc-
tion), such as skinning decomposition techniques. The latter ap-
proximate the input animation via a single mesh (often, a frame
of the animation) and additional data in form of skinning weights
and a skeleton animation [de Aguiar et al. 2008; Le and Deng
2014], or simply a set of proxy-bone transformations [Kavan et al.
2010; James and Twigg 2005; Le and Deng 2012], which can be
either rigid or arbitrary. The input is then approximated by lin-
ear blend skinning (LBS) [Magnenat-Thalmann et al. 1988; Lewis
et al. 2000]. These methods tend to produce a single bone per rigid
region, considering the motion of the input mesh rather than its
complete animated geometry (e. g., if the head of an animal is glob-
ally rigid along the animation, a single bone will be found). Addi-
tionally, the skeleton connectivity is usually deduced from an adja-
cency graph of the rigid parts in the mesh. Our approach makes it
possible to select a skeletal domain taking the full animated geom-
etry into account and to choose an appropriate level of detail before
deriving a particular skinning decomposition.

Sphere-meshes. In [Thiery et al. 2013], the QEM decimation
algorithm [Garland and Heckbert 1997] is modified to approximate
the sum of squared distances of the tangent planes in a region to
a sphere instead of a point. Iteratively, the edge inducing the low-
est error according to this metric is collapsed. The resulting nested
hierarchy of sphere-based approximations can then be traversed in
real-time, making it possible to progressively navigate from sur-
face structures to volumetric structures by decreasing the number
of spheres. Nonetheless, this approach did not consider animation,
nor does there exist any technique for building an animated simpli-
fied volumetric representation. One important reason could be that
most existing techniques for the static case rely on a MAT, which
is inconsistent during animation when determined per frame.

Technical background

We briefly present the edge-collapse decimation framework de-
scribed in [Thiery et al. 2013], which we extend in our system. It
takes as input a surface mesh (preferably but not necessarily man-
ifold nor closed, and possibly containing some wire edges), and
outputs a nested hierarchy of coarser meshes with a sphere associ-
ated with each of the vertices. The input mesh is then approximated
at multiple resolutions by linearly interpolating the spheres on each
of the triangles and edges of a sphere-mesh in the hierarchy.
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Computation from triangle meshes. At
first, each vertex vi is associated with a region of
the mesh called its barycentric cell Pi (see inset
figure). In each simplification step, an edge is col-
lapsed and the region associated with the newly-
created vertex is set as the union of the regions
of the two collapsed vertices. The cost associated
with each edge collapse is defined as the integral
of the squared distance from the tangent planes
in the region to a 3D sphere, whose radius and position are opti-
mized to minimize this energy. All edges are collapsed iteratively,
and these collapse operations are ordered by increasing cost in a
priority queue.

When optimizing the geometry of a sphere approximating a re-
gion, its diameter is constrained to be smaller than the width [Gärt-
ner and Herrmann 2001] of the region, essentially to avoid impos-
sibly large spheres approximating planar surfaces.

The cost of a partition into K regions {Ik, sk}k≤K is

C({Ik, sk}k≤K) =
∑
k≤K

QIk (sk)

where {Ik}k≤K is a partition of the vertex’ barycentric cells
{Pi}, QIk is the sum of the spherical quadric error met-
rics (SQEMs) of the vertices in the set Ik and sk is a
sphere associated with the region k. Formally, QIk (q, r) =∑
i∈Ik

∫
ξ∈Pi

SQEM(pξ,nξ)(q, r)dσξ, where

SQEM(pξ,nξ)(q, r) := (nξ
T · (pξ − q)− r)2 (1)

is the squared distance between the plane intersecting pξ ∈ R3 with
normal orientation nξ ∈ R3 and a sphere s := (q, r) ∈ R3 ×R+,
consisting of its center q and radius r, and dσξ denotes the infinites-
imal surface element. The sphere sk is optimized to best approxi-
mate the region Ik (in the sense that it minimizes its associated
quadric QIk ). As explained in detail in [Thiery et al. 2013], the
SQEM is sensitive to the normal orientation, and minimizing it
while constraining the radius of the solution to be positive prevents
approximating concave patches with a single sphere.

Hierarchy traversal. At each decimation step the locations
and radii of the collapsed and created spheres are recorded, as well
as the edges/triangles that are deleted or created. All these events
are stored in an array, representing a sphere-mesh hierarchy. After
the decimation process, the user can navigate in real-time in the
sphere-mesh hierarchy to find the desired level of detail. Following
Hoppe et al. [Hoppe 1996], we noteM0 the input mesh, andMτ

the mesh resulting from the τ th recorded edge-collapse operation
(i. e.,Mτ is obtained by collapsing an edge ofMτ−1).

Surface extraction. A surface approximating the input mesh
can be extracted from a sphere-mesh as a convolution sur-
face [Bloomenthal and Shoemake 1991] between the base mesh
and the spheres. In our work, spheres are interpolated along the
edges and faces of the base mesh. An interpolated edge corresponds
therefore to a cone cut by orthogonal planes at each edge extremity,
and an interpolated triangle corresponds to a triangular prism with
3 faces from the edges extrusion and two triangular faces represent-
ing the lower and upper crust. For the sake of simplicity, although
convolution-surface extraction algorithms exist [McCormack and
Sherstyuk 1998; Zanni et al. 2013], we mesh a sphere-mesh (if
needed) by contouring the signed distance to the sphere-mesh using
a marching cube algorithm.

Fig. 2. The input animation is approximated with a sphere-mesh with 3

spheres with time-consistent connectivity. On the left, two spheres on top
almost coincide because the sphere-mesh geometry is optimized w.r.t. the
first frame, while this choice is not adequate for the complete animation.
On the right, the sphere-mesh geometry is optimized w.r.t. all frames simul-
taneously, resulting in a geometry that is better suited to approximate the
input animation.

Rendering. The sphere-mesh primitives are rendered effi-
ciently on the GPU using the geometry shader [de Toledo and Lévy
2008], without any surface extraction.

3. ANIMATED SPHERE-MESHES

Problem statement. We aim at approximating a mesh anima-
tion with F frames, (meaning F different triangles meshes hav-
ing the same connectivity) with an animated sphere-mesh (a mesh
where each vertex is associated with a time-varying sphere). The
linear interpolation of these spheres across the sphere-mesh trian-
gles and edges results in the animated approximating shape.

Approximation algorithm overview. We cast our shape ap-
proximation problem into a partitioning of the barycentric cells P fi
around each mesh vertex vi in M0. The resulting regions of the
partitioned animated input mesh are approximated via animated
spheres. These spheres, together with the connectivity (deduced
from the dual of the partition), results in an animated sphere-mesh.

We initialize the animated sphere-mesh withM0, and simplify
it by iteratively collapsing its edges (equivalently, this means that
regions are merged in the animated mesh), while minimizing a cost
function. The output is, thus, an animated sphere-mesh hierarchy.

For a given frame f ∈ J1, F K, the SQEM Qfi for a barycentric
cell P fi describes the squared distances of the tangent planes in P fi :

Qfi (q, r) :=

∫
ξ∈Pfi

SQEM(pξ,nξ)(q, r)dσξ. (2)

The cost of a partition into K regions {Ik, {sfk}f≤F }k≤K is then

C({Ik, {sfk}f≤F }k≤K) :=
∑
k≤K

∑
f≤F

QfIk (sfk) (3)

where {Ik}k≤K is a partition of barycentric cells and sfk = (qkf , r
k
f )

is a sphere approximating region Ik in frame f (in the sense that
it minimizes QfIk :=

∑
i∈Ik Q

f
i ). By combining the cost of all

frames, the entire animation is taken into account. This step is cru-
cial (see Fig. 2); a simple three-sphere fit to a capsule in the first
frame (dashed box) is less suitable than a three-sphere approxima-
tion considering the entire sequence.
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Radius constraints. Similarly to [Thiery et al. 2013], we
bound each sphere’s diameter during the optimization process,
to avoid overly large spheres approximating planar regions. This
bound, R(PIk ) for a region Ik of the barycentric cell partition, is
computed based on an analysis of Ik over the animation. Since this
step is linked to the spheres optimization, the details are given in
Sec. 4. To enforce smoothness in the reconstruction, we also con-
strain each sphere to have a constant radius over the animation. The
motivation is that many animations (e. g., character and animal ani-
mations, etc. ) are meant to be volume-preserving, in which case the
radius should be constant. We discuss this point further in Secs. 4.2
and 5. Formally, it implies:{

r(sfk) = rk ∀ f ∈ J1, F K
0 ≤ rk ≤ R(PIk ) = minf∈J1,F KR(P fIk )

(4)

Quadrics in R3F+1

To apply the simplification process on animated meshes, we need:

Qvi(s̄) :=

F∑
f=1

∫
ξ∈Pfi

SQEM(pξ,nξ)(qf , r)dσξ, (5)

where Pi := {P fi }f≤F is the F -tuple of barycentric cells of vertex
vi and s̄ an animated sphere. In this section, we derive a closed-
form expression for this quadric.

Since we enforce that all F instances of the spheres
have the same radius, we can denote an animated sphere
s̄ ≡ (q1

T, · · · , qF T, r)
T ∈ R3F+1, i. e., the concatenation of its F

sphere centers {qf}f≤F and radius r.
Noting that each barycentric cell Pi is contained in the set of

triangles tj ∈ T1(vi), where T1(vi) is the set of triangles adjacent
to vertex vi, and that the distance from an oriented point (pξ, nξ)
to a sphere (qf , r) is constant on any triangle, we can rewrite Eq. 5:

Qvi(s̄) =
∑

tj∈T1(vi)

∑
f

wfijSQEM(p
f
j ,n

f
j )

(qf , r), (6)

where pfj (resp. nfj ) denotes the center (resp. normal) of the triangle
tfj (tj in frame f ), and wfij := area(tfj )/3.
Qvi(s̄) is itself an error quadric, as it is the sum of quadrics

Qvi,tj :=
∑
f

wfijSQEM(p
f
j ,n

f
j )

for tj ∩Pi. To find an expression

for Qvi , it is thus sufficient to sum up the quadrics Qvi,tj , which
are given by:

Qvi,tj =:
1

2
s̄T · Āij · s̄− b̄T

ij · s̄ + c̄ij , (7)

with 

Āij :=


M1 N1

. . .
...

MF NF

N1
T · · · NF

T W

 ∈ S3F+1

b̄ij :=
(
b1

T, · · · , bF T, B
)T ∈ R3F+1

c̄ij :=
∑
f (Nf

T · pfj )2 ∈ R,

(8)

where Sn denotes the set of symmetric matrices of size n× n and
Mf := 2wfijn

f
j· n

f
j

T ∈ S3

Nf := 2wfijn
f
j ∈ R3

W := 2
∑
f w

f
ij ∈ R

{
bf := (Nf

T· pfj )nfj ∈ R3

B :=
∑
f (Nf

T· pfj ) ∈ R

Importance-driven distribution. Note that it is also possi-
ble to introduce a spatially-varying importance function Kf (ξ) in
the process (e. g., taking into account the saliency of the mesh at
each frame), by setting wfij =

∫
ξ∈Pfi ∩t

f
j
Kf (ξ)dσξ (which justi-

fies indexing all terms over both the vertex and the triangle indices
in previous equations). Following [Thiery et al. 2013], for all re-
sults, we used Kf (ξ) := 1 +BBD2(κ2

f (ξ)2 + κ1
f (ξ)2), where

κ2
f (ξ)2 + κ1

f (ξ)2 denotes the total curvature at point ξ in frame
f and BBD the average over the F frames of the bounding-box
diagonal length. This measure prevents very small structures from
disappearing too early during the optimization.

4. APPROXIMATION ALGORITHM

The simplification algorithm partitions the original meshM0 into
regions by successively simplifying a sphere-mesh. The initial
sphere-mesh is defined as the input mesh, along with the quadrics
Qi associated with the barycentric cells of each vertex vi (follow-
ing Eq. 2). The spheres s̄i of the sphere-mesh are optimized as
s̄i = argmins̄Qi(s̄). The resulting approximation error is then
Qi(s̄i). The closed-form solution for the minimization process is
presented in Sec. 4.1.

The algorithm performs one edge collapse of the sphere-mesh at
a time, the one leading to the lowest approximation error. To this
extent, each possible edge collapse together with the resulting ap-
proximation error is placed in a priority queue Q , i. e., given an
edge linking two vertices u and v with corresponding error quadrics
Qu and Qv , this edge (u, v) is placed in Q with the approxima-
tion error for the quadric Qu +Qv as a priority.

When taking the top edge (u, v) from Q , we collapse it in the
sphere-mesh to a new vertex w with Qw := Qu + Qv . Remain-
ing edge-collapse suggestions involving u and v are removed from
Q while, for all edges from w to a neighbor x, the (w, x) edge-
collapse suggestion is added to Q . The algorithm iterates until
Q is empty. Notice that Qw implicitly encodes the sphere associ-
ated with w: the mesh structure mainly encodes connectivity, while
position and radius at vertices can be derived via the minimization
of the quadric error.

Radius bound computation. Following [Thiery et al. 2013],
when determining the minimizing sphere, we bound the maximal
radius to avoid flat regions being approximated by overly large
spheres, as mentioned in Sec. 3. Specifically, for two vertices u
and v with associated regions Pu and Pv , Thiery et al. suggest
setting the radius bound to R := 3/4W(Pu ∪Pv), whereW(X )
denotes the width of the set X inR3.

The width, i. e., the minimum extent over all directions [Gärt-
ner and Herrmann 2001], is computed as follows. At the initial-
ization stage, we compute the extent of the barycentric cell P fi of
the vertices vi along a given set of directions kj ∈ R3 (|kj | =

1). The extents are given by Mj(P
f
i ) := max

ξ∈Pfi
(ξT · kj) and

mj(P
f
i ) := min

ξ∈Pfi
(ξT · kj), and are used to define a width

W(P fi ) := minj |Mj(P
f
i ) − mj(P

f
i )| for frame f . Finally,

the width W(Pi) := minf (W(P fi )) is defined as the min-
imum over the F frames. The width of P fu ∪ P fv is com-
puted from the extents of P fu and P fv , which are obtained via
Mj(P

f
u ∪ P fv ) = max(Mj(P

f
u ),Mj(P

f
v )) and mj(P

f
u ∪ P fv ) =

min(mj(P
f
u ),mj(P

f
v )). During a collapse, we update the extents

for direction kj , following these formulae.
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Triangle inversion. Additionally, we suggest forbidding col-
lapsing two vertices as soon as it induces triangle inversions. For
each vertex v, we check all triangles t ∈ T1(v) and detect an in-

version when
∑
f

√
area(tf )area(t′f )n(tf )T · n(t′f ) < 0, with t′

being the geometry of t after the collapse. In other words, we test
if large triangles are inverted for a significant amount of frames.

4.1 Sphere Optimization

Here, we describe the derivation of the minimizer argmins̄Q(s̄),
under the radius constraints 0 ≤ r ≤ R.

4.1.1 General case. For convenience, in the following, we
keep the notations introduced in Eq. 8 to describe the block ele-
ments of the matrix Ā and the vector b̄, which correspond to the
quadric we want to minimize (the block structure never changes).

Quadric Mininimization (invertible):.
Minimize E(s̄) = 1

2
s̄T · Ā · s̄− b̄T · s̄, with Ā, b̄ of the form given

by Eq. 8, subject to 0 ≤ r ≤ R.
Assuming all block matrices Mf are invertible, the global min-

imizer s̄∗ (without inequality constraints) is given by Ā · s̄∗ = b̄

(⇔
−→̀
s̄E(s̄∗) = ~0), which leads to:

r∗ =
B−

∑
f Nf

T ·M−1
f
·bf

W−
∑
f Nf

T ·M−1
f
·Nf

q∗f = M−1
f · (bf − r∗Nf ) ∀f ∈ J1, F K

The solution to the problem with inequality constraints is given by

{
r = min(max(r∗, 0), R)

qf = M−1
f · (bf − rNf ) ∀f ∈ J1, F K

(9)

If the denominator (W −
∑
f Nf

T ·M−1
f ·Nf ) in the expression

of r∗ is null, we set r = 0 and qf = M−1
f · bf ∀f . However, this

measure is only a sanity check to avoid numerical instabilities and
this case rarely occurred in our experiments.

4.1.2 Degenerate cases. Care must be taken if some of the ma-
tricesMf are non-invertible (i. e., the quadrics are degenerate). For
the sake of simplicity, we assume that J1,DK are the indices of the
degenerate quadrics.

In the context of edge-collapse simplification, such cases are usu-
ally handled by constraining the optimal sphere position qf to be lo-
cated on the edge (uf , vf ) which is about to be collapsed [Garland
and Heckbert 1997]: qf = uf + λf ~df , with ~df := vf − uf . This
restriction leads to a quadratic problem of sizeD + 3(F −D) + 1
with 2D + 2 linear inequality constraints. Solving this problem via
active-set methods (see [Lawson and Hanson 1974]) is very costly
for high-dimensional problems with a high number of inequalities
and, in our experiments, it happened that all F quadrics were de-
generate. Therefore, we constrain all variables λf to equal a single
value λ, i. e., qf = uf + λ ~df ∀f ∈ J1,DK, leading to the follow-
ing quadratic problem of size 3(F −D) + 2:

Quadric Minimization (not invertible):.
Minimize E(s̄) = 1

2
s̄T · Ā · s̄− b̄T · s̄, with Ā, b̄ of the form given

by Eq. 10, subject to 0 ≤ λ ≤ 1 and 0 ≤ r ≤ R.

Ā =



µ ν

MD+1 ND+1

. . .
...

MF NF

ν ND+1
T · · · NF

T W


∈ S3(F−D)+2

b̄ = (β1, bD+1
T, · · · , bF T, β2)

T ∈ R3(F−D)+2

s̄ = (λ, qD+1
T, · · · , qF T, r)

T ∈ R3(F−D)+2

(10)

with the various scalars µ, ν, β1, β2 defined as
µ :=

∑
f≤D

~df
T
·Mf · ~df ν :=

∑
f≤D

Nf
T· ~df

β1 :=
∑
f≤D

(bf −Mf · uf )T· ~df β2 := B −
∑
f≤D

Nf
T·uf

For this problem, active set methods are efficient because, despite
its size, the number of inequalities is low. Alternatively, we provide
a closed-form solution for the minimization, which we used for all
examples and results, in Appendix A.

4.2 Temporal coherence

The use of a constant sphere radius implicitly captures deforma-
tions and leads to a high consistency. Nonetheless, the position of
the spheres being optimized per-frame can lead to loss of tempo-
ral correlation with the input at very coarse scales, depending on
the input. This section describes an algorithm to improve temporal
coherence, while only slightly reducing approximation accuracy.

One could enforce a smooth trajectory for each sphere. How-
ever, this approach is restrictive because it is sensitive to the time-
sampling of the input and not all sequences are smooth animations.
Further, enforcing directly null time-derivatives on trajectories re-
sults in unnatural and overly smooth animations.

Instead, we add a soft-attach term to the center of the sphere in
each frame during the optimization, biasing its position towards a
point moving consistently along the animation of the mesh. To this
extent, we choose the barycenter of the corresponding region in
M0, to which the vertex in meshMτ is associated with. Hereby,
we avoid assumptions about the sampling of the input animation
and mimic the temporal coherence of the input.

Formally, for an edge (u, v) with corresponding error quadrics
Qu and Qv , the associated quadric becomes Quv = Qu + Qv +
δTCquv instead of Qu + Qv , with δTC the temporal coherence
weight. Let σfu and cfu be the area and the mean point of the re-
gion Pu corresponding to the vertex u in frame f , we then define
quv:

quv(s̄) =
∑
f≤F

σfuv||qf − cfuv||2, (11)

where σfuv = σfu + σfv , cfuv = σ
f
uc
f
u+σ

f
v c
f
v

σ
f
u+σ

f
v

. In other words, quv(s̄)

defines the sum of the squared distances between the sphere centers
and {cfuv}f≤F over all frames. In practice, following Eq. 8, the
following elements need to be added to the quadric Qu +Qv:

Mf ←Mf + 2δTC · σfuv · I3 ∀f ≤ F
bf ← bf + 2δTC · σfuv · cfuv ∀f ≤ F
c̄← c̄+ δTC ·

∑
f≤F σ

f
uv||cfuv||2

(12)
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6 • J.-M. Thiery, E. Guy, T. Boubekeur, and E. Eisemann

Fig. 3. with δTC = 0, no connectivity optimization. For each animation, we show the input mesh (gold), the constructed sphere-mesh with transparent input,
and the interpolated sphere-mesh. Solid (resp. dashed) curves plot distances between our (resp. QEM) approximation and the input. Red curves: Hausdorff
distance (H), blue curves: mean distance from the approximation to the original model (M21), green curves: mean distance from the original model to the
approximation (M12) (distances in percentages of the bounding-box diagonal).

4.3 Connectivity optimization

Most edge collapses, especially for the first levels, maintain a
good connectivity. A verification after each edge collapse is thus
not justified due to the involved costs. However, at coarse scales,
undesired artifacts in the form of large and thin triangles cross-
ing the original surface can occur, which is a typical pitfall of
edge-decimation-based simplification algorithms. These artifacts
are more likely to occur whenever the associated regions in M0

differ significantly from the Voronoï regions of the vertices (in our

context, spheres) ofMτ . This last observation motivated the use of
(centroïdal-) Voronoï tesselation algorithms, which are considered
the most effective for 2D surfaces and 3D volumes remeshing. It
also inspires ours, which exhibits a similar behaviour.

We propose to optimize the connectivity only after selecting the
desired level of simplification τ . We start by associating each vertex
vi of the original meshM0 to a set of candidate sphere indices S(i)
inMτ , which are the sphere to which vi was collapsed and all its
adjacent spheres inMτ . This set is relatively small in practice, as it
is bounded by the highest vertex degree inMτ plus one. For each
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Table I. Performance and timings for ou animated sphere-mesh approximation algorithm. The initialization time excludes the animation
parsing. #S / #E / #T: number of spheres, wire edges, and triangles in the output sphere-mesh. We compare our approximation with QEM

simplification for the same number of primitives (smallest error in bold). H, M21 ,M12 (see Fig. 3) are averaged over the animation.

INIT. DECIM. ANIMATED SPHERE-MESH QEM SIMPLIFICATION

INPUT ANIM. (#V / #T / #F) (MS) (MS) (#S / #E / #T) H M12 M21 (#V / #T) H M12 M21

Capoeira (19988 / 39972 / 499) 65338 186482 20 / 9 / 12 2.45 0.46 0.47 20 / 31 6.05 1.58 1.38
Samba (9971 / 19938 / 175) 8037 16302 40 / 12 / 46 3.05 0.37 0.39 40 / 60 4.97 1.05 0.86
Jump (10002 / 20000 / 150) 7221 15488 10 / 6 / 4 7.62 1.53 1.02 10 / 10 11.11 1.47 1.76
Flamingo poses (26394 / 52895 / 11) 2252 5628 20 / 8 / 10 3.03 0.62 0.67 20 / 21 7.79 0.96 1.89
Horse-gallop (8431 / 16843 / 48) 2338 5394 46 / 17 / 50 3.06 0.41 0.43 46 / 76 4.47 0.89 0.89
Horse-collapse (8431 / 16843 / 54) 2554 4915 46 / 9 / 61 3.84 0.65 0.66 46 / 76 5.29 0.93 0.85
Hand (7929 / 15855 / 44) 2120 4412 34 / 8 / 44 6.11 0.55 0.47 34 / 62 7.77 1.44 1.26
Cat poses (7207 / 14410 / 10) 489 1283 85 / 5 / 142 2.86 0.38 0.37 85 / 166 3.34 0.66 0.70

vertex vi an index si among S(i) is chosen as the one minimizing
the sum of distances along the animation:

si = argmin
({qf }f≤F ,r)∈S(i)

∑
f≤F

(
||vfi − qf || − r

)
The connectivity ofMτ is redefined entirely based on the dual of
the sphere-index labeling inM0: (i) for each triangle (va, vb, vc) of
M0 whose vertices are labelled with three different spheres sa, sb
and sc, the corresponding triangle (sa, sb, sc) and edges are added,
unless they already exist; (ii) for each triangle or edge ofM0 whose
vertices have two different sphere labels, a corresponding edge is
added toMτ , unless it already exists.

5. RESULTS

We implemented our shape approximation method in C++ and re-
port its performance on an Intel Core2 Duo running at 2.5 GHz
with 4GB of main memory. The algorithm is automatic and com-
putes the full hierarchy. Afterwards, the user controls one param-
eter (the target number of spheres). In Fig. 3, we show results on
performance-capture, as well as on synthetic animations.

We report timings and distances to the input (computed with
Metro [Cignoni et al. 1998]) in Table I, which serve as numeri-
cal comparisons to QEM simplification. For a fair comparison, we
allow triangles to degenerate to wire edges for QEM. However, it
results in invalid shapes, since QEM does not model volumes.

Sphere-meshes tend to better approximate shapes than tradi-
tional surface meshes for low number of primitives. We roughly
halve reconstruction errors for the Capoeira, Samba, Jumping and
Flamingo sequences, using various numbers of spheres ranging
from 10 to 42. In contrast, if many primitives are required (with
respect to the geometric complexity of the shape), sphere-meshes
tend to have smaller reconstruction-error ratios (e. g., roughly 1.2
for the Hand and Cat sequences, when approximating with 32
and 85 spheres respectively). Sphere-meshes and traditional QEM-
driven triangle meshes start with the same animated input mesh.
Hence, they are basically equivalent at the first levels of simplifi-
cation but, with a decreasing number of primitives, sphere-meshes
evolve progressively from surface to volumetric structures.

Interestingly, when comparing the Horse-gallop and Horse-
collapse sequences, which both contain 46 spheres, we observe
that animated sphere-meshes tend to become volumetric if the in-
put mesh deformations are volume preserving. Consequently, the
sphere-mesh nicely adapts and behaves either more like a skeleton
or like rigs depending on the type of deformation; e. g., a skele-
ton could animate efficiently the Horse-gallop sequence, whereas a

Fig. 4. Samba model animation approximated with animated sphere-
meshes with 7, 22, 32 and 50 spheres.

Fig. 5. Results obtained with a time-varying sphere radius.

set of surface rigs would be more efficient at animating the Horse-
collapse sequence.

Fig. 4 illustrates a similarly challenging example because the
Samba model contains large tubular parts (legs, arms, etc. ), which
can be approximated by single edges, while the dress model is bet-
ter represented using surface structures i. e., it is highly deformed
in a non-rigid way during the animation. Even with a low number,
such as 22 spheres, our sphere-meshes recover the fine details of
the dress as well as the simpler arm and leg structures. When us-
ing only 7 spheres, an abstract structure taking a plausible skeleton
form emerges. Note that the extracted surface remains manifold,
even in presence of wire-edges in the sphere-mesh.

Analysis. Fig. 5 shows results where each sphere is allowed to
have a time-varying radius, which is bounded per-frame only. The
left side shows how strongly the resulting sphere-mesh varies, even
for “volume-constant” animations. The right side shows that the
resulting sphere-mesh no longer exhibits a proper structure in the
collapsed parts, which leads to an unnatural connectivity as well
(see Fig. 3 for a comparison to our approach). Our solution results
in an improved sphere placement and behavior during animation,
which makes it applicable for skinning decompositions (see next
Section). The latter would be impossible when using varying radii.

Fig. 6 illustrates the effect of our temporal coherence method.
Connectivity and preserved features might change for the same
number of spheres and produce more natural simplifications for in-
put animations exhibiting strong temporal coherence. In particular,
as emphasized within the figure, spheres remain in the vicinity of
the same input vertices and avoid sliding over the geometry. In this
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Fig. 6. Comparison of results obtained without (top row) and with tem-
poral coherence (bottom row, δTC = 105) using 15 spheres. Notice how,
without our temporal coherence method, the spheres (A,B,C,D) slide along
the mesh to best fit the input mesh.

Fig. 7. Comparison of results obtained without and with connectivity im-
provement for various settings.

example, it is also visible that our solution is less dependent on the
time sampling of the input sequence. Our temporal constraints are
based on the coherence of the original input, which makes sure that
no overly smooth motion is enforced where it is not present. Con-
sequently, the use of the temporal coherence constraint also leads
to more constant-length edges in the simplified animated sphere-
mesh over the course of the animation, at the cost of a slighty less
optimal geometric approximation.

Fig. 7 illustrates the impact of the connectivity optimization step.
While the Hausdorff errors might already be acceptable before this
optimization, and are not necessarily reduced significantly by a
modification of the sphere-mesh connectivity, some elements might
be undesirable. An example is the presence of primitives, such as
elongated triangles, which cross the input surface or lead to lo-
cally inverse connectivity. Fig. 7 illustrates several such cases. In
the first example (left), the tail of the horse, defined as a long tri-
angle, crosses the surface due to a non-convex partitioning of the
input mesh M0. The second example (middle) depicts a triangle
which introduces an unwanted link, with the ankle of the left leg be-
ing connected to the hip of the right leg. Finally, the third example
(right) shows that, due to inadequate local connections, complex
geometry inversions are introduced. All these connectivity prob-
lems are solved by our non-parametric optimization step, as illus-
trated next to the circled issue.

6. APPLICATIONS

Our algorithm is the first to approximate automatically animated
surfaces using an animated convolution surface. Existing applica-
tions using this representation can thus trivially be used directly
with our data, when they could previously use static or manually-
designed animated convolution surfaces only. The first applica-
tion we showcase, approximate collision detection with animated
meshes (Sec. 6.1), is a simple illustration of this. The second appli-
cation we present, skinning decomposition using our sphere-mesh
as decomposition domain (Sec. 6.2), is more involved, and relies on
the fact that our approximation method outputs geometries which

Fig. 8. We compare the use of an animated sphere-mesh (a,b,c) against
a standard mesh (d,e,f) for approximate collision detection with particles.
The normal field on large tubular structures is smooth, and so are the result-
ing bounces on the sphere-mesh (compare SQEM with QEM for the same
number of primitives). When using 16 vertices (e), a large number of parti-
cles go through the input shape and fail to bounce, whereas our 16-sphere
approximation (b) provides acceptable results.

Fig. 9. a) The input for the skinning decomposition is a user-selected LoD
of the animated sphere-mesh hierarchy, which is traversable in real-time. b)
A few iterations of successive optimizations of the bones’ transformations
(T) and the vertex’ weights (W).

are compatible with the specific nature of the input animations (as
already discussed when comparing the Horse-gallop and Horse-
collapse sequences in Sec. 5).

6.1 Approximate collision detection

Our animated sphere-mesh can be used as a direct low-budget sub-
stitute for collision detection with the animated object. By testing
the distance from a point to the primitives of the animated sphere-
mesh directly, approximate collision detection can be achieved at
high frame-rates without the building of any complex structure.

Fig. 8 illustrates the advantages of such a solution for ap-
proximate collision detection. An animated sphere-mesh with few
spheres presents enough geometric details to be a cheap, yet plau-
sible, substitute to the complete animated mesh. Compared to low
detail surface meshes (see Fig. 8), the normal field of low detail
sphere-meshes is smooth enough to avoid directional artifacts after
the bounces of the particles. In Appendix B, we give formulas for
the construction of the sphere-mesh primitives, as well as for inter-
secting them with particles (represented as spheres on segments).

6.2 Skinning decomposition with rigid bones

We use a strategy similar to [Le and Deng 2012] and decom-
pose the animation on our sphere-mesh via linear-blend skinning
(LBS). The bones for LBS correspond to the spheres of the sphere-
mesh, which is provided by the user as input for our decomposition
scheme. The user can therefore chose any level of complexity he
desires to obtain for the decomposition. The output of the decom-
position is a set of weights {wij}, which rig the rest pose to the
sphere-mesh, and bone transformations {Rfj , T

f
j }, which, together

with the weights, allow for reconstruction of the input animation.
Further, the artist can use the derived weights with the sphere-mesh
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to create new animations exhibiting the input animation’s partial
motion.

Notations: vfi is the position of vertex i in frame f , µfi is the
area of its barycentric cell in frame f , B(i) is the set of bones that
have an influence over vertex i,wij is the weight of bone j at vertex
i, pi is the rest pose vector of vertex i in R3 (we initialize the rest
pose with the first frame), and Rfj and T fj are the rotation and the
translation of the bone j in frame f . Please note the slight abuse of
notation, allowing us to consider a bone j as an index.

Constraints: {wij} are optimized under a non-negativity con-
straint (wij ≥ 0 ∀i, j), an affinity constraint (

∑
j wij = 1 ∀i),

and a sparsity constraint,i. e., a small setB(i) := {j|wij 6= 0 ∀j},
which is the set of bones having an influence on vi. While the spar-
sity mostly serves acceleration purposes, the other two constraints
are important for stability during editing processes.

In contrast to [Le and Deng 2012], we fix B(i) once and for all
based on the animated sphere-mesh, which serves as the skeletal
domain for the decomposition. For a given vertex vi in the first
frame, we define B(i) as the set of those sphere-mesh spheres
whose Voronoï cells on the input mesh are adjacent to the cell in
which vi is located. In other words, all adjacent spheres have a po-
tential influence, but none of the others.

Fig. 9 illustrates the optimization process. At first, the user picks
a level-of-detail from the animated sphere-mesh hierarchy, which is
an intuitive way to give control over the degrees of freedom desired
in the output skinning decomposition. At each step, we optimize
the vertex weights, while fixing the bones’ transformations Rfj and
T fj . Next, we optimize these bone transformations bone-by-bone
and frame-by-frame, while fixing the vertex weights. Finally, we
also optimize for the rest pose after a few (typically 5) iterations.

Transformations optimization. Similarly to [Le and Deng
2012], we optimize the transformations of the bones one after the
other. When optimizing the one of bone j, we minimize

E
R
f
j ,T

f
j

=
∑
i∈I(j)

µfi ||wij(R
f
j · pi + T fj )− qfij ||2 ,

for all frames f , where qfij is the resulting point without the con-
tribution of bone j: qfij := vfi −

∑
k∈B(i),6=j wik(Rfk · pi + T fk ),

with Rfj and T fj as variables, I(j) denoting the vertices that are
influenced by the bone j (i. e., I(j) = {i|j ∈ B(i)}), under the
only constraint that Rfj is a rotation. Details for this optimization
can be found in [Le and Deng 2012], up to the fact that the reader
should introduce the various weights {µfi } in the formulas.

Minor bones As explained in the work of Le and Deng [2012],
such a transformation-optimization process can introduce in-
stabilities with bones that have minor influence over vertices
({j|

∑
i w

2
ij < ε}). We detect them using the same criterion (bone

j is unstable if
∑
i w

2
ij < 3), and solve the issue by setting the

transformation of the bone to an average of the transformations of
its adjacent bones (following the sphere-mesh connectivity).

Vertex rest-pose optimization. We optimize the rest pose pi
of each vertex vi, by minimizing for each vertex vi independently

Epi =
∑
f

µfi ||(
∑
j∈B(i)

wijR
f
j ) · pi − (vfi −

∑
j∈B(i)

wijT
f
j )||2 ,

which boils down to solving a simple quadratic system inR3.

Mixed Weights optimization. Previous work (e. g., [Le and
Deng 2012]) optimize weights with the sole purpose of reconstruct-

ing the input animation. The control structure (i. e., the bones) and
the weights, which result from this process, exhibit a level of com-
plexity that is directly driven by the complexity of the input anima-
tion (i. e., a completely rigid animation will result in a single bone
with all mesh vertices having a weight of 1 w.r.t. this bone, render-
ing this decomposition useless for artistic editing, for example).

In contrast, we provide the control structure as input to our
skinning decomposition scheme, and we enforce the desired level
of complexity of the weight maps. We do so by initializing our
weights with geometric weights (we use [Baran and Popović 2007],
but our method makes no assumptions on the input geometric
method, and other geometric skinning weights could be used in-
stead (e. g., [Jacobson et al. 2011]), and progressively refine our
weights as to better fit the input animation.

The core idea is that geometric weights should be favored in re-
gions of the mesh where they are able to reproduce the input an-
imation, as they allow for more general transformations. In other
regions of the mesh, where these are not able to reproduce the input
animation well, the weights should be learned from the animation.

We optimize the weights {wi·}t+1 of vertex i at step t + 1 by
minimizing the following energy:

Et+1
wi

=αt+1
i

(∑
f

µfi ||
∑
j∈B(i)

wt+1
ij (Rfj · pi + T fj )− vfi ||2

+ γ
∑
f

µfi
∑
j∈B(i)

(wt+1
ij − w̃tij)2

)
+ (1− αt+1

i )γ
∑
f

µfi
∑
j∈B(i)

(wt+1
ij − wtij)2,

where γ := 10−4BBD2 is a normalization constant that com-
pensates for the differences in the range between reconstruction
and weight errors based on the bounding box diagonal, w̃tij :=∑
vk∈B(vi;3σ)

hσ(vi, vk)wtkj is a filtered version of {wtij} (we use a

Gaussian kernel over a geodesic disk centered in vi, with σ equal-
ing 3% of the bounding box diagonal), and αt+1

i is the blending
factor between animation-driven weights and the geometric alter-
native. αt+1

i should be close to one if information needs be ex-
tracted from the input animation. Otherwise, αt+1

i should be low,
leading to mostly geometric weights being used.

Our strategy to determine αt+1
i is as follows. We first compute

the weights ŵt+1
ij for all vertices vi with αi = 1. Next, we compute

the reconstruction errors of the vertices vi when considering the
newly-found weights ŵt+1

ij and the weights wtij of the previous
iteration:{
ebefore
i =

∑
f µ

f
i ||
∑
j w

t
ij(R

f
j · pi + T fj )− vfi ||2

eafter
i =

∑
f µ

f
i ||
∑
j ŵ

t+1
ij (Rfj · pi + T fj )− vfi ||2

Finally, we set a large value to αi for the vertices vi where the
reconstruction error decreases significantly when compared to the
differences in the weights δi = ||{ŵt+1

ij }j−{wtij}j ||2. Specifically,
noting γi = (ebefore

i −eafter
i )+ the decrease of the reconstruction error

of vertex vi, γ = maxi γi the maximum decrease and δ = maxi δi
the maximum weights change, we set αt+1

i = 0.8γi/γ
γi/γ+δi/δ

.

Results. Fig. 10 shows the skinning reconstruction of the
Horse-gallop, Horse-collapse and Samba inputs decomposed onto
sphere-meshes with 46 spheres. Errors (blue curves) are computed
as

MSE(f) =

∑
i µ

f
i ||
∑
j wij(R

f
j · pi + T fj )− vfi ||2

BBD2
∑
i µ

f
i

(13)
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Fig. 10. Skinning reconstructions of three sequences with 46 bones. Close-ups show artifacts that are essentially loss of volume or presence of self-
intersections. Bottom right: mean squared reconstruction error for 46 (blue), 34 (green) and 22 (red) bones. y axis is logarithmic.

Fig. 11. Pose editing using mixed weights: skinning weights learned
solely from the Horse motion provide a faithful decomposition for the body
and the legs, but lack a proper layout for the head, while our mixed weights
also account for geometry and provide the necessary degrees of freedom to
alter the grouped geometric features, even if they collectively undergo the
same motion.

We also plot the errors for skinning decompositions with 34 (green
curves) and 22 (red curves) spheres. As pointed out in Sec. 5,
the two horse sequences strongly differ in shape, local density
and exhibit differences locally in their type of structures (volu-
metric/surface), even though both input animations share the same
mesh topology and connectivity. These examples show the strength
of our approach: when converting the mesh animations into lin-
ear blend skinning, our animated sphere-mesh adapts automatically
and appears as a flexible rig structure that naturally takes the defor-
mations of the input mesh into account, resulting in either a more
volumetric or a more surface-oriented representation.

Using the animated sphere-mesh as a prior to derive the bones
impacting the reconstruction of each original vertex leads to a fast
algorithm: all our skinning decompositions were performed in a
couple of minutes. Moreover, by initializing our iterative optimiza-
tion scheme with smooth geometric weights, we output weight
maps that are efficiently learned from the animation wherever it
is pertinent, while falling back to the geometric weights elsewhere.

Fig.11 shows an example of a new pose generated using our
mixed weights. While traditional skinning decomposition methods
can learn weights on the body of the model based on its motion in
the raw sequence, they fail at providing the user with deformation
handles in the parts of the shape that are deformed rigidly, even if

Table II. Our method takes a geometry (GEO) as input parameters
for the decomposition, whereas others take a number of bones
(NOB). It is the only one to output mixed weights. Our method
uses free handles (FH: the spheres of the sphere-mesh), on the

contrary to [Le and Deng 2014] which outputs rigid bones.
OURS [Le and Deng 2012] [Le and Deng 2014]

INPUT PARAM. GEO NOB NOB
RAPIDITY ++ + –
MIXED WEIGHTS Yes No No
HANDLES FH FH BONES

they exhibit interesting structures (e. g., the head). On the contrary,
our mixed weights account for both details in the motion and in the
geometry, leading to an optimized mix of both properties.

7. DISCUSSION

Skinning decomposition. Table II summarizes the differences
with recent previous work.
(i) Our method is the first to take a geometry (i. e., the animated
sphere-mesh) as input, whereas other methods require a desired
number of bones. Hereby, a user can easily determine the param-
eters to obtain the expected precision and wanted level of detail.
This is critical, especially if the skinning decomposition method
requires several minutes to compute e. g., Le and Deng [2014] re-
port an execution time of 384 minutes for the decomposition of the
Samba sequence on a commodity laptop similar to ours.
(ii) The comparably high performance of our method results from
the use of a coarse geometry (our animated sphere-mesh), which is
optimized to respect the geometric details that are present in the in-
put animation. It is even several orders of magnitude faster than the
method of Le and Deng [2014] (all our decompositions were per-
formed in less than three minutes, even for the above-mentioned
Samba sequence — a speedup of two orders of magnitude).
(iii) Our method is the only existing one to output mixed weights,
which leads to important additional handles for editing applica-
tions, which is one of the main goals of previous work.
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Fig. 12. The input capsule is undergoing rotation around its dominant axis.
The motion is still visible when using a 8-sphere approximation, whereas 2
spheres are not sufficient to capture it.

(iv) On the downside, similarly to the method of Le and
Deng [2012], our method outputs weights w.r.t. the spheres in our
examples, which are free handles and are not constrained to re-
spect any rigidity during the animation; this differs from the explicit
edges of Le and Deng [Le and Deng 2014], which have fixed length
over the animation and their extremities connected by joints. How-
ever, not any animation can be approximated by a rigid skeleton
(e. g., sequences with large stretching).

Finally, just like other skinning decomposition techniques, rely-
ing on the input connectivity for the geometric construction of the
skeletal domain can lead to poor animation reproduction. Currently,
an input sequence containing a lot of disconnected parts leads to a
disconnected animated sphere-mesh.

Memory complexity. Presently, the input animation has to re-
side in memory, preventing us from approximating very large an-
imations. We thus cannot immediately generalize our approach to
a streaming scenario where a sphere-mesh would be refined on de-
mand. A possible solution could be to rely only on an analysis of
the most significant (e. g., least redundant) poses to compute the an-
imated sphere-mesh. This one could then be fit to the other poses.

Surface extraction. As in [Thiery et al. 2013], a surface re-
construction based on the animated sphere-mesh can be seen as a
Minkowski sum of an oriented mesh and a sphere with spatially-
varying radius (some triangles may be double sided though, and
wire edges describe complex orientations, as the degeneracy of a
cylinder over themselves). Yet, we extract the outer surface of the
complete interpolation of the spheres over the sphere-mesh, which
is equivalent to the Minkowski sum only when all triangles are
double-sided and there is no boundary in the sphere-mesh.

Noise. Filtering topological and geometric noise from the input
sequence prior to our approximation scheme, is clearly a promising
direction for future research. While the former may involve highly
non-trivial non-homotopic mappings, the latter could be adapted
from existing filtering techniques for static meshes.

Abstraction limitations. Finally, extreme simplifications of
the input mesh can fail to depict the motion of the input sequence.
Fig. 12 illustrates this point: when an 8-sphere approximation of
the capsule is used, the motion is still visible, whereas it becomes
invisible when only 2 spheres are used. As future work, one could
think of attaching a local frame to each sphere, and encode an in-
terpolating function on each edge and triangle so as to encode a
local coordinate system to the animated sphere-mesh. This could
be a step towards parameterizing the animated sphere-mesh, e. g.,
for texturing.

Conclusion

We proposed a shape approximation algorithm efficiently convert-
ing an animated mesh sequence into an animated sphere-mesh,
which is a mesh indexing a set of animated spheres. To do so,
we introduced a new optimization scheme tailoring the animated
spheres robustly to capture the animated shape at a given level
of detail. Additionally, we showed how connectivity and tempo-
ral coherence can be optimized. The resulting animated sphere-
mesh models the animated mesh sequence from a fine resolution
surface representation to a coarse volumetric one, based on a sin-
gle user-defined scale value, which still captures the dominant mo-
tions and geometric entities in the raw data, even at the coarsest
levels. In contrast to skeleton-based or cage-based performance-
capture reverse-engineering systems, our alternative can locally
model tubular structures and provide a convincing volumetric ap-
proximation for all other components. We demonstrated its effec-
tiveness on a collection of non-trivial examples and compared it to
purely surface-based approximation methods.

Based on the resulting animated sphere-mesh, we showed how
to rig a single mesh of the original sequence with it, reproducing
faithfully the full animated sequence. The underlying linear-blend
skinning map is smooth and accounts for both the animation and
the geometry of the original sequence. Hereby, regions with poor
motion, but salient structures, as well as simple geometry with sin-
gular motions are rendered editable.

Our work is the first to output an animated volumetric struc-
ture to approximate animated 3D surfaces. Volumetric structures
of static geometry have already many applications. Hand-designed
animated generalized cylinders are used for tasks such as collision
detection in modern games [Sambavaram 2007]. We showed that
our approach leads to high-quality skinning decompositions, and
offers flexibility to the artists in this context. Our work has poten-
tial to serve as an enabler for future work, as advanced computer
graphics frameworks may build upon our representation to address
new challenges, and we believe it is a step toward a unified frame-
work for volumetric shape and motion modeling and analysis.

APPENDIX

A. QUADRIC MINIMIZATION (NOT INVERTIBLE):

Minimize E(s̄) = 1
2
s̄T · Ā · s̄− b̄T · s̄, with Ā, b̄ of the form given

by Eq. 10, subject to 0 ≤ λ ≤ 1 and 0 ≤ r ≤ R.
The global minimizer s̄∗ (without inequality constraints) is given

by Ā·s̄∗= b̄, leading to:
µλ+ νr = β1 (E1)

Mf · qf + rNf = bf ∀f > D (E2f )

νλ+
∑
f>D

Nf
T · qf +Wr = β2 (E3) ,

⇔


µλ+ νr = β1 (E1 :=E1)

νλ+W2r = β3 (E2 :=E3−
∑
f>D

Nf
TM−1

f
E2f )

qf = M−1
f · (bf − rNf ) ∀f > D (E3f :=M−1

f
· (E2f − rNf ))

with W2 := W−
∑
f>D

Nf
TM−1

f Nf and β3 := β2−
∑
f>D

Nf
TM−1

f bf .

The solution without inequality constraints is therefore given by
(
λ∗
r∗
)

= argmin
∣∣∣[µ ν
ν W2

]
·
(
λ
r

)
−
(
β1
β3

)∣∣∣2
q∗f = uf + λ∗ ~df ∀f ≤ D
q∗f = M−1

f · (bf − r∗Nf ) ∀f > D
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We note C :=
[
µ ν
ν W2

]
and DR := [0, 1]× [0, R]. Note that(

β1
β3

)
∈ Im(C), otherwise the gradient of the quadric could never

be null. NotingC† the pseudo-inverse ofC, several cases need to be
considered based on the dimension of C’s kernel dim(Ker(C)):

(1) If dim(Ker(C)) = 0 (⇔ Ker(C) = ∅):

—If
(
λ∗
r∗
)

= C−1 ·
(
β1
β3

)
∈ DR:

λ = λ∗ r = r∗

qf = uf + λ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

—otherwise: optimize on ∂DR (see next paragraph)
(2) if dim(Ker(C)) = 1:

—If {C† ·
(
β1
β3

)
+Ker(C)} ∩ DR 6= ∅, then choose

(
λ
r

)
in

C† ·
(
β1
β3

)
+Ker(C) with smallest radius, and{

qf = uf + λ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

—otherwise: optimize on ∂DR (see next paragraph)

(3) otherwise: the space of solutions of
−→̀

s̄E = ~0 is a two dimen-
sional space, and we choose the solution
λ = 1/2 r = 0

qf = uf + 1/2 ~df ∀f ≤ D
qf = M−1

f · bf ∀f > D

Optimization on ∂DR. ∂DR is composed of four segments:
∂DR = {0, 1} × [0, R] ∪ [0, 1]× {0, R}. The minimizer on ∂DR
is then the solution found with minimal cost over these segments.

Fixing λ to λ̂ ∈ {0, 1}: The minimizer on {λ̂} ×R is given byr∗ =
β4−

∑
f>DNf

T ·M−1
f
·bf

W−
∑
f>DNf

T ·M−1
f
·Nf

q∗f = M−1
f · (bf − r∗Nf ) ∀f > D

with β4 := β2 − λ̂ν.
If the denominator of r∗ is null, we ignore this step and fix r as

well to 0 andR and keep the solution with minimal cost. Otherwise:

—If 0 ≤ r∗ ≤ R: the minimizer on {λ̂} × [0, R] is given by
r = r∗

qf = uf + λ̂ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

.

—Otherwise we fix r as well to 0 or R and keep the solution with
minimal cost.

Fixing r to r̂ ∈ {0, R}: The minimizer onR× {r̂} is given by{
λ∗ = (β1 − νr̂)/µ
q∗f = M−1

f · (bf − r̂Nf ) ∀f > D

If the denominator µ is null, we ignore this step and fix λ as well
to 0 and 1 and keep the solution with minimal cost. Otherwise:

—If 0 ≤ λ∗ ≤ 1: the minimizer on [0, 1]× {r̂} is given by
r = r̂

qf = uf + λ∗ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

.

Fig. 13. Intersecting a capsule (blue) and a sphere-segment (or-
ange) (a) is equivalent to intersecting a thicker capsule and a seg-
ment (b). c): Cone’s normal parameterization. d): Interpolation of
three spheres on a (transparent blue) triangle.

—Otherwise we fix λ as well to 0 or 1 and keep the solution with
minimal cost.

Fixing (λ, r) to (λ̂, r̂) ∈ {0, 1} × {0, R}: The minimizer of the
energy when fixing r and λ is simply given by

r = r̂

qf = uf + λ̂ ~df ∀f ≤ D
qf = M−1

f · (bf − rNf ) ∀f > D

B. INTERSECTION WITH SPHERE-SEGMENTS

We aim at detecting the intersection between a sphere-segment
[(e0; r), (e1; r)] (a sphere with radius r travelling continuously
from point e0 to point e1) and a sphere-mesh. This can be achieved
by testing the intersections between the segment and the various
geometric primitives of the sphere-mesh, and selecting the closest
valid one. In the following, we describe the cases for intersecting
the segment with spheres, capsules, and thick triangles. We note
eλ :=e0+λ−−→e0e1 a parameterization of (e0, e1).

Against spheres: There exists an intersection with a sphere
(C;R) if the following can be satisfied:

∃λ ∈ [0, 1] | ||eλ − C||2 = (R+ r)2, (14)

which boils down to solving a simple quadratic polynomial in λ.

Against capsules: Detecting the intersection between the seg-
ment and a capsule defined as the interpolation of two spheres
(c0; r0) and (c1; r1) (with r0 ≥ r1, is equivalent to detecting the
intersection between the segment [e0, e1] and the capsule thick-
ened by r (see Fig.13a,b). We will therefore focus on the second
problem. We note cµ := c0 +µ−−→c0c1 a parameterization of the line
(c0, c1), and ~nθ one of the cone’s normal (~nθ :=cos(θ)cos(φ)u1+
sin(θ)cos(φ)u2+sin(θ)u3, see Fig.13b).

There exists an intersection if the following can be satisfied:

∃(λ, µ, θ) | eλ = cµ + (r0 + r + µ(r1 − r0))~nθ. (15)

Computing (Eq.15)T·u3 and ((Eq.15)T·u1)2+((Eq.15)T·u2)2 gives

λ−−→e0e1
T·u3 − µ(−−→c0c1

T·u3+(r1−r0) sin(φ)) = −−→e0c0
T·u3 + r0 sin(φ)

(−−→c0e0
T·u1+λ−−→e0e1

T·u1)2+

(−−→c0e0
T·u2+λ−−→e0e1

T·u2)2 =(r0+r+µ(r1−r0))2cos(φ)2

Combining these last equations leads to a simple second order
polynomial in (λ, µ). Solving this quadric provides the solution,
assuming it respects: 0 ≤ λ, µ ≤ 1.

Against thick triangles: The intersection between the segment
and a thick triangle defined as the interpolation of the three spheres
(c0; r0), (c1; r1) and (c2; r2) with normal nT , can be found by
checking the intersections against the capsules (edges of the thick
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triangle) and two additional triangles t+ = (p+
0 , p

+
1 , p

+
2 ) and t− =

(p−0 , p
−
1 , p

−
2 ) (see Fig.13c), which are constructed as follows:

(1) compute φij = tan−1((ri − rj)/||cj − ci||), ∀0 ≤ i < j ≤ 2

(2) compute pi as the intersection of the three planes:
—{−−→cipi

T · nT = 0},
—{−−→cipi

T · −−→cicj = ri||−−→cicj || sin(φij)} ∀j 6= i, 0 ≤ j ≤ 2

(3) compute p+/−
i as p+/−

i = pi +/−
√
r2
i − ||

−−→cipi||2nT
Note that t+ and t− do not always exist, e. g., if the three sphere
centers are coplanar.
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