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Abstract
In feature based systems support for direct manipulation is not commonly available. This is partly due to the  
strong reliance of feature modelling systems on constraints and on the lack of speed of current constraint solv­
ers. In this paper an approach to the optimization of the geometric constraint solving for the specific situation  
of direct manipulation is described. Also a solution for a direct manipulation interface was designed that brings  
to feature modelling the advantages of direct manipulation while taking into account the main feature model­
ling paradigm concepts. Details are provided on how it was implemented successfully in the SPIFF feature mod­
elling system.
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1.INTRODUCTION

1.1Feature Modelling
Feature  modelling  is  a  design  paradigm  that  aims  to 
bring the modelling task to a higher level in a way that it 
is easier for the designer to specify and understand ele­
ments and their relations in a model. This is done by as­
sociating functional information to the shape information 
in the product model.

The feature modelling process is done based on features. 
[Bidarra99] defines a feature as a representation of shape 
aspects of a product that are mappable to a generic shape 
and  are  functionally  significant  for  some  product  life­
cycle phase. This way, unlike when the design is based 
in  geometry  alone,  in  feature  modelling  the  designer 
builds a model out of features that have a well­defined 
semantics.

A feature class library is a collection of feature classes 
that  are  made  available  to  the  designer.  Each  feature 
class has a specified semantics (e.g. a specific machining 
operation)  and  can  be  instantiated  as  a  feature  in  the 
model by providing a set of instance parameters.

Constraints  are a crucial  concept for  feature  modelling 
systems and can be used to express high­level character­
istics of the model (e.g. restrict the volume of a product 
to a certain maximum). Constraints can also be used as 
internal elements of features that express the feature se­
mantics. Systems that force the maintenance of each fea­
ture's semantics in a feature model throughout the mod­
elling process are called semantic feature modelling sys­
tems [Bidarra99]. Because of this intensive usage of con­
straints, feature modelling systems have to make an ex­
tensive usage of constraint solving techniques.

1.2Limitations of Traditional Feature Manipulati­
on
In the  SPIFF system the specification of feature paramet­
ers is done solely through the input of values in dialog 
boxes. When a user edits a feature, the model is updated 
with the new user values and then fully solved to determ­
ine the new geometry. 

The main disadvantages of this approach are:

• inefficient  feedback,  making  the  design  task  much 
slower. Each time the designer changes the paramet­
ers of a feature he has to wait for the whole system to 
be solved and only then can he see the effect of his 
changes and check the validity of the model.

• lack of insight on the consequences of the modelling 
operation.  When changing  a parameter  the  user  can 
only see the original and resulting model of the   oper­
ation. This means that there is no explicit   feedback 
on which features were affected and how.

• non­intuitiveness  due  to  the  fact  that  the  user  is 
simply editing dialog boxes that do not express how 
the feature is affected by the parameter.

1.3Project Goals
The main goal of this project was the development of a 
direct  manipulation  interface  for  form­features  in  the 
system.  In  particular  feature  handles  were  added  as  a 
way of specifying feature parameters. As the modelling 
operation occurs real­time feedback has to be provided to 
the user1. With this improvement the design process will 
be improved so that  the user  may interactively change 

1 by real­time we mean fast enough for the user to have a di­
rect  manipulation experience and not  the strict  meaning of 
the real­time expression



the  value  of  the  parameters  of  features  in  the  model 
while he is being provided with feedback of the changes. 
When the user is satisfied with the model he can choose 
to make the changes final and check the model validity.

Two critical issues had to be tackled in order to provide 
the real­time interaction required ­­ efficient model con­
straint handling and efficient display of the model geo­
metry being manipulated by the user2.

One other orthogonal problem that had to be solved was 
to determine which should be the characteristics of the 
feature handles available for each feature (where they are 
positioned;  how  they  are  specified;  how  they  behave; 
how does their manipulation affect the parameter being 
changed).

1.4Paper Overview
On this paper we will first start by giving an overall in­
sight  of  the  what  the  SPIFF system  is,  its  architecture, 
main concepts and how they relate and are implemented 
internally. This will be done in section 2.

In section 3, after a brief introduction on how constraint 
solving  works  in  SPIFF,  we  will  present  a  solution  for 
constraint solving that copes with the efficiency require­
ments of real­time feedback for direct manipulation.

In section  4 we will state the designed target manipula­
tion requirements and how these where materialized in 
the SPIFF system.

In section 5 we give a brief overview of what was done 
while  concluding  whether  the  main  objectives  were 
achieved and identifying the limitations of the solutions 
found.

2.THE SPIFF SYSTEM
The SPIFF system [SPIFF] is an advanced feature model­
ling system developed at the Delft University of Techno­
logy, the Netherlands. Development on this system star­
ted in 1994 and work on it has been going on since then 
leading  to  a system which incorporates  many different 
ideas  and  concepts  on  feature  modelling  and  which  is 
therefore quite complex. 

The  underlying  geometric  kernel  of  this  system is  the 
ACIS modelling kernel.

This system supports many advanced feature modelling 
concepts including the concept of semantic feature mod­
elling [Bidarra00].

2.1Feature Classes in the SPIFF System
A feature class in the SPIFF system can be seen as a spe­
cification of its shape and the set of parameters needed to 
instantiate it.

The shape of a feature class is determined based on the 
concept of basic shape. A basic shape works as a meta­
feature that only specifies the geometry it represents (e.g. 
cylinder). This representation is a set of model elements 
(e.g.  faces)  and  constraints  that  specify  their  relations. 
Features acquire their geometry by deriving from a spe­
cific basic shape.

2 we will not approach the latter issue on this paper

Besides its shape, a feature class also contains a number 
of  constraints  and  variables  which  further  define  its 
shape  and  semantics  and the  way it  relates  with  other 
features in the model. 

2.2Feature Model
The feature model in the  SPIFF system has multiple  in­
ternal representations. One of these, on which we will fo­
cus,  consists  of  the  High  Level  Constraint  Graph.  Its 
nodes contain the variables  and the constraints  applied 
upon them and their relationships are established through 
the edges. This graph aggregates the definitions of every 
feature  in  the  model  and  the  relations  between  them. 
Each feature is present as a set of shape constraints, vari­
ables (e.g. faces and parameters) and other constraints. In 
figure 1 we can see a simplified version of a High Level 
Constraint Graph.

Figure 1: Sample constraint graph

Only two types of variables exist:

• geometric variables which represent geometric entities 
of the model. These variables are defined by a   posi­
tion and an orientation. From the point  of view   of 
our problem, we can assume that  only two types  of 
geometric variables exist: faces and references.   Ref­
erences are model elements like lines, points or   sur­
faces that can be added to the model.

• value variables which contain several types of numer­
ic values.

As for the constraints they can be of several types but, 
for this context, it suffices to explain the following three:

• geometric constraints which restrict the way geomet­
ric    variables  are positioned (e.g.  distance  between 
two faces).

• shape constraints which are similar to geometric   con­
straints but specify the relation between all the   faces 
of a basic shape and between its value variables.

• algebraic  constraints  which  specify  algebraic    rela­
tions between value variables (e.g. equal, division).

Other constraints that exist that are not relevant for this 
paper are the boundary constraints and dimension con­
straints. These constraints are not used for the definition 
of model values but only to further enforce the semantics 
of each specific feature. One example of a boundary con­
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straint is that the top face of the through hole in Figure 1 
must not be on the boundary of the model.

Each  time  a feature  is  added  to  the  model,  its  corres­
ponding variables and constraints are added to the High 
Level Constraint Graph. It is by solving this graph that 
the position and orientation of each geometric variable is 
determined and, thereafter, the full geometry of the mod­
el is known and can be shown to the user.

One other internal model of the SPIFF system is the Cel­
lular model. This model is a geometric model which is 
used both  for  display  and  for  the  validity  checking  of 
boundary  constraints.  It  is  implemented  on  top  of  the 
geometric kernel using its data structures and operations.

3.REAL-TIME CONSTRAINT SOLVING FOR DI­
RECT MANIPULATION OF FEATURES
As was seen in the introducing section, a feature model 
in  the  SPIFF system is  internally  represented  as  a  con­
straint graph. To know the geometry and to check the se­
mantics of the model, the whole graph has to be solved. 
After the solving process, if the model is valid, the value 
of all the variables in the system is determined.

In order  for the system to solve the graph it  follows a 
number  of  steps  of  which  the  most  important  are  the 
solving  of  specific  mappings  of  the  High  Level  Con­
straint Graph by both an algebraic and a geometric con­
straint  solver.  These  solvers  are,  respectively,  the 
SkyBlue solver [Sannella92,Sannella93] and the Kramer 
Solver [Kramer92].

A performance analysis has shown that the two most im­
portant bottleneck of this solving process are the execu­
tion time of the geometric solving and the evaluation of 
the cellular model.

The evaluation of the cellular model can be skipped by 
displaying  only  a  simplified  model.  As  the  boundary 
constraints  validation  depends  on  the  cellular  model  it 
cannot be performed.

Since the cellular model evaluation was avoided the op­
timization  efforts  were  focused  on  the  Kramer  Solver. 
We  next  briefly  describe  how it  works  and  what  was 
changed in order to make the system faster for the direct 
manipulation situation.

3.1The Kramer Graph
The  specific  mapping  of  the  High  Level  Constraint 
Graph  which  is  used  by  the  Kramer  Solver  is  called 
Kramer Graph.  It  is  composed of constraints  and vari­
ables.  In this graph the variables are called geoms and 
represent a coordinate system which is in a specific posi­
tion and orientation in space. This position and orienta­
tion are not fixed3 but are restrained by the constraints in 
the graph. It is by determining which is the position and 
orientation  for  each  geom  that  satisfies  all  constraints 
that the final values for the variables are determined.

Each constraint reduces the relative degrees of freedom 
between geoms by specifying restrictions to their posi­
tion and orientation.

3 apart from a small number of geoms which have an absolute 
position and orientation in space

To each geometric variable of the High Level Constraint 
Graph  will  correspond  exactly  one  geom  and  to  each 
constraint will correspond one or more constraints in the 
Kramer Graph.

3.2Solving Strategy
To explain how the solving actually works we first need 
to define the concept of joint. A joint is no more than the 
set of constraints between two geoms. This means a joint 
is what restricts how two geoms are positioned in rela­
tion to each other. We call a joint rigid if it leaves no rel­
ative  degrees  of  freedom  between  the  two  geoms  it 
relates i.e. their position and orientation is fixed in rela­
tion to each other.

The  Kramer  Solver  works  by  iteratively  determining 
which joints are rigid and joining them into new geoms 
called macro­geoms. By progressively joining geoms a 
point  is  reached when there is  only one geom. At this 
point the system is solved.

One final  remark  is  that  the  Kramer  Solver  is  able  to 
handle  models  which are  not  fully  constrained.  In  this 
situation it merges geoms up to the point where it can no 
longer find rigid joints. The result will be a graph with 
more than one remaining macro­geom. This fact is cru­
cial for this work as will be explained in the next section.

3.3Geometric Constraint Solving for Direct Ma­
nipulation
The key remark to understand the optimization proposed 
is that, when the user is directly manipulating a paramet­
er, only its corresponding variable is being changed dur­
ing the direct manipulation session4. As a result,  all  its 
solving operations are highly repetitive because most of 
the graph is exactly the same. From here we can devise a 
solution that attempts to avoid this repetitiveness.

The idea is to put the ability of the solver to handle un­
der­constrained  models  at  the  service  of  the  repeated 
solving for the same parameter. Our solution will be to 
add a preprocessing step to the direct manipulation ses­
sion that executes the computations that otherwise would 
have been repeated and encapsulates their  result  in the 
constraint graph. For each interaction step only the oper­
ations that depend on the parameter are executed.

This solution will be composed of two steps: 1) the pre­
processing step solving and the 2) interaction step solv­
ing.

In  the  preprocessing  step  the  High  Level  Constraint 
Graph is mapped without the constraints which are de­
termined  by the  parameter  being  changed  by the  user. 
The  removal  of  these  constraints  makes  the  mapped 
Kramer  Graph  under­constrained  and  therefore,  after 
solving,  we  will  have  a  solution  with  a  set  of  macro­
geoms.  We  call  this  solution  the  preprocessed  graph. 
This graph is precisely the structure that encapsulates the 
repeated part of the solving operations. It will be used as 
the starting point  for solving in subsequent changes of 
the parameter.

4 by direct manipulation session we mean the period of time 
while the user directly manipulates one parameter



For each of the subsequent solving operations the inter­
action  step  solving  is  executed.  In  this  step  the  con­
straints determined by the parameter being changed will 
be mapped to the preprocessed graph. This graph is now 
fully constrained and can be solved to give us the solu­
tion for the current value of the parameter. This solving 
step is much faster than solving the whole model as most 
of the repeated solving is skipped.

4.MANIPULATION OF FEATURES USING FEATU­
RE HANDLES
4.1Target Manipulation Interface
The  direct  manipulation  facilities  designed  must  deal 
with the three disadvantages of traditional feature manip­
ulation mentioned in section 1.2.

For efficient feedback every modelling operation has to 
lead to an immediate preview of the result of the opera­
tion to the user. This preview will be provided through a 
transparent  overlay display of the resulting model.  The 
user will have insight on the consequences of the opera­
tion through the comparison of the original model with 
the  preview  which  are  displayed  simultaneously.  The 
manipulation  will  be  intuitive  because  of  the  feature 
handles' characteristics.

The deployed feature handles must take into account that 
each feature parameter has a specific semantics. This se­
mantics  will  be  expressed  through  the  handle's  beha­
viour, positioning and graphical representation.

4.2Types of Feature Handles
In this work it was decided to deal only with parameters 
which contain numerical values which generally have a 
simple geometric meaning.

In SPIFF the following four types of handles are enough to 
cover the direct manipulation needs: linear handles; an­
gular handles; planar handles; slider handles.

In this proposal all handles of a feature are specified by 
their  relation  with  reference  elements  (e.g.  reference 
points and reference lines) of the feature. With them the 
system will be able to know the placement and behaviour 
of the handles. One reference that is needed for the spe­
cification of any type of handle is the point that specifies 
its position in the model. These references are specified 
at the feature definition like any other references ­ using 
constraints.  One  very  important  consequence  of  the 
definition using references is that the position and orient­
ation of the handles will be determined by the constraint 
solver alone.

(a) Linear  (b) Angular  (c) Planar  (d) Slider

Figure 2: Types of Handles

We will now look with more detail into each of the pro­
posed handles:

• A  linear  handle  is  a  handle  that  moves  along  a 
straight  line  and  reacts  linearly  with  the  mouse 
movement. It contains a reference line which   repres­
ents the line along which the handle moves. See   fig­
ure 2(a).

• An angular  handle  is  a  handle  that  moves  around a 
rotation axis in a way that the user is able to   specify 
an angle parameter. This handle has a   reference line 
which represents the axis of rotation   around which 
the angular handle revolves. See figure 2(b).

• A  planar  handle  behaves  somewhat  like  a  linear 
handle   with the difference that, instead of having its 
movement restricted to a line,  its movement is   re­
stricted to a plane (having two linear degrees of   free­
dom). For this type of handle two reference lines   will 
be  needed  to  determine  the  plane  on  which  it  can 
move. One thing that  differs from this handle to all 
the  others  is  that  when  manipulated  it  affects  two 
parameters of the feature instead of one. The   motiva­
tion for the existence of this handle is to   enable the 
user to change the position of features   that have it 
specified by two distances to external   faces. See fig­
ure 2(c).

• A slider handle is also similar to a linear handle   but, 
in this case, the line will simply be a vertical   line on 
the viewport with no connection to the actual   feature 
geometry. Therefore this handle will contain   no ref­
erence lines. The slider handle adjusts nicely   to para­
meters that have no simple geometric meaning   but 
should be directly manipulatable. See figure 2(d).

4.3Handle Manipulation Flow of Events
Two important moments exist in the handle manipulation 
flow of events: the moment when the user selects a fea­
ture to be edited and each time a handle is dragged.

When the user selects a feature to be edited this leads to 
the  activation  of  all  the  handles  of  the  feature  ­­  the 
handle is displayed and registered in the Operator (a con­
trol entity). The feature is also highlighted with a trans­
parent overlay.

When a  single  drag  event  of  the  user  occurs  the  drag 
event is reported to the Operator with the information of 
the new mouse position. The operator sends a message to 
the Handle which leads to the computation of the new 
value of the parameter  and to its  update  in the model. 
This computation is obviously done taking into account 
the  handle  behaviour  (see  section  4.2).  After  the  new 
value is set, the Operator orders the Constraint Manager 
to solve the model. With the new model values resulting 
from the constraint solving process a transparent preview 
of the result of the operation is rendered and displayed.

5.CONCLUSIONS
An approach for 3D geometric constraint solving for dir­
ect manipulation was developed. This approach has been 
successful at increasing the speed for the direct manipu­
lation situation and, therefore, improving the user experi­
ence. The average improvement on the speed of geomet­
ric solving for the tests performed was of 18 times. With 
full frames being generated in 290ms for medium sized 



models (13 features) we believe the objective of provid­
ing  the  user  with  real­time  manipulation  has  been 
achieved. Of these 290ms only 50ms are for geometric 
solving therefore further optimization work mostly has to 
be performed on other parts of system5.

One problem concerns the large amount of time required 
for preprocessing before the first frame of the manipula­
tion session can be shown. This happens because of the 
necessary  underconstrained  solving  process  which  is 
slower.  Unfortunately,  at this point,  we have no prom­
ising idea on how to improve this time.

In spite of the problems that still stand, the overall out­
come regarding the work on geometric constraint solving 
was clearly positive with impressive gains at the geomet­
ric constraint solving performance.

A  whole  new  architecture  for  the  direct  manipulation 
with  handles  for  a  feature  modelling  system  was  de­
signed and implemented. Four types of feature handles 
were designed and no situation was found in which these 
four types of handles were not enough. For parameters 
with a clear  geometric  meaning this solution was fully 
successful in making the manipulation process intuitive6.

For an effective and insightful  feedback on the model­
ling  operations,  a  transparent  preview  of  the  model  is 
overlaid as the user directly manipulates a feature. This 
way he can clearly see the effect of the modelling opera­
tions and compare the result with the original situation.

Through out this project separate parts were developed. 
They  build  on  top  of  each  other  to  provide  a  system 
which allows the user to perform direct manipulation of 
features in real­time. Although many improvements can 

5 tests performed on an Intel Centrino 1.3Ghz with 512Mb of 
physical  memory  and  an  ATI  Radeon  Mobility  9000 
graphics card

6 in truth this conclusion could only be assured based on usabi­
lity tests with real users

still be made the product of this project provides a sound 
foundation for further developments.
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