
Ecologically sound procedural generation of natural environments

Benny Onrust1 Rafael Bidarra1 Robert Rooseboom2 Johan van de Koppel2

1Computer Graphics and Visualization Group, Delft University of Technology, The Netherlands
2Department of Spatial Ecology, Royal Netherlands Institute for Sea Research, The Netherlands

Figure 1: Virtual Paulinapolder: a salt marsh located in the Netherlands, generated and rendered with our framework.

Abstract

Current techniques for the creation and exploration of virtual
worlds are largely unable to generate sound natural environments
from ecological data, and to provide interactive web-based visual-
izations of such detailed environments. We tackle this challenge
and propose a novel framework that (i) explores the advantages
of landscape maps and ecological statistical data, translating them
to an ecologically sound plant distribution, and (ii) creates a visu-
ally convincing 3D representation of the natural environment suit-
able for its interactive visualization over the web. Our vegetation
model improves techniques from procedural ecosystem generation
and neutral landscape modeling. It is able to generate diverse eco-
logical sound plant distributions directly from landscape maps with
statistical ecological data. Our visualization model integrates exist-
ing level-of-detail and illumination techniques to achieve interac-
tive frame rates and improve realism. We validated with ecology
experts the outcome of our framework using two case studies, and
concluded that it provides convincing interactive visualizations of
large natural environments.

Keywords: procedural generation, realtime rendering, web visu-
alization, ecological models

1 Introduction

The visualization of existing and future natural environments is be-
coming more important for decision-making, as well as for recre-
ational and scientific communication, as it considerably helps to
better understand the various spatial relations in an environment
[Pettit et al. 2011; van Lammeren et al. 2010]. This is an impor-
tant topic for ecologists who are focusing on developing ecolog-
ical models that can predict how an environment develops in the
future. Such models use ecological and geophysical processes to
make these accurate predictions. The disadvantage of these models
is that the output lacks detail and often can only be used by ecolo-
gists. A 3D visualization of this data can be helpful to communicate

their work to non-ecologists or promote future/existing natural en-
vironments to the public in general.

The combination of ecological models, existing geo-datasets and
3D visualizations is becoming more relevant with the so-called
‘Building with Nature’ solutions. Building with Nature is an initia-
tive that focuses on the development of nature combined with other
utilities [de Vriend et al. 2014]. For example, instead of creating
a strong dike to protect the land against water, ecological process
are utilized in the target area to develop natural dunes that can pro-
vide protection. Not only can this area be used for security, but
also for recreation services. Figure 2 shows an example of a Build-
ing with Nature project. This project started with placing a lot of
sand before the coast (image on the left), which has evolved, by
the end of 2013, into a more unnatural coastline shape (image on
the right) that allowed natural dune beach and dune development
through stimulating natural ecological processes in that area. In ad-
dition, the dunes were enriched with the extra sand, promoting the
coastal protection. Further, vegetation started growing on the sand
and provided space for fish, sea mammals, and birds. Finally, there
is more space for recreational purposes.

Ecological models are being developed to predict these processes
and 3D visualizations could help to explore and communicate these
results. This requires that the 3D visualizations are detailed, visu-
ally convincing and easily accessible to the general public. There-
fore, the output data from ecological models or geo-datasets needs
to be translated, in an ecologically correct manner, into an accu-
rate plant distribution. In addition, to promote communication and
dissemination, visualizations of such results should be easily and
widely accessible, making interactive 3D web visualizations little
less than indispensable.

However, both the generation of ecologically sound plant distri-
butions and the generation of detailed 3D environments that are
suitable for interactive web-based visualization are far from trivial
tasks. The input data from either ecological models or geo-datasets
do not often contain enough detail to derive exact plant positions
nor to obtain a high-density plant distribution with a large vari-



ety of species. Therefore, procedural generation techniques have
to be used to generate and fill these missing details. Most proce-
dural techniques for natural environment focus either on simula-
tion of ecosystems or on the global generation of ecosystems using
state-of-the-art point generation technique to determine plant po-
sitions. Both families of techniques lack the ability to correctly
translate ecological input data, like coverage or patchiness data of
plant species, to a plant distribution with high-density and variety.
Moreover, most examples of interactive 3D visualization of high-
density natural environments focus on desktop applications, which
are less useful than web-based applications in the context of eco-
logical management, policy-making and popular awareness. It is
not possible to use these techniques directly in a web environment,
because browser-based solutions do not have the same rendering
capabilities as desktop-based solutions. Current web visualization
approaches focus on natural environments with only the physical
terrain or a low plant density/variety.

Figure 2: An example of a ‘Building with Nature’ project
[de Vriend et al. 2014]. On the left image, a lot of sand is placed,
which is transformed by ecological processes in the area shown in
the image on the right.

We present a new approach to generate accurate and sound plant
distributions from ecological input maps, and interactively visualize
its results in a web browser-based context. This article, therefore,
answers the following questions: (i) how to generate an ecologi-
cally sound plant distribution from ecological input maps, and (ii)
how to generate a visually convincing interactive 3D web-based vi-
sualization of such natural environments with high density and vari-
ety of plants. We answer these questions by proposing a framework
with (i) a vegetation model that combines procedural and ecologi-
cal modeling techniques to translate landscape maps to an ecolog-
ically sound plant distribution, and (ii) a visualization model that
translates the generated plant distribution into a 3D representation
suitable for interactive visualization over the web. The vegetation
model is able to translate input landscape maps with statistics about
coverage and patchiness of plant species to a sound and convincing
plant distribution; and the visualization model supports rendering
natural environments with high density and variety of plants.

This article is a significantly extended version of a previous confer-
ence paper [Onrust et al. 2015].

2 Related Work

This section provides an overview of techniques related to ecologi-
cal modeling, procedural ecosystem generation, and interactive 3D
visualization of natural environments. An overview of ecological
and procedural techniques is included to show the current limita-
tions in generating plant distributions. We also include non-web-
based solutions of interactive 3D visualization, because of the lim-
ited examples that are available for interactive web-based visual-
ization for natural environments. We do not include a review of
generative algorithms to produce individual 3D plant models, as a
survey of such techniques has been recently published elsewhere
[Smelik et al. 2014].

Ecological model techniques We divide ecological model tech-
niques into two categories: dynamic and neutral model techniques.
Dynamic models simulate ecological and geophysical processes
[Molofsky and Bever 2004], which normally result in raster maps
containing information about height, biomass, and/or coverage of
certain vegetation at a certain point in time [Temmerman et al.
2007; Rietkerk and Van de Koppel 2008; Schwarz 2014]. This data
often lacks sufficient details to extract plant positions. Dynamic
models make it possible to extract spatial information about future
landscapes. Figure 3 shows the output of a dynamic ecological
model at different time stamps. This model provides information
about the plant density for an area that develops over the years.

Figure 3: Example outputs of a dynamic ecological model at dif-
ferent time stamps [Temmerman et al. 2007].

Neutral models generate classification grid maps based on cover-
age and shape metric information per plant species. Shape met-
ric values give information about the patterns/patchiness of a plant
species (e.g. a plant species could grow scattered in an area or grow
very close to each other). This input data is translated to a single
plant species for each grid cell on the input map by using either
a MRC (Modified Random clusters) model [Saura and Martı́nez-
Millán 2000] or fractal-based model [Hargrove et al. 2002]. The
disadvantage of neutral model techniques is that, similarly to dy-
namic models, plant positions can often not be extracted directly
from the generated maps. Another disadvantage is that neutral mod-
els assume that the conditions for each plant species are the same
for the complete environment (hence the name neutral). For exam-
ple, they assume that the coverage value for a plant species is the
same at every location in the environment. Often, this assumption
does not hold in real-world environments.

Procedural ecosystem generation techniques Procedural
ecosystem techniques compute virtual plant distributions, and these
techniques can be divided into two categories: local-to-global or
global-to-local [Lane and Prusinkiewicz 2002]. Techniques from
the local-to-global category use multi-set L-systems to simulate
plant growth and competitions [Deussen et al. 1998]. To obtain a
complete ecosystem, it is necessary to iterate through the L-system
rules and stop the simulation after a certain amount of iterations.
Local-to-global techniques make it possible to model individual be-
havior for each plant. Complex behavior, such as realistic competi-
tion for sun light and soil resources, can be modeled [Chng 2010].
The disadvantage is that the controllability of these techniques is
low, as it is not possible to predict the outcome after the simula-
tion is finished given the input parameters. They are not able to
to translate maps and statistics about the environment to a realis-
tic plant distribution. Instead, these methods are good in showing
interactions between different plants.

The global-to-local techniques do not use a simulation process to
calculate a plant distribution and plants are not modeled individ-
ually. Instead, positions from plants are calculated directly from
a globally-defined environment. Hammes [Hammes 2001] uses a
method that defines possible ecotypes for an environment. An eco-
type is for example a forest or desert. Given a height map, the
likelihood for each tile for every ecotype is calculated. The ecotype
with the highest probability, while accounting for random varia-
tion, is selected. Next, plants belonging to that ecotype are scat-



tered randomly in that tile. This method is limited, because plants
are randomly placed within a tile and only a single type of plant is
used. In addition, the final distribution does not follow the input
probability values for each ecotype. Lane [Lane and Prusinkiewicz
2002] places each plant with a dart-throwing algorithm in combi-
nation with probability fields, which increases the likelihood that
plants are placed at their preferred location. In addition, each plant
can exhibit neighborhood effects on the remaining plants by updat-
ing the probability field around it with a negative or positive ef-
fect. Again, with this method it is not possible to have the input
plant species follow a certain statistical distribution. Alsweis [Al-
sweis and Deussen 2006] generated plant distributions by generat-
ing points following the PDD (Poisson Disk distribution) in combi-
nation with Wang tiling to generate all the points efficiently. This
method did not investigate how to classify/assign these points to
a plant species. On the other hand, the placement of plants with
different sizes was convincing.

Weier [Weier et al. 2013] extended the previous technique by also
classifying these points to different plant species, using a combi-
nation of the previously discussed methods of Hammes [Hammes
2001] and Lane [Lane and Prusinkiewicz 2002]. First, a complete
point set was generated using the PDD with a Wang tiling tech-
nique. Each point receives probability values for each plant species.
Next, each point is assigned the plant species with the highest prob-
ability, while accounting for some random variation. Finally, a
group of points is selected that have a probability value with the
highest standard deviation, which are most certain to retain their
original plant species classification. These points are used to exhibit
a neighborhood effect on their neighboring points. To include this
effect in the classification, the classification process is repeated un-
til a number of iterations have been done or when a certain amount
of points does not change plant species anymore. The disadvantage
of this technique is that the classification process does not trans-
late the input statistical data to the final plant distribution. Also, it
is difficult to generate different kinds of plant patterns in the plant
distribution with only the neighborhood kernel.

Interactive 3D visualization of natural environments 3D ren-
dering of natural environment with high vegetation count is a dif-
ficult problem, even with dedicated software and/or hardware, due
to the high polygon count and light interaction. There are several
desktop-based solutions that are able to render large amounts of
plants [Boulanger et al. 2006; Bruneton and Neyret 2012]. Often,
these techniques focus on rendering one or two plant species with a
high density in the environment, but they achieve interactive frame
rates with it. Web-based rendering, which has less rendering ca-
pabilities in comparison to desktop-based rendering, on the other
hand, does not have techniques proposed, by our knowledge, for the
rendering of such large natural environments. Instead, the current
focus is more on geo-visualizations. In this section, we first dis-
cuss several techniques for the rendering of natural environments
using desktop-based solutions. Next, we provide a small overview
of the current work done for web-based rendering related to natural
environments.

One of the first techniques to render many plants in real-time was
a method proposed by Deussen [Deussen et al. 2002] that handles
complex plant ecosystems by abstracting further away plant objects
into single points and lines. Bruneton [Bruneton and Neyret 2012]
developed a technique, which is able to render a realistic forest rep-
resentation in real-time with realistic lighting at all scales. They use
a z-field representation to render the nearest trees individually and
a shader map representation to render far-away trees. The resulting
lighting was realistic and suitable for real-time purposes, especially
for far-away views. Other techniques focus on the rendering of mil-
lions of grass blades in an environment. Boulanger [Boulanger et al.

2006] proposes a method to render large amounts of grass blades
with dynamic lighting. A LOD (level of detail) system divides the
grass blades into different representations. Geometry models are
used for blades close to the viewer, blades at moderate distances
are represented with vertical and horizontal slices, while far away
only the horizontal slice is used. A modification of the alpha blend-
ing technique is used to blend the transitions between the LODs.
Fan [Fan et al. 2015] extended the previous method with anima-
tions. Although none of these solutions is web-browser-based, they
provide insight into how to organize the data to maintain real-time
performance and to create transition between the different LODs.

The interactive 3D rendering of natural environments on a web-
browser is a fairly new topic that has not received much attention
so far. In current literature we could not find examples of 3D in-
teractive visualization of complex natural environments with high-
density vegetation, only a few techniques aimed at real time visual-
ization of environments without vegetation using geo-visualizations
[Fanini et al. 2011; Herzig et al. 2013]. These visualizations focus
on the streaming of geo-data to the browser and the organization of
the data to achieve interactive frame rates. Data is often organized
in groups using quadtree structures to reduce far-away geometry.

3 Basic Approach

Here, we provide the outline of our approach for the generation and
web-based visualization of natural environments. The main goal
is to generate ecologically sound plant distributions based on vari-
ous ecological datasets and to interactively visualize these over the
web. In the previous section, we have discussed various methods
that either focus on the procedural generation and/or 3D visualiza-
tion of natural environments, but often these methods are limited
and do not provide satisfactory results. In particular, procedural
methods for the generation of plant distributions are mostly unable
to correctly process ecological information, such as statistical data
on coverage and patchiness, in combination with landscape maps.

Our approach, improving upon fractal-based neutral modeling and
procedural point generation techniques, capitalizes on their advan-
tages while avoiding their pitfalls, in order to solve this problem.
In addition, most interactive 3D visualizations of natural environ-
ments are currently provided in stand-alone applications, which
typically can utilize more GPU features than web browser-based
applications. We found no examples of web-based interactive visu-
alizations of large natural environments presenting a large variety
of plant species, like those we present here.

Before we go into the details of the framework’s structure, we will
first define some concepts frequently used in this article, and elab-
orate on the various kinds of input.

Concepts The following concepts will be regularly used
throughout this article:

• Plant species: the species of the plant, for example, oak or
birch.

• Plant spacing: the minimal required distance between plants.
Often, this is related to the plant radius or size of the specific
plant species.

• Plant level: different plant species that are placed in one
group, because they have approximately the same plant spac-
ing. These groups are used in our framework to process mul-
tiple plant species simultaneously. The aim of creating this
division is to allow the generation of plant distributions that
contain plant species with large difference in plant spacing,
such as trees and flowers.



Figure 4: A visual overview of our approach starting with the various input data (top), such as landscape maps and statistical data [de Leeuw
et al. 1994]. Next, from this data we derive the plant distribution in the vegetation model (bottom left), where each point is associated to plant
species. Finally, from this plant distribution we derive the detailed 3D visualization model, suitable for rendering in the browser (bottom
right).

• Plant patterns or patchiness: the patterns of the plants of a cer-
tain plant species. Plants of a species that exhibit high patch-
iness grow close together, while plants of a species with low
patchiness grow scattered throughout the environment.

• Plant coverage: the amount of occupation of a certain plant
species in the environment.

Input A variety of input data is used at different stages. The fol-
lowing list summarizes all these inputs:

• Landscape maps: for calculating the plant distribution and 3D
visualization of the environment. During plant distribution
generation, landscape maps are used in combination with sta-
tistical data of each plant species. In addition, a height map
is used to represent the terrain. Landscape maps can be de-
rived from remote sensing sources, or they are generated by
ecological models.

• Plant statistical data: statistics about the coverage per plant
species, and about the patchiness of each plant species, used
for calculating the plant distribution. This statistical data is
often related to one or more landscape maps. For example,

we can have a height map with coverage statistics that are
based on the height of that map, so that certain plant species
can have higher coverage on high ground and lower coverage
on low ground.

• Plant models: one or more 3D models per plant species, used
to represent the various plant species at the highest LOD.

• Texture maps: used to represent the various LOD representa-
tions, and to decorate the rest of the scene.

• Other parameters: e.g. plant spacing for each plant species,
used during plant distribution generation.

Overview A global overview of our approach is depicted in Fig-
ure 4, visually representing the data pipeline, from input data,
through vegetation model, to visualization model. The input data
from existing remote sensing sources or ecological models is trans-
lated by the vegetation model to a point distribution where each in-
dividual point has been classified to correspond to one of the plant
types occurring in that environment. The visualization model trans-
lates that result to an interactive 3D visualization on the web.



Vegetation model The vegetation model consists of plant distri-
butions generated from landscape maps in combination with sta-
tistical data about coverage and patchiness of plant species. This
is achieved by dividing the model into two separate components:
plant position generation and plant species generation. The plant
position component generates all possible plant positions from the
input landscape maps. The plant species component generates plant
species for these points using the landscape maps, and the coverage
and patchiness statistical data.

Visualization model The visualization model organizes and
translates the generated plant distribution to a 3D representation
suited for interactive visualization over the web. This stage consists
of three phases: the offline phase, the pre-computation phase, and
the rendering phase. The offline phase occurs before the actual vi-
sualization and is done in advance, once and for all; it includes, for
example, the plant model generation. The pre-computation phase
structures the plant distribution from the vegetation model into a
LOD scheme of the terrain, organized in a quadtree structure. Fi-
nally, the rendering phase renders all the geometry and the various
LODs are blended together to obtain smooth transitions.

4 Vegetation Model

This section describes the vegetation model consisting of plant dis-
tributions generated from landscape maps in combination with sta-
tistical data about coverage and patchiness of plant species. Gener-
ation of this model is divided into two main stages: plant position
generation and plant species generation. Each of these stages will
be discussed separately, and in this discussion, we will assume that
the plant sizes of each plant species are equal. Towards the end of
the section, we introduce the concept of plant levels, which explains
how a plant distribution can be generated where plant species have
significant differences in plant sizes.

4.1 Plant position generation

The goal of this stage is to generate all possible plant locations in
the environment without assigning or creating bias towards any of
the plant species. The classification of these positions using the
coverage and patchiness statistics of each plant species is handled
at the next stage. To obtain all possible plant positions, we adopt
the PDD with Wang tiling technique used by Alsweis [Alsweis and
Deussen 2006] and Weier [Weier et al. 2013]. This technique makes
it possible to randomly generate points with a uniform distribution
where each point has a pre-defined minimal distance to each other:
similar to what can be observed in nature. We extended this tech-
nique to integrate plant positions of different sizes seamlessly with-
out creating a bias based on the size to any of the plant species. The
next paragraphs explain how these plant positions are generated.

Identify vegetated tiles The first step is to identify on an input
map of the landscape all the tiles that contain vegetation. This re-
quires the use of a map that provides information on the location of
vegetation, for example Normalized Difference Vegetation Index
(NDVI), biomass, or coverage maps. The next step is to thresh-
old the map given a user-defined threshold. Each tile with a value
higher than the threshold is marked as vegetated. The resulting out-
put is a binary grid map where for each tile, it is indicated whether
it contains vegetation or not. In Figure 5 an example of this step
is shown. An NDVI map given as input is shown on the left, and
on the right we show the resulting binary map after comparing each
value of the tiles in the grid with the pre-defined threshold.

Figure 5: NDVI map on which a threshold is used to obtain the
tiles that contain vegetation. Threshold is set at 0.08.

Generate plant positions from vegetated tiles Points are gen-
erated with the PDD and Wang corner tiling technique [Lagae
2007]. Wang corner tiling is used to avoid the corner problem that
appears in the regular Wang border tiling technique. A Wang tiling
is created using only the tiles on the map that are marked as vege-
tated. Next, each Wang tile is filled with a PDD [Onrust 2015].

The result of this process is a seamless point distribution where
each point has at least a user-defined minimum distance to other
points, and where only the vegetated tiles on the map contain points.
The minimum distance is determined based on the plant size of the
plant species. Figure 6 shows example output of plant positions
generated from a tile-based map with information about vegetation
presence.

Figure 6: Plant positions generated from the vegetated tile map
using the PDD with Wang tiling technique.

4.2 Plant species generation

The aim of the plant species generation stage is to classify the gen-
erated point distribution. The classification is based on fractal neu-
tral modeling techniques [Hargrove et al. 2002]. These techniques
are able to classify raster maps using coverage and patchiness statis-
tics for each plant species. As mentioned in Section 2, they are only
able to translate static coverage and patchiness data correctly. We
extended this method by integrating it with the generated point dis-
tribution, so that it is able to handle non-static statistical coverage
and patchiness data. The next paragraphs explain this classification
procedure step-by-step.

Assigning coverage and patchiness data The first step is to
assign each point a single coverage and patchiness value for each
plant species in the environment. Each point extracts the appropri-
ate value of each input map; for example, if the input is a height
map, each point is assigned a height value based on the location in
the map. The extracted values are translated to a coverage value by



using the corresponding statistical data; for example, statistical data
that contains information about the coverage of each plant species
for a certain range of height values.

It is possible that each point receives multiple coverage values for
the same plant species; for example, a height map may be aug-
mented with a soil map with related coverage statistics. This means
that each point receives for every plant species a coverage value
based on the height and a coverage value based on the soil. For
the remainder of the classification, these coverage values have to
be merged to a single value, so that each point has only a single
coverage value for each plant species. We obtain a single coverage
value by taking the minimum value, because we assume that the
minimum is the limiting growth factor for that plant species. The
same process is applied to extract the patchiness values. Patchiness
is represented with two values: roughness, and patch area, for the
size of the patterns.

Fractal generation The second step is to calculate a fractal value
for every plant species in each point. Fractal values are commonly
used to represent different kinds of patterns in nature [Hargrove
et al. 2002]. The advantage of fractal algorithms is that they calcu-
late a random value for a point that depends on the point location.
This makes it possible to generate similar random values for points
that are close to each other and dissimilar values for points that
are not. This way, we can represent plants that grow close to each
other and plants that are scattered throughout the environment. To
achieve this based on the patchiness input data, our fractal algo-
rithm must be able to translate the input roughness and patch area
values to an individual fractal value for each point for every plant
species. In addition, it is possible that the roughness or patch area
values are non-static values for every plant species, in contrast to
those used in neutral modeling techniques.

We use a modified fractal Brownian motion algorithm [Onrust
2015] that is able to generate a fractal value based on the input
patchiness data. Normally, fractal values are generated by adding
multiple values of Simplex noise with different weights. A base
frequency value is defined to determine the clustering of similar
Simplex noise values, where a lower value means higher clustering
and a higher value a lower clustering. Based on the frequency, the
amplitude value is used to generate a new frequency value that in
turn is used to calculate a new Simplex noise value that is to be
added to the previous calculated values.

The frequency and amplitude value are used to relate our patchi-
ness data: the roughness and patch area. The patch area is related
to the frequency, and the roughness is related to the amplitude. The
relation between the amplitude and the roughness is basically one-
to-one, because when a high roughness value results in a high am-
plitude value, the patterns become rougher. The reason for this is
that a higher amplitude increases the frequency value with a higher
value each iteration, and a higher frequency values means more dis-
perse patterns, which means rougher patterns. The relation between
the frequency and the patch area is more difficult and is not one-
to-one. Instead, the final fractal value is calculated by generating
and adding multiple fractal values with different input frequency
value. These input frequency values cover the whole range of patch
area values that are available for that plant species in that environ-
ment. The final value is calculated based on a weighted average
of all these calculated fractal values. The weight of each fractal
value depends on the similarity of the input patch area used for that
point. This process is required to support non-static patchiness data
within each plant species. Additional details of this algorithm with
examples can found elsewhere [Onrust 2015]. Figure 7 shows frac-
tal values that are generated for each point position and all plant
species. In this case there are four plant species, which means that

each point positions receives four fractal values equal to the number
of plant species. In addition, the example demonstrates the influ-
ence of different patchiness statistics on the patterns of each plant
species.

Figure 7: Fractal map for each of four plant species where each
point has received fractal values for each plant species based on
their patchiness data. Clearly, different kinds of patterns can be
identified among the plant species.

Classification The last step is to classify each point to a plant
species using the coverage and fractal values that were assigned to
each point in the previous steps. First, an individual threshold value
for each plant species is calculated for every point. The threshold
value of a point is found by taking an ordered list of the fractal val-
ues of all the points of that particular plant species, and then using
the coverage value of each point as percentile in that list. The frac-
tal value that matches with the position of the particular percentile
is the threshold value that is going be used for that point.

Now each point has, for every plant species, a separate threshold
that is based on the coverage values. Next, for each plant species
the fractal and threshold value of each point are compared. When
the fractal value is higher than the threshold value, the point is as-
signed the corresponding plant species. The result of this step is
that each plant species gets assigned a set of points matching the
coverage and patchiness input statistics. Figure 8 shows the vari-
ous points that are classified for each plant species with different
coverage statistics.

In this process, it may happen that certain points have been assigned
to multiple plant species. These conflicts are solved by assigning
the plant species that has the highest fractal value, which is deter-
mined separately for each conflicted point. Figure 9 shows the clas-
sified plant distribution with conflicts and the distribution where the
conflicts are solved.

The consequence of this can be that a certain plant species may end
up having less coverage than required. Therefore, the remaining
non-classified points are used to add additional coverage to such
plant species. Before the remaining points can be classified, it
is first necessary to update the coverage values so that each plant



Figure 8: The intermediate result in the classification process
where each plant species has been assigned to the available plant
positions separately to meet the coverage input statistics.

Figure 9: In the image on the left, points in red are the plant po-
sitions that have been assigned to multiple plant species. On the
image on the right these conflicts have been resolved by taking the
plant species with the highest fractal for a conflicted point.

species will meet its expected coverage in the final plant distribu-
tion. For each unclassified point, a new coverage value is calculated
by repeating the first step of the classification component. First, the
used coverage statistics are updated for each input map by generat-
ing several reference points that are uniformly distributed over the
complete range of values of the input map. Next, for each refer-
ence point, the total amount of coverage in the intermediate plant
distribution is calculated. This is compared to the expected cover-
age and, by subtracting the current coverage, we get the amount of
missing coverage per reference point. Per reference point, all cov-
erage values are normalized. Next, coverage values can be assigned
as usual, as in the first step of this stage.

The remaining points are assigned a plant species by repeating the
same classification process. The only difference is that the plant
species are processed one-by-one on the new remaining point set,
so no conflicts are generated. The main reason for this step is to
ensure a stopping point for the algorithm; otherwise, conflicts are
likely to be generated, and the process may need to be repeated.

The plant species with the highest standard deviation in their aver-
age patchiness statistics in comparison with the other plant species
is processed first. By the end of this process, a complete plant dis-
tribution is obtained as shown in Figure 10. The plant distribution
is generated following the input statistics about coverage and patch-
iness as can be seen in the plant distribution.

Figure 10: The final plant distribution of the vegetation model.

4.3 Multiple plant levels

In the previous sections, we assumed that all plant species have ap-
proximately the same plant size. In this section, we describe how
our vegetation model can also support plant species that have large
differences in plant size, such as trees and flowers, and their inter-
action. To achieve this, we introduce the concept of plant levels,
which basically divides the available plant species in the environ-
ment in different groups. The division is based on the plant size,
so plant species with approximately the same size are grouped to-
gether. The usage of multiple plant levels require a few extensions
in both the plant position generation and plant species generation
part, which we describe in this section.

Plant position generation Plant positions for multiple plant lev-
els are generated semi-separately from each other. This means that
we start by generating plant positions from the largest plant level
(the plant species that have the largest plant size) down to the small-
est plant level. A plant level that is processed takes into account the
points that are already placed on the map. Since each plant level
is (significantly) smaller than the previously processed plant level
(and thus the minimal spacing is smaller too), it is guaranteed that
the plant level being currently processed can generate plant posi-
tions. The only problem is now how to take into account the points
that are already generated by the previous plant levels. There are
two options: use for these points the minimal distance that they had
when they were placed, or use for these points the same minimal
distance as for the points generated in the current plant level. We
use the last option, because we do not know yet if a point generated
for a certain plant species will also be classified to one of the plant
species of that plant level. It is possible that during classification
a point is not assigned a plant species of that plant level. When
that happens, we do not want to waste this point but use it for the
processing of plant species of lower plant levels.

With this choice, integration will be seamless, while with the other
option the point would be isolated, because it would have a much
larger distance to the other points than required. Therefore, the



points generated with this algorithm are non-biased, because the
size does not influence the classification process, since it can be
changed dynamically without creating artifacts, like isolated points.
An example of this is shown in Figure 11, where a point distribution
is generated with two plant levels. Red is the larger plant level and
blue the smaller. As can be seen, the red points all have a larger
distance to each other than the blue points. Nevertheless, the blue
points have the same distance to the red points as they have to each
other.

Figure 11: PDD distribution with multiple plant levels. The red
points are plants with a larger plant spacing, the white point are
plants with a smaller plant spacing.

Plant species generation Again, the plant levels are processed
sequentially, starting with the largest plant level. Each plant level
uses the plant positions that are generated for its level as well as
the plant positions that have not been classified by the previously
processed plant levels. The same classification procedure as ex-
plained in the previous section is applied. After the classification
of a plant level, it is possible to apply neighborhood influences,
like in the work of Lane [Lane and Prusinkiewicz 2002], and Weier
[Weier et al. 2013]. These neighborhood effects influence the cov-
erage statistics of the neighboring non-classified points and makes
it possible to model influences of, for example, trees on the neigh-
boring smaller plants. An output example with neighboring effects
is shown in Figure 12 where the largest plant level (consisting of
the blue points) has a negative effect on the smaller plants of the
other plant level.

5 Visualization Model

This section explains how the generated plant distribution is orga-
nized and translated to a 3D representation that supports visualiza-
tion over the web at interactive frame rates. We start with explain-
ing the two most important concepts of the model: data organiza-
tion and transitions between the different LODs. Finally, we give
an overview of the complete rendering framework.

5.1 Data organization

For the purpose of visualization, the input plant distribution has to
be translated into a 3D representation. Due to the high density of
the distribution and the size of the complete environment, it is not
feasible to represent every plant as a detailed 3D model, because

Figure 12: In this example, the blue plant species belongs to the
largest plant level, while the other plant species belongs to the
smallest plant level. The blue plant species has a negative neigh-
boring effect on the other plant species.

that would result in a high geometry complexity, drastically drop-
ping the performance of the visualization. Neither would such a
detailed represention be necessary, as the amount of detail humans
see decreases with increasing distance. Therefore, to reduce the ge-
ometry, it is necessary to use different LODs (Levels of Detail) for
the plants. This means that a different representation for a plant,
other than its 3D model, has to be used, depending on the plant
location relative to the viewer.

For our framework, we adopt a level of detail scheme that divides
the plant distribution in three zones depending on the location of the
viewer. This scheme is similar to a LOD technique proposed for the
rendering of millions of grass blades [Boulanger et al. 2006]. The
first zone, closest to the viewer, consists of complete 3D models, to
better convey the impression of a richly detailed environment. In
the second zone, further away, plants are represented as billboards,
i.e. by flat images. To support very large scenes, we also included a
third zone, further towards the horizon, where plants are not repre-
sented individually, but as a color map applied on the terrain. The
switching between zones is dependent on the distance to the view-
ing point, and can be configured with a user-defined threshold.

To use this LOD scheme, we had to solve another problem: it is not
feasible to calculate the appropriate LOD representation for each
plant, as this would require every frame to iterate over many hun-
dreds of thousands of plants on the CPU. Therefore, neighboring
plants are grouped together and a single check is made for the whole
group. These groups are generated by dividing the plant distribution
and storing it in a quadtree structure [Deussen et al. 2002; Brune-
ton and Neyret 2012]. The whole distribution is divided in four
equal quads and each of these quads is again divided in four quads.
This continues up to a number of iterations defined in the frame-
work. The smallest quads are placed closest to the user and grad-
ually large blocks are used to fill the remaining space. The switch
between quads of different sizes depends on a distance threshold.

In each of these quads, the plants have the same LOD representa-
tion. Therefore, it is important that quads of different sizes are used
and that the smaller quads are placed close to the user, while the
larger quads are placed further away, to reduce the geometry com-
plexity. We do not want to place large quads close to the viewer,
because close to the user quads are filled with detailed plant mod-



els. As a result, a lot of geometry is placed outside the viewing
frustum (thus outside the screen), because a large quad close to the
user cannot normally fit within the complete screen. Thus, with this
quadtree organization, less geometry is processed that is located
outside the view of the user. We use the same quadtree structure
and organization for the terrain data.

5.2 Transition between LODs

Using different representations for the plant models at fixed dis-
tances from the viewer leads to a popping effect, noticed when plant
representations switch abruptly between consecutive LODs. This is
an unwanted artifact that can distract the viewer from the visual-
ization. Therefore, it is necessary to smooth the transition between
the different LODs. In our case, we have two transitions: between
plant models and billboards, and between billboards and the terrain
color map. We use alpha blending for the smoothing procedure for
each transition.

The first step to produce a smooth transition between the plant mod-
els and billboards is to create a small, configurable, overlapping
region where both representations for a plant coexist on the same
location. Next, for each position in this transition zone an alpha
value is calculated that indicates how much of that representation
contributes to the final blended result. This is calculated for both
plant models and billboards. As a result, the plant models in the
transition border have an alpha value near to one when closest to
the viewer, but gradually this value becomes smaller as the plant
models get closer to the other border of the transition zone. For the
billboards’ alpha values, the inverse happens. The calculated alphas
of both representations are now used to blend the representations.
This is achieved by generating two separate images with one only
containing the plant models and the other the billboards. During the
generation of these images the alpha values of both representations
are mapped to the alpha band of these images. Thus, every pixel
of both images has received an alpha value. Finally, by combining
both images, a new image is generated, for which the color of each
pixel is a combination of the corresponding colors of the billboard
image and plant model image.

The process for the transition between billboards and the terrain
is similar to that for the transition between plant models and bill-
boards. Again, an overlapping zone is created and for both bill-
boards and terrain, an alpha value is calculated. However, during
this transition we do not generate two separate images and com-
bine them. Instead, the calculated alpha values for the billboards
are used to represent the transparency of the billboards. This means
that billboards gradually fade out, because they become transpar-
ent. The alpha value of the terrain is used to blend the terrain LOD
color with the original terrain color. The result is that billboards
gradually fade out as the distance to the viewer increases and the
terrain gradually changes color to that similar to the billboards.

5.3 Rendering framework

In this subsection, we give an overview of the complete rendering
framework, that includes the offline, pre-computation and rendering
phases.

Offline phase The main task in the offline phase is the genera-
tion of the 3D plant models, which we perform using L-systems.
The main challenge of using L-systems is that they are often hard
to master, due to their lack of controllability [Smelik et al. 2014],
making it time-consuming to create L-system rules that generate
convincing plant models. Therefore, we developed a node-based
L-system method, which allows one to create L-system rules by

means of a sequence of nodes in a graph. Each of these nodes
represents an L-system operation. One of the main advantages of
using node-based systems is that the user can follow the content
generation flow between the various L-system rules and other rel-
evant data [Silva et al. 2013]. For this, we used the procedural
engine Sceelix [Sceelix 2017], which implements the concept of
Procedural Content Graphs [Silva et al. 2015], benefiting from its
numerous features, for example, that parameters for each node op-
eration can be dynamically set and can be made dependent on one
another throughout the L-system.

Pre-computation phase The first task in the pre-computation
phase is to load all the data necessary for the visualization, such
as 3D plant models, textures for billboards, a height map to gener-
ate the terrain, and the plant locations derived from the plant dis-
tribution. These plant locations, organized in a quadtree structure,
are used to place both plant models and billboards at correct po-
sitions. In order to minimize the ‘clone effect’ of many similar
plant models and billboards used in the visualization, each position
also contains some additional information about the rotation, scale,
and color variance of the plant, aimed at slightly randomizing its
appearance. The rotation and scale factor are a random uniform
number; the color factor also depends on the scale factor, meaning
in practice that the smaller the plant, the darker its color.

The terrain mesh is calculated from the imported height map where
each vertex corresponds to the height value of a tile from the height
raster map. The triangulation of these vertices is based on using an
additional terrain height map that has double the resolution of the
original height map, which is obtained by using bi-cubic interpo-
lation. We do this interpolation outside of the framework and just
import it along with the original height map. This additional map is
necessary, because we need to decide which triangles are to be gen-
erated for each quad. Since we derive the terrain from a height map,
the obtained vertices are always laying in strict rows and columns
that form quad, each of which can be halved into two possible trian-
gle pairs. The decision on which triangle pair to generate depends
on the additional reference height point in the middle obtained from
the height map with the double resolution: for each triangle pair, the
height of the middle point is calculated based on its two triangles;
the triangle pair with the smallest height difference to that reference
point is chosen.

Another important task during the pre-computation phase for the
terrain mesh is to calculate the colors of the color map LOD rep-
resentation for the terrain. As explained earlier in this section, the
color map LOD representation is not represented as separate in-
stances like in the case of the plant models and billboards, but is a
color on the terrain based on the color of the represented plant. This
is calculated by computing for each vertex in the terrain mesh the
number of plants and plant species that are within a certain distance
from it. The dominant plant species, which has the largest number
of plants closest to the specified vertex, is then chosen for that ver-
tex. Finally, the color that is assigned to the vertex is obtained from
a separate texture map, which defines the terrain color map for each
plant species.

Rendering phase In the rendering phase, the actual visualization
of the plants, terrain, water and background is performed. For each
frame a check is made to decide which LOD representation should
be rendered at a certain plant position using the quadtree structure.
The first task in the rendering phase is to go through the quadtree of
the plant positions and terrain, determine which quads are visible
and choose which LOD representation they should have. The next
task is to render the visible objects and selected representation to
the screen. This task is divided into three steps, aimed at achieving



a smooth transition between the plant models and billboards. The
first two steps pertain the rendering of the two separate images us-
ing alpha blending, the third step performs their combination. The
first image is rendered with the plant models and the underlying ter-
rain and water. The second image is rendered with the billboards
and the underlying terrain, water and also the background.

The visualization is enriched with shadows to obtain a more con-
vincing scenery. Shadows are computed for the plant model ob-
jects and terrain by using the percentage-closer soft shadow map-
ping technique [Fernando 2005]. We did not compute any shadows
for the billboards, because that would drastically increase the com-
plexity of the visualization. Rather, shadows on the billboards are
integrated into the texture of the specific plant species. This re-
quires no additional computation during the rendering phase. Fur-
thermore, in order to introduce additional details on the mesh, both
the terrain and water are enriched with normal maps, and they use
the environment map of the skybox to create some reflection as
well.

6 Implementation

The implementation of our framework involves several modules.
The vegetation model is implemented with Python scripts and its
output is stored in a text file that is used as input for the visualiza-
tion model. The visualization model was implemented with We-
bGL, because it is a cross-platform free web standard that gives
access to the low-level 3D graphics API based on OpenGL ES 2.0.
In addition, it does not require installing any plug-ins, because it is
implemented right into the browser and all major browsers support
WebGL. For the actual implementation, we used an existing We-
bGL framework three.js [Cabello 2010]. In the remainder of this
section, we will focus on the implementation details for the We-
bGL rendering.

Plant models Each plant species is represented by one or more
3D plant models. The geometry of these models is stored on the
GPU by using VBOs (Vertex Buffer Objects). We only store a sin-
gle instance of each unique model to reduce the memory footprint.
This also means that we do not use a large variety of models for
each plant species, because that would result in a large number of
models that have to be stored in the GPU. Since, we only store one
unique instance of each model, we need to store additional data on
the GPU to be able to place the different models across the scene.
Additional VBOs linked to each plant model are created that con-
tain information about position, scale, rotation, and color. During
rendering, each model goes through its linked lists and uses this
information to place itself in the environment, a process called ge-
ometry instancing. The creation of the various buffers is handled by
the three.js framework, but the geometry instancing process was not
yet available at the time of implementation. Therefore, this was im-
plemented in the three.js framework by using the WebGL extension
ANGLE instanced arrays with its corresponding functions. (At the
time of writing, the instancing process has also become available in
the official three.js framework build.)

Billboards Efficient and effective methods for generating bill-
boards use geometry shaders so that only a single vertex has to be
sent to the GPU, which is then transformed in the geometry shader
to various planes [Bruneton and Neyret 2012]. However, currently,
geometry shaders are not available in WebGL. There are two alter-
natives: (i) to create the various planes to represent the billboards
beforehand, which means that additional geometry has to be send
to the GPU and processed in the vertex shader; and (ii) to send
a single vertex to the GPU and vertex shader and use the GL Point

command in combination with the Gl PointSize command available
in WebGL. This means that the vertex is directly written as a pixel
on the screen based on the provided position with a certain size (e.g.
number of pixels) defined with Gl PointSize. The advantage of this
method is that the amount of geometry sent to the GPU is still as
low as possible and the billboards always face the camera directly,
since they are written directly on the screen as a quad. The disad-
vantage is that some controllability is lost regarding the shape of
the billboards because, with this method, billboards are always rep-
resented as perfect squares on which a texture is placed. In certain
cases, it is possible that the original texture of the billboard is not a
perfect square, and the texture has to add additional transparent pix-
els to the original texture to become a perfect square. This means
that potentially a lot of unused transparent pixels are processed in
the fragment shader.

We decided to use the second alternative, because we wanted to
limit as much as possible the amount of geometry that is sent to the
GPU, to boost the frame rate of the visualization. One important
step of this implementation of the billboards was to define the size
(in pixels) of each billboard on the screen, so that billboards that are
further away from the viewer must have a size that is smaller than
the billboards nearby.

Finally, each point representing a billboard has a list attached with
information about color variation, plant species, texture variation,
and position. The plant species and texture variation information
is necessary to select the correct billboard texture from the com-
plete texture map. Each plant species has multiple billboard tex-
tures based on their plant models obtained from different viewing
angles, which are defined using the texture variation information.
One of the textures is chosen for each position and during visual-
ization the texture of the billboards at a certain position does not
change. The main reason for this is that the use of a single tex-
ture at each position is much more efficient than switching between
various textures during rendering.

Terrain and water The terrain geometry is put in VBOs and
stored on the GPU. The same applies to the water geometry, which
is basically represented as one big plane. The shaders that are used
to render both the water and terrain use various common techniques
such as texture blending, normal and environmental mapping. Tex-
tures are blended based on, for example, the height of terrain to
create smooth transitions between the different types of terrain (e.g.
sand and grass). Normal maps are used to introduce additional de-
tails on the terrain. Environmental mapping is mainly used for wa-
ter rendering to create reflection on the water.

LOD transitions The implementation of the transitions between
the LODs was achieved by using FBOs (Frame Buffer Objects).
FBOs make it possible to write and store results instead of rendering
directly to the screen. A separate FBO is used to render the plant
models and their surroundings and another FBO is used to render
the billboards and surroundings. The textures from both FBOs are
blended together on the GPU by using a shader, as described in the
previous section. This result can then be sent to the screen, or it can
be stored in another FBO to apply any subsequent effects.

A smooth transition can only be achieved when regions of the bill-
boards and plant models overlap. During the blending of the two
images the shader does not know whether it is blending plants, ter-
rain or water. Therefore, a small overlap must also be created of the
terrain and water. This results in the terrain and water being partly
rendered twice.



Shadows We only compute shadows that are cast by the plant
models on the plant models themselves and on the terrain. Shad-
ows are computed using the percentage-closer soft shadow mapping
technique, which is supported by the three.js framework. These
shadows are computed by first generating a depth texture of the
scene that is stored in an FBO. The depth texture is generated based
on the same geometry instancing technique described above.

Finally, shadows are simply approximated for the terrain LOD on
which the billboards are placed. Each vertex in the terrain shader
has information about the number of plants that are in the neighbor-
hood, and in the fragment shader this number is used to decide on
the darkness of the color for that fragment, to represent shadows.

7 Results and Discussion

In this section, we present some results generated by our frame-
work, and discuss its rendering performance. Finally, we discuss
the validation of these results and of the framework as a whole.

Input To test our framework, we generated results for two differ-
ent regions: (i) an existing area called the Paulinapolder (247500
m2), a salt marsh located in the South of the Netherlands, and (ii) a
fictive area (2025 m2) based on the output of an ecological model
describing a (future) salt marsh. For both areas we use various land-
scape maps and statistical data about coverage and patchiness of
plants as input to generate plant distributions with the vegetation
model. Since the Paulinapolder is an existing area, we can use
landscape maps derived from existing geographical datasets. We
have used two types of landscape maps: a height map and an NDVI
map. In addition, we used coverage and patchiness statistics that
are based on the height of the environment. The NDVI map is used
to determine the presence of vegetation in the environment. In total,
we consider seven different plant species as input.

The ecological model area is based on an ecological model devel-
oped by Schwarz [Schwarz 2014]. This model generates landscape
maps containing information about the height of the environment
and a coverage map for a single plant species. The generation of a
single map by the ecological model does not necessarily mean that
only one plant species grows there. After discussion with the ecol-
ogists, we decided to add two additional plant species as input. To
be able to process these additional plant species, we use the same
coverage and patchiness statistics based on height as used for the
Paulinapolder. The coverage map is not directly used as a coverage
statistic for any plant species. Instead, it is used to determine where
vegetation is located.

Results Based on the provided input data, we generated the plant
distribution of the vegetation model for each area, and translated
this plant distribution to the corresponding visualization model.
The results of the vegetation model are shown in Figure 13 for
the Paulinapolder, and in Figure 14 for the ecological model area.
Figures 15 and 16 present a global visualization of both environ-
ments, respectively. Figure 17 captures the seamless transition
between the different LODs, and Figure 18 provides a close-up
view of plant models. More results, including a video and the
interactive web visualization itself, are available online (https:
//graphics.tudelft.nl/benny-onrust).

Performance We focus on the performance of the visualization
model, as one of our main aims was to achieve interactive frame
rates on a web browser. The vegetation model is computed offline
before the actual rendering and therefore does not influence inter-
activity nor rendering performance.

Figure 13: Result of the vegetation model for the Paulinapolder
where yellow is Spartina, green is Elymus, red is Atriplex, blue is
Aster, teal is Artemisia, pink is Limonium, and white is Salicornia.

Figure 14: Result of the vegetation model for the ecological model
area where green is Spartina, red is Salicornia, and yellow is Aster.

Figure 15: Global overview of the virtual Paulinapolder.

Figure 16: Global overview of the virtual ecological model area.

The plant distribution generated for the Paulinapolder area has
around 700.000 plants. A typical frame of this environment con-
sists of up to 2,7 million triangles, representing the plant models,
terrain, water, and background. The rendering times for a typical



Figure 17: Transition of the various LODs in the virtual Pauli-
napolder. Green are the regular plant models, red are the bill-
boards, blue is the terrain color map.

Figure 18: Close-up view of the plant models in the virtual Pauli-
napolder.

Paulinapolder scene were 7.3ms, of which over 60% was spent on
the plant models and their shadows, and around 30% on the bill-
boards. For the ecological model area, the plant distribution gener-
ated consists of around 150.000 plants, and a typical frame consists
of around 0,4 million triangles in total. The rendering times for
a typical scene of the ecological model are were 5.5ms, of which
around 40% was spent on the plant models and their shadows, and
over 40% on the billboards.

We measured these rendering times on an Alienware Aurora R4
with an Intel Core i7-4820K CPU @3.70GHz, 16GB RAM and
NVIDIA GeForce GTX 780, using the Chrome browser v43.0. Ma-
chines with other GPUs offered results in the same order of magni-
tude, thus always providing frame rates above 50 fps.

Validation We combine the validation of the Paulinapolder and
the ecological model area, because the comments on both areas
are generally applicable. We performed two types of validation:
(i) a statistical validation of the plant distribution, which calculates
whether the input statistical data matches the statistics derived from
the generated plant distribution; and (ii) an expert validation, which
was performed in collaboration with ecologists during the develop-
ment of this framework.

For the statistical validation on the generated plant distribution, we
created several artificial datasets to investigate certain special cases
in the input data. First, we compared the input coverage statistics
with the coverage statistics of the generated plant distributions. We
did this on a global level, where we calculate a single average cov-
erage value for each plant species and where we compare it with the
average coverage value of each plant species in the generated plant
distribution. In addition, we performed the same comparison on a

local level where we, for example, calculate the average coverage
at certain height points for plant species whose coverage is depen-
dent on height. The exact figures of the various comparisons can
be found elsewhere [Onrust 2015]. This validation showed that the
input coverage data matches the coverage values of the generated
plant distribution both on a global and on a local level.

We also validated our results throughout the development of the
framework, by having ecologists visually judge the plant distribu-
tions and visualization models obtained. This was done to investi-
gate whether the generated results were convincing and if the data
was behaving properly. In general, the ecologists found that the
vegetation model was able to convincingly translate ecological data
to a plant distribution for both the Paulinapolder and ecological
model area. In addition, plausible patterns in the plant distribu-
tions were clearly reproduced in the visualization model: they were
deemed convincing and different patterns could be clearly identi-
fied across the various plant species. Figure 15 shows several such
different patterns, ranging from very large patches of plants that
grow closely together, to small random patterns of plants that grow
scattered throughout the area.

The visualizations themselves were deemed convincing by ecolo-
gists, who judged them as proper representations of salt marshes.
This was especially the case for the local/middle distance view
where the plant models are visible. The far view, i.e. the region
where plants are represented as billboards or as a color map on the
terrain, was considered less convincing than the local/middle view.
One of the remarks was that small gaps started to appear in the plant
distribution at a certain distance range. Another remark was that the
color variation among the various plant species was not entirely sat-
isfactory. However, in this view, the various patterns for different
plant species are clearly visible. The transitions between the differ-
ent LODs were, in most cases, not noticeable by the ecologists, or
they were at least not considered distracting.

Discussion The aim of this research was to generate an ecologi-
cally sound plant distribution from landscape maps and ecological
statistical data, and to translate it to a convincing interactive 3D
visualization over the web. Also, the plant distribution generation
solution should be generic, in the sense that it should support differ-
ent plant species, patterns, and input data. Validation showed that
these requirements were well met in general. Using statistical and
expert validation, we showed that input ecological maps and statis-
tics were translated to a plant distribution with convincing patterns.
Expert validation and performance measurements also indicate that
we were able create convincing real-time 3D visualizations. Based
on the validation and implementation, we also found several limi-
tations in the present framework, which we discuss now.

Validation of the vegetation model showed that the coverage statis-
tics were translated correctly to the generated plant distribution and
that the resulting patterns were convincing. However, we did not
validate whether the input patchiness statistics also match the out-
put statistics, because the regular methods to calculate patchiness
statistics assume that the patterns are in a grid format and not in a
point format. Therefore, it should still be investigated how to per-
form this kind of measurements on point sets. In any case, expert
validation indicates that the patterns were visually convincing.

The main limitation of the visualization model lies in the repre-
sentation of the billboards. Billboards are represented as a single
point and they are rendered as several pixels on the screen to maxi-
mize rendering performance. As a result, billboards face the camera
from every viewing angle. When the billboards are viewed globally
from a high, bird-eye view, the generated billboards often look less
convincing, because the same texture that is normally used to view
the billboards horizontally is then being used to view the billboards



vertically. In the current visualization, this is often not very notice-
able, because all the plants are relatively small and have relatively
uniform color distribution, but when the plants become larger and
there are more differences among the plants, this will be more no-
ticeable. In addition, it is difficult to automatically set the correct
size for each billboard, because size is measured in number of pix-
els. This gave the problem that certain billboard objects have the
correct size in local view, but from certain distances in global view,
the billboards become too small and this creates small gaps in the
distribution. An example of this is shown in Figure 19.

Figure 19: Gaps appear in the plant distribution when viewing the
visualization in global view.

Shadows of the billboards are approximated by using baked-in
shadows in the texture, and shadows on the terrain are approximated
by turning the terrain color slightly darker. This shadow computa-
tion does not use the actual shape of the plants. In Figure 20, we
can see that the billboards objects have different ”shadows” on the
ground than the plant models close to the viewer, though it is of-
ten difficult to notice these differences and change in shadows. The
shadows cast by billboards could be improved by (partly) replac-
ing the current billboards with volumetric billboards [Decaudin and
Neyret 2009]. These are able to generate realistic shadows and re-
alistic different viewing angles. However, their efficient implemen-
tation requires, for example, the use of a geometry shader, which
is not yet available in WebGL. Additional research into this topic
could greatly enhance the realism of 3D plant distributions, because
it would allow for the generation of more convincing billboards,
which are the weakest point in the current visualization model with
respect to a convincing appearance.

Figure 20: The plant models (green) cast different shadows than
the billboards (red). The shape of the plant can be seen in the shad-
ows cast by the plant models (see the shadows pointed by the black
arrow), which is not visible in the shadows (see the blue arrow) that
have been approximated for the billboards.

Another disadvantage is the shadow computation technique for the
plant model objects in the visualization. Currently, we use the per-
centage closer shadow mapping technique that was directly avail-

able in three.js. The computed shadows are realistic enough for our
purposes, but performance-wise it could be improved by for ex-
ample using a variance shadow mapping technique [Donnelly and
Lauritzen 2006].

Finally, the alpha blending transition between the plant models and
billboards is in most cases smooth and there are very limited ghost-
ing or popping effects. When there is a large difference in size be-
tween the plants in the visualization, the transition is less smooth for
the larger plants. The reason for this is that the transition thresholds
are the same for all plant model objects. This could be improved
by varying the threshold per plant species. The larger plant species
could switch farther to a billboard representation.

8 Conclusion

We developed a new method for the generation of accurate plant
distributions from landscape maps and statistical data, and for the
visualization of the resulting natural environments in an interactive
3D web environment. We presented an implemented framework
that addresses the main challenges of creating such plant distribu-
tion, and of generating and rendering a 3D visualization model that
can be browsed at interactive frame rates. For the plant distribu-
tion generation, we presented a new model that combines existing
procedural plant placement techniques using Poisson Disk Distribu-
tion with Wang tiling technique in combination with concepts from
neutral modeling techniques. In addition, a visually convincing in-
teractive 3D web visualization was created by using, among oth-
ers, LOD, shadow mapping, and geometry instancing techniques.
We tested our system by generating plant distributions for two case
studies, using landscape maps and ecological statistical data. Ecol-
ogists validated our results and found them to be most convincing.
Statistics showed that our framework is able to translate correctly
the input coverage statistics to the output plant distribution.

Our work stands out from previous research, because (i) our plant
distribution generation is fully data-driven, and (ii) we demon-
strated with our interactive visualization WebGL prototype the pos-
sibilities of rendering over the web very large natural environments
with a high density and variety of plants.

In the future, we would like to investigate whether other represen-
tations of billboards improve the visualization at different viewing
angles, especially in global view. In addition, we would like to
investigate more local and global illumination models to improve
performance and realism of lights and shadows in the visualiza-
tion. To improve the usability of this method, it might be preferable
to combine the vegetation and visualization model in one web ap-
plication, so that the user can easily change the plant distribution
in the 3D visualization without having to do offline computations.
Furthermore, it might be interesting to extend the framework by
including the fauna of the environment, for improved realism [Ko-
modakis et al. 2005]. Finally, so far our framework has been tested
on environments with only grass-like plant species; we would like
to do additional testing for other more forest-like scenes to assess
the quality and performance of its results.

Acknowledgements

We would like to thank Alex Kolpa for helping with the implemen-
tation of the L-system plugin in Sceelix.

References

ALSWEIS, M., AND DEUSSEN, O. 2006. Wang-tiles for the sim-
ulation and visualization of plant competition. In Advances in



Computer Graphics, vol. 4035 of Lecture Notes in Computer
Science. Springer, 1–11.

BOULANGER, K., PATTANAIK, S., AND BOUATOUCH, K. 2006.
Rendering grass terrains in real-time with dynamic lighting. In
ACM SIGGRAPH 2006 Sketches.

BRUNETON, E., AND NEYRET, F. 2012. Real-time realistic ren-
dering and lighting of forests. Computer Graphics Forum 31,
2pt1, 373–382.

CABELLO, R., 2010. three.js-javascript 3D library.

CHNG, E. 2010. An artificial life-based vegetation modelling ap-
proach for biodiversity research. Green Technologies: Concepts,
Methodologies, Tools and Applications, 417.

DE LEEUW, J., APON, L. P., HERMAN, P. M., DE MUNCK, W.,
AND BEEFTINK, W. G. 1994. The response of salt marsh veg-
etation to tidal reduction caused by the Oosterschelde storm-
surge barrier. Springer.

DE VRIEND, H. J., VAN KONINGSVELD, M., AARNINKHOF,
S. G., DE VRIES, M. B., AND BAPTIST, M. J. 2014. Sustain-
able hydraulic engineering through building with nature. Journal
of Hydro-environment Research.

DECAUDIN, P., AND NEYRET, F. 2009. Volumetric billboards.
Computer Graphics Forum 28, 8, 2079–2089.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MĚCH, R.,
PHARR, M., AND PRUSINKIEWICZ, P. 1998. Realistic mod-
eling and rendering of plant ecosystems. In Proceedings of the
25th annual conference on Computer Graphics and Interactive
techniques, ACM, 275–286.

DEUSSEN, O., COLDITZ, C., STAMMINGER, M., AND DRET-
TAKIS, G. 2002. Interactive visualization of complex plant
ecosystems. In IEEE, 219–226.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. In Proceedings of the 2006 symposium on Interactive 3D
graphics and games, ACM, 161–165.

FAN, Z., LI, H., HILLESLAND, K., AND SHENG, B. 2015. Simu-
lation and rendering for millions of grass blades. In Proceedings
of the 19th Symposium on Interactive 3D Graphics and Games,
ACM, 55–60.

FANINI, B., CALORI, L., FERDANI, D., AND PESCARIN, S.
2011. Interactive 3D landscapes on line. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences 3816, 453–459.

FERNANDO, R. 2005. Percentage-closer soft shadows. In ACM
SIGGRAPH 2005 Sketches, ACM, 35.

HAMMES, J. 2001. Modeling of ecosystems as a data source for
real-time terrain rendering. In Digital Earth Moving. Springer,
98–111.

HARGROVE, W. W., HOFFMAN, F. M., AND SCHWARTZ, P. M.
2002. A fractal landscape realizer for generating synthetic maps.
Conservation Ecology 6, 1, 2.

HERZIG, P., ENGLERT, M., WAGNER, S., JUNG, Y., AND BOCK-
HOLT, U. 2013. X3d-earthbrowser: visualize our earth in your
web browser. In Proceedings of the 18th International Confer-
ence on 3D Web Technology, ACM, 139–142.

KOMODAKIS, N., PANAGIOTAKIS, C., AND TZIRITAS, G. 2005.
3D visual reconstruction of large scale natural sites and their

fauna. Signal Processing: Image Communication 20, 9, 869–
890.

LAGAE, A. 2007. Tile-Based Methods in Computer Graphics. PhD
thesis, Katholieke Universiteit Leuven.

LANE, B., AND PRUSINKIEWICZ, P. 2002. Generating spatial dis-
tributions for multilevel models of plant communities. In Pro-
ceedings of Graphics Interface, 69–80.

MOLOFSKY, J., AND BEVER, J. D. 2004. A new kind of ecology?
BioScience 54, 5, 440–446.

ONRUST, B., BIDARRA, R., ROOSEBOOM, R., AND VAN DE

KOPPEL, J. 2015. Procedural generation and interactive web vi-
sualization of natural environments. In Proceedings of the 20th
International Conference on 3D Web Technology, ACM, 133–
141.

ONRUST, B. 2015. Automatic generation of plant distribu-
tions for existing and future natural environments using spatial
data. Master’s thesis, Delft University of Technology, https:
//graphics.tudelft.nl/benny-onrust/.

PETTIT, C. J., RAYMOND, C. M., BRYAN, B. A., AND LEWIS,
H. 2011. Identifying strengths and weaknesses of landscape
visualisation for effective communication of future alternatives.
Landscape and Urban Planning 100, 3, 231–241.

RIETKERK, M., AND VAN DE KOPPEL, J. 2008. Regular pattern
formation in real ecosystems. Trends in Ecology & Evolution 23,
3, 169–175.

SAURA, S., AND MARTÍNEZ-MILLÁN, J. 2000. Landscape pat-
terns simulation with a modified random clusters method. Land-
scape ecology 15, 7, 661–678.

SCEELIX, 2017. The 3D scenes procedural engine. www.
sceelix.com. Accessed: 1 April 2017.

SCHWARZ, C. 2014. Implications of biogeomorphic feedbacks on
tidal landscape development. PhD thesis, Radboud University
Nijmegen.

SILVA, P., MÜLLER, P., BIDARRA, R., AND COELHO, A. 2013.
Node-based shape grammar representation and editing. In Pro-
ceedings of PCG 2013 - Workshop on Procedural Content Gen-
eration for Games, co-located with the Eigth International Con-
ference on the Foundations of Digital Games.

SILVA, P., EISEMANN, E., BIDARRA, R., AND COELHO, A.
2015. Procedural content graphs for urban modeling. Inter-
national Journal of Computer Games Technology 2015, 808904
(june).

SMELIK, R. M., TUTENEL, T., BIDARRA, R., AND BENES, B.
2014. A survey on procedural modeling for virtual worlds. Com-
puter Graphics Forum 33, 6, 31–50. doi: 10.1111/cgf.12276.

TEMMERMAN, S., BOUMA, T., VAN DE KOPPEL, J., VAN DER

WAL, D., DE VRIES, M., AND HERMAN, P. 2007. Vegetation
causes channel erosion in a tidal landscape. Geology 35, 7, 631–
634.

VAN LAMMEREN, R., HOUTKAMP, J., COLIJN, S., HILFERINK,
M., AND BOUWMAN, A. 2010. Affective appraisal of 3D land
use visualization. Computers, environment and urban systems
34, 6, 465–475.

WEIER, M., HINKENJANN, A., DEMME, G., AND SLUSALLEK,
P. 2013. Generating and rendering large scale tiled plant popu-
lations. Journal of Virtual Reality and Broadcasting 10, 1.


