
Direct Manipulation of feature models using Handles

Daniel Lourenço
DEI / IST

Lisbon, Portugal
daniel.antunes.lourenco

@gmail.com

Pedro Oliveira
DEI / IST

Lisbon, Portugal
pedro.vcm.oliveira

@gmail.com

Rafael Bidarra
EEMCS / TU Delft

Delft, The Netherlands
r.bidarra@ewi.tudelft.nl

Abstract
In feature based systems support for direct manipulation is not commonly available. This is partly due to the
strong reliance of feature modelling systems on constraints and on the lack of speed of current constraint solv­
ers. In this paper an approach to the optimization of the geometric constraint solving for the specific situation
of direct manipulation is described. Also a solution for a direct manipulation interface was designed that brings
to feature modelling the advantages of direct manipulation while taking into account the main feature model­
ling paradigm concepts. Details are provided on how it was implemented successfully in the SPIFF feature mod­
elling system.

Keywords
Feature­modelling, Direct manipulation, CAD/CAM

1.INTRODUCTION

1.1Feature Modelling
Feature modelling is a design paradigm that aims to
bring the modelling task to a higher level in a way that it
is easier for the designer to specify and understand ele­
ments and their relations in a model. This is done by as­
sociating functional information to the shape information
in the product model.

The feature modelling process is done based on features.
[Bidarra99] defines a feature as a representation of shape
aspects of a product that are mappable to a generic shape
and are functionally significant for some product life­
cycle phase. This way, unlike when the design is based
in geometry alone, in feature modelling the designer
builds a model out of features that have a well­defined
semantics.

A feature class library is a collection of feature classes
that are made available to the designer. Each feature
class has a specified semantics (e.g. a specific machining
operation) and can be instantiated as a feature in the
model by providing a set of instance parameters.

Constraints are a crucial concept for feature modelling
systems and can be used to express high­level character­
istics of the model (e.g. restrict the volume of a product
to a certain maximum). Constraints can also be used as
internal elements of features that express the feature se­
mantics. Systems that force the maintenance of each fea­
ture's semantics in a feature model throughout the mod­
elling process are called semantic feature modelling sys­
tems [Bidarra99]. Because of this intensive usage of con­
straints, feature modelling systems have to make an ex­
tensive usage of constraint solving techniques.

1.2Limitations of Traditional Feature Manipulati­
on
In the SPIFF system the specification of feature paramet­
ers is done solely through the input of values in dialog
boxes. When a user edits a feature, the model is updated
with the new user values and then fully solved to determ­
ine the new geometry.

The main disadvantages of this approach are:

• inefficient feedback, making the design task much
slower. Each time the designer changes the paramet­
ers of a feature he has to wait for the whole system to
be solved and only then can he see the effect of his
changes and check the validity of the model.

• lack of insight on the consequences of the modelling
operation. When changing a parameter the user can
only see the original and resulting model of the oper­
ation. This means that there is no explicit feedback
on which features were affected and how.

• non­intuitiveness due to the fact that the user is
simply editing dialog boxes that do not express how
the feature is affected by the parameter.

1.3Project Goals
The main goal of this project was the development of a
direct manipulation interface for form­features in the
system. In particular feature handles were added as a
way of specifying feature parameters. As the modelling
operation occurs real­time feedback has to be provided to
the user1. With this improvement the design process will
be improved so that the user may interactively change

1 by real­time we mean fast enough for the user to have a di­
rect manipulation experience and not the strict meaning of
the real­time expression

the value of the parameters of features in the model
while he is being provided with feedback of the changes.
When the user is satisfied with the model he can choose
to make the changes final and check the model validity.

Two critical issues had to be tackled in order to provide
the real­time interaction required ­­ efficient model con­
straint handling and efficient display of the model geo­
metry being manipulated by the user2.

One other orthogonal problem that had to be solved was
to determine which should be the characteristics of the
feature handles available for each feature (where they are
positioned; how they are specified; how they behave;
how does their manipulation affect the parameter being
changed).

1.4Paper Overview
On this paper we will first start by giving an overall in­
sight of the what the SPIFF system is, its architecture,
main concepts and how they relate and are implemented
internally. This will be done in section 2.

In section 3, after a brief introduction on how constraint
solving works in SPIFF, we will present a solution for
constraint solving that copes with the efficiency require­
ments of real­time feedback for direct manipulation.

In section 4 we will state the designed target manipula­
tion requirements and how these where materialized in
the SPIFF system.

In section 5 we give a brief overview of what was done
while concluding whether the main objectives were
achieved and identifying the limitations of the solutions
found.

2.THE SPIFF SYSTEM
The SPIFF system [SPIFF] is an advanced feature model­
ling system developed at the Delft University of Techno­
logy, the Netherlands. Development on this system star­
ted in 1994 and work on it has been going on since then
leading to a system which incorporates many different
ideas and concepts on feature modelling and which is
therefore quite complex.

The underlying geometric kernel of this system is the
ACIS modelling kernel.

This system supports many advanced feature modelling
concepts including the concept of semantic feature mod­
elling [Bidarra00].

2.1Feature Classes in the SPIFF System
A feature class in the SPIFF system can be seen as a spe­
cification of its shape and the set of parameters needed to
instantiate it.

The shape of a feature class is determined based on the
concept of basic shape. A basic shape works as a meta­
feature that only specifies the geometry it represents (e.g.
cylinder). This representation is a set of model elements
(e.g. faces) and constraints that specify their relations.
Features acquire their geometry by deriving from a spe­
cific basic shape.

2 we will not approach the latter issue on this paper

Besides its shape, a feature class also contains a number
of constraints and variables which further define its
shape and semantics and the way it relates with other
features in the model.

2.2Feature Model
The feature model in the SPIFF system has multiple in­
ternal representations. One of these, on which we will fo­
cus, consists of the High Level Constraint Graph. Its
nodes contain the variables and the constraints applied
upon them and their relationships are established through
the edges. This graph aggregates the definitions of every
feature in the model and the relations between them.
Each feature is present as a set of shape constraints, vari­
ables (e.g. faces and parameters) and other constraints. In
figure 1 we can see a simplified version of a High Level
Constraint Graph.

Figure 1: Sample constraint graph

Only two types of variables exist:

• geometric variables which represent geometric entities
of the model. These variables are defined by a posi­
tion and an orientation. From the point of view of
our problem, we can assume that only two types of
geometric variables exist: faces and references. Ref­
erences are model elements like lines, points or sur­
faces that can be added to the model.

• value variables which contain several types of numer­
ic values.

As for the constraints they can be of several types but,
for this context, it suffices to explain the following three:

• geometric constraints which restrict the way geomet­
ric variables are positioned (e.g. distance between
two faces).

• shape constraints which are similar to geometric con­
straints but specify the relation between all the faces
of a basic shape and between its value variables.

• algebraic constraints which specify algebraic rela­
tions between value variables (e.g. equal, division).

Other constraints that exist that are not relevant for this
paper are the boundary constraints and dimension con­
straints. These constraints are not used for the definition
of model values but only to further enforce the semantics
of each specific feature. One example of a boundary con­

cylinder

block

bottom

top
radius

height

side

top

front

left

bottom

right

back

height

width

length

attach

distance

attach

distance

Through Hole Base Block

straint is that the top face of the through hole in Figure 1
must not be on the boundary of the model.

Each time a feature is added to the model, its corres­
ponding variables and constraints are added to the High
Level Constraint Graph. It is by solving this graph that
the position and orientation of each geometric variable is
determined and, thereafter, the full geometry of the mod­
el is known and can be shown to the user.

One other internal model of the SPIFF system is the Cel­
lular model. This model is a geometric model which is
used both for display and for the validity checking of
boundary constraints. It is implemented on top of the
geometric kernel using its data structures and operations.

3.REAL-TIME CONSTRAINT SOLVING FOR DI­
RECT MANIPULATION OF FEATURES
As was seen in the introducing section, a feature model
in the SPIFF system is internally represented as a con­
straint graph. To know the geometry and to check the se­
mantics of the model, the whole graph has to be solved.
After the solving process, if the model is valid, the value
of all the variables in the system is determined.

In order for the system to solve the graph it follows a
number of steps of which the most important are the
solving of specific mappings of the High Level Con­
straint Graph by both an algebraic and a geometric con­
straint solver. These solvers are, respectively, the
SkyBlue solver [Sannella92,Sannella93] and the Kramer
Solver [Kramer92].

A performance analysis has shown that the two most im­
portant bottleneck of this solving process are the execu­
tion time of the geometric solving and the evaluation of
the cellular model.

The evaluation of the cellular model can be skipped by
displaying only a simplified model. As the boundary
constraints validation depends on the cellular model it
cannot be performed.

Since the cellular model evaluation was avoided the op­
timization efforts were focused on the Kramer Solver.
We next briefly describe how it works and what was
changed in order to make the system faster for the direct
manipulation situation.

3.1The Kramer Graph
The specific mapping of the High Level Constraint
Graph which is used by the Kramer Solver is called
Kramer Graph. It is composed of constraints and vari­
ables. In this graph the variables are called geoms and
represent a coordinate system which is in a specific posi­
tion and orientation in space. This position and orienta­
tion are not fixed3 but are restrained by the constraints in
the graph. It is by determining which is the position and
orientation for each geom that satisfies all constraints
that the final values for the variables are determined.

Each constraint reduces the relative degrees of freedom
between geoms by specifying restrictions to their posi­
tion and orientation.

3 apart from a small number of geoms which have an absolute
position and orientation in space

To each geometric variable of the High Level Constraint
Graph will correspond exactly one geom and to each
constraint will correspond one or more constraints in the
Kramer Graph.

3.2Solving Strategy
To explain how the solving actually works we first need
to define the concept of joint. A joint is no more than the
set of constraints between two geoms. This means a joint
is what restricts how two geoms are positioned in rela­
tion to each other. We call a joint rigid if it leaves no rel­
ative degrees of freedom between the two geoms it
relates i.e. their position and orientation is fixed in rela­
tion to each other.

The Kramer Solver works by iteratively determining
which joints are rigid and joining them into new geoms
called macro­geoms. By progressively joining geoms a
point is reached when there is only one geom. At this
point the system is solved.

One final remark is that the Kramer Solver is able to
handle models which are not fully constrained. In this
situation it merges geoms up to the point where it can no
longer find rigid joints. The result will be a graph with
more than one remaining macro­geom. This fact is cru­
cial for this work as will be explained in the next section.

3.3Geometric Constraint Solving for Direct Ma­
nipulation
The key remark to understand the optimization proposed
is that, when the user is directly manipulating a paramet­
er, only its corresponding variable is being changed dur­
ing the direct manipulation session4. As a result, all its
solving operations are highly repetitive because most of
the graph is exactly the same. From here we can devise a
solution that attempts to avoid this repetitiveness.

The idea is to put the ability of the solver to handle un­
der­constrained models at the service of the repeated
solving for the same parameter. Our solution will be to
add a preprocessing step to the direct manipulation ses­
sion that executes the computations that otherwise would
have been repeated and encapsulates their result in the
constraint graph. For each interaction step only the oper­
ations that depend on the parameter are executed.

This solution will be composed of two steps: 1) the pre­
processing step solving and the 2) interaction step solv­
ing.

In the preprocessing step the High Level Constraint
Graph is mapped without the constraints which are de­
termined by the parameter being changed by the user.
The removal of these constraints makes the mapped
Kramer Graph under­constrained and therefore, after
solving, we will have a solution with a set of macro­
geoms. We call this solution the preprocessed graph.
This graph is precisely the structure that encapsulates the
repeated part of the solving operations. It will be used as
the starting point for solving in subsequent changes of
the parameter.

4 by direct manipulation session we mean the period of time
while the user directly manipulates one parameter

For each of the subsequent solving operations the inter­
action step solving is executed. In this step the con­
straints determined by the parameter being changed will
be mapped to the preprocessed graph. This graph is now
fully constrained and can be solved to give us the solu­
tion for the current value of the parameter. This solving
step is much faster than solving the whole model as most
of the repeated solving is skipped.

4.MANIPULATION OF FEATURES USING FEATU­
RE HANDLES
4.1Target Manipulation Interface
The direct manipulation facilities designed must deal
with the three disadvantages of traditional feature manip­
ulation mentioned in section 1.2.

For efficient feedback every modelling operation has to
lead to an immediate preview of the result of the opera­
tion to the user. This preview will be provided through a
transparent overlay display of the resulting model. The
user will have insight on the consequences of the opera­
tion through the comparison of the original model with
the preview which are displayed simultaneously. The
manipulation will be intuitive because of the feature
handles' characteristics.

The deployed feature handles must take into account that
each feature parameter has a specific semantics. This se­
mantics will be expressed through the handle's beha­
viour, positioning and graphical representation.

4.2Types of Feature Handles
In this work it was decided to deal only with parameters
which contain numerical values which generally have a
simple geometric meaning.

In SPIFF the following four types of handles are enough to
cover the direct manipulation needs: linear handles; an­
gular handles; planar handles; slider handles.

In this proposal all handles of a feature are specified by
their relation with reference elements (e.g. reference
points and reference lines) of the feature. With them the
system will be able to know the placement and behaviour
of the handles. One reference that is needed for the spe­
cification of any type of handle is the point that specifies
its position in the model. These references are specified
at the feature definition like any other references ­ using
constraints. One very important consequence of the
definition using references is that the position and orient­
ation of the handles will be determined by the constraint
solver alone.

(a) Linear (b) Angular (c) Planar (d) Slider

Figure 2: Types of Handles

We will now look with more detail into each of the pro­
posed handles:

• A linear handle is a handle that moves along a
straight line and reacts linearly with the mouse
movement. It contains a reference line which repres­
ents the line along which the handle moves. See fig­
ure 2(a).

• An angular handle is a handle that moves around a
rotation axis in a way that the user is able to specify
an angle parameter. This handle has a reference line
which represents the axis of rotation around which
the angular handle revolves. See figure 2(b).

• A planar handle behaves somewhat like a linear
handle with the difference that, instead of having its
movement restricted to a line, its movement is re­
stricted to a plane (having two linear degrees of free­
dom). For this type of handle two reference lines will
be needed to determine the plane on which it can
move. One thing that differs from this handle to all
the others is that when manipulated it affects two
parameters of the feature instead of one. The motiva­
tion for the existence of this handle is to enable the
user to change the position of features that have it
specified by two distances to external faces. See fig­
ure 2(c).

• A slider handle is also similar to a linear handle but,
in this case, the line will simply be a vertical line on
the viewport with no connection to the actual feature
geometry. Therefore this handle will contain no ref­
erence lines. The slider handle adjusts nicely to para­
meters that have no simple geometric meaning but
should be directly manipulatable. See figure 2(d).

4.3Handle Manipulation Flow of Events
Two important moments exist in the handle manipulation
flow of events: the moment when the user selects a fea­
ture to be edited and each time a handle is dragged.

When the user selects a feature to be edited this leads to
the activation of all the handles of the feature ­­ the
handle is displayed and registered in the Operator (a con­
trol entity). The feature is also highlighted with a trans­
parent overlay.

When a single drag event of the user occurs the drag
event is reported to the Operator with the information of
the new mouse position. The operator sends a message to
the Handle which leads to the computation of the new
value of the parameter and to its update in the model.
This computation is obviously done taking into account
the handle behaviour (see section 4.2). After the new
value is set, the Operator orders the Constraint Manager
to solve the model. With the new model values resulting
from the constraint solving process a transparent preview
of the result of the operation is rendered and displayed.

5.CONCLUSIONS
An approach for 3D geometric constraint solving for dir­
ect manipulation was developed. This approach has been
successful at increasing the speed for the direct manipu­
lation situation and, therefore, improving the user experi­
ence. The average improvement on the speed of geomet­
ric solving for the tests performed was of 18 times. With
full frames being generated in 290ms for medium sized

models (13 features) we believe the objective of provid­
ing the user with real­time manipulation has been
achieved. Of these 290ms only 50ms are for geometric
solving therefore further optimization work mostly has to
be performed on other parts of system5.

One problem concerns the large amount of time required
for preprocessing before the first frame of the manipula­
tion session can be shown. This happens because of the
necessary underconstrained solving process which is
slower. Unfortunately, at this point, we have no prom­
ising idea on how to improve this time.

In spite of the problems that still stand, the overall out­
come regarding the work on geometric constraint solving
was clearly positive with impressive gains at the geomet­
ric constraint solving performance.

A whole new architecture for the direct manipulation
with handles for a feature modelling system was de­
signed and implemented. Four types of feature handles
were designed and no situation was found in which these
four types of handles were not enough. For parameters
with a clear geometric meaning this solution was fully
successful in making the manipulation process intuitive6.

For an effective and insightful feedback on the model­
ling operations, a transparent preview of the model is
overlaid as the user directly manipulates a feature. This
way he can clearly see the effect of the modelling opera­
tions and compare the result with the original situation.

Through out this project separate parts were developed.
They build on top of each other to provide a system
which allows the user to perform direct manipulation of
features in real­time. Although many improvements can

5 tests performed on an Intel Centrino 1.3Ghz with 512Mb of
physical memory and an ATI Radeon Mobility 9000
graphics card

6 in truth this conclusion could only be assured based on usabi­
lity tests with real users

still be made the product of this project provides a sound
foundation for further developments.

6.REFERENCES
[Bidarra99] Bidarra, R. (1999), Validity Maintenance in

Semantic Feature Modelling, PhD Thesis, Delft Uni­
versity of Technology, Delft, The Netherlands

[Bidarra00] Bidarra, R. and Bronsvoort, W.F. (2000) Se­
mantic feature modelling. Computer­Aided Design
32(3): 201­225

[Bunnik00] Bunnik, A. (2004), Web­based direct mani­
pulation of feature models, MSc Thesis, Delft Uni­
versity of Technology, Delft, The Netherlands

[Dohmen97] Dohmen, M. (1997), Constraint­based fea­
ture validation, PhD Thesis, Delft University of Te­
chnology, Delft, The Netherlands

[Kramer92] Kramer, G. A. (1992), Solving geometric
constraint systems: a case study in kinematics, The
MIT Press.

[Noort02] Noort, A. (2002), Multiple­View Feature Mo­
delling with Model Adjustment, PhD Thesis, Delft
University of Technology, Delft, The Netherlands

[Sannella92] Sannella, M. (1992), The SkyBlue cons­
traint solver, Technical Report 92­07­02, Dept. of
Computer Science and Engineering, University of
Washington, USA.

[Sannella93] Sannella, M. (1993), The SkyBlue cons­
traint solver and its applications, in "First Workshop
on Principles and Practice of Constraint Program­
ming".

[SPIFF] The SPIFF system homepage,
<http://www.cg.its.tudelft.nl/
~spiff/spiff.html>

[Wikipedia] Direct manipulation interface, Wikipedia,
<http://en.wikipedia.org/wiki/
Direct_manipulation_interface>

	Abstract
	Keywords

	1.INTRODUCTION
	1.1Feature Modelling
	1.2Limitations of Traditional Feature Manipulation
	1.3Project Goals
	1.4Paper Overview

	2.The Spiff system
	2.1Feature Classes in the Spiff System
	2.2Feature Model

	3.Real-Time Constraint Solving for Direct Manipulation of Features
	3.1The Kramer Graph
	3.2Solving Strategy
	3.3Geometric Constraint Solving for Direct Manipulation

	4.Manipulation of Features using feature handles
	4.1Target Manipulation Interface
	4.2Types of Feature Handles
	4.3Handle Manipulation Flow of Events

	5.Conclusions
	6.RefeRENCES

