Mobile adaptive procedural content generation

Ricardo Lopes Ken Hilf Luke Jayapalan
Computer Graphics and Entertainment Technology Entertainment Technology
Visualization Group Center Center

Delft University of Technology
The Netherlands
r.lopes@tudelft.nl

Carnegie Mellon University
Pittsburgh, PA, USA
kenhilf@gmail.com

Carnegie Mellon University
. Pittsburgh, PA, USA
ljayapal@alumni.cmu.edu

Rafael Bidarra
Computer Graphics and
Visualization Group
Delft University of Technology
The Netherlands
r.bidarra@tudelft.nl

ABSTRACT

The nature of most modern mobile games is different from
that of most computer/console games, which are typically
targeted at casual gamers and are played in a wide vari-
ety of space, time and device contexts. We argue that this
feature of mobile games naturally fits with adaptive proce-
dural content generation (PCG). In this paper, we propose
the integration of two PCG-based approaches (experience-
driven and context-driven PCQG) to support the generation
of adaptive mobile game levels. We present and discuss the
implementation of our approach in an existing game, 7’s
Wild Ride. Gameplay semantics and player modeling are
used to steer a level generator, featuring a time-dependent
dynamic difficulty adjustment mechanism. From our two
user studies, we conclude that (i) context-driven levels are
preferable over traditional ones, and (ii) the game can adapt
to different player types, keeping its gameplay balanced and
player satisfaction.

Categories and Subject Descriptors

1.2.4 [Computing Methodologies]: Knowledge Represen-
tation Formalisms and Methods; K.8.0 [Personal Comput-
ing]: Games

General Terms
Algorithms, Design

Keywords

adaptive games, procedural content generation, semantics

1. INTRODUCTION

The nature of most modern mobile games, i.e. games
played in smartphones and tablets, is different from that
of most computer/console games. Mobile gaming is canni-
balizing the casual gamer, by bringing more demographics
into the marketplace, along with their cheaper, less powerful
hardware [2], which are used in a wide variety of environ-
ments and conditions. By observing the most downloaded
games in mobile marketplaces like Apple’s App Store and
Google Play, we can confirm that a vast majority falls within
the definition of a casual game [9]: ”inexpensive to produce,
straightforward in concept, easy to learn, and simple to play”.

With their casual nature, these mobile games need to
appeal to wider audiences. Accommodating player character-
istics, styles or preferences for such a variety of demographics
is therefore a bigger concern. The usual solution for cater-
ing for casual players, i.e. shorter, simpler gameplay, tends
to alienate some more demanding players, typically from
the hardcore audience. Furthermore, this type of games are
played in a wide variety of environments, conditions and time
availability, dependent on the player context. Again, the
usual approach to accommodate this diversity is to enhance
the casual aspect of these games: keep them straightforward,
simple and short.

For this type of games, attracting and retaining all player
types, while providing meaningful gameplay in a wide variety
of contexts, raises additional challenges.

1.1 The case for mobile adaptive PCG

Adaptive games have the potential to be more personal,
by adjusting their content or mechanics to better serve in-
dividual player needs [7, 16]. Ideally, adaptive games can
accommodate for all types of players (casual or not) and their
wide variety of commitment, skills or styles, i.e. player expe-
rience. Additionally, adaptive games have the potential for
being meaningfully responsive to a varyety of player-related
contexts. For example, for a player waiting at an airport for
a specific time period, an adaptive game could adjust the
overall game duration to fit that time-constrained context.

Currently, standard approaches for supporting such adap-
tive games are increasingly based on procedural content
generation (PCG) [7, 16]. We argue that this adaptive PCG

can tie in very naturally with the casual mobile gaming
paradigm (henceforth, simply referred to as mobile games),
where large ranges of player commitment and circumstances
should be considered. To accommodate this wide variety
of player experience and player-related contexts in mobile
games, we envision two different modalities of adaptive PCG:
experience-driven and context-driven.

1.2 Experience and context-driven PCG

Our research goal is to investigate the integration of expe-
rience and context-driven PCG in the mobile games domain,
and to assess its potential value®.

In experience-driven PCG, generative methods are respon-
sive to some sort of player-generated gameplay-specific data.
For this paper, we propose a semantics-based experience-
driven PCG approach where online content generation is
used to dynamically adjust the game’s difficulty. This dy-
namic adjustment of game difficulty (DDA) to the personal
skill level of a player has the potential to attract and retain
a larger variety of players.

We define context-driven PCG as the use of generative
methods to yield content that fits some player-related context.
The demands a given context puts on that content generation
are extrinsic to the gameplay, and respond to that player’s
concrete situation (e.g. available time, weather, location,
health,...) Regardless of whether a context is explicitly input
or implicitly derived, the neat effect will be a direct steering
of the generator (even if players are unaware of it). Moreover,
such demands of context-driven PCG can stretch deeper and
more meaningful than players might anticipate. For example,
for the airport time-dependent context mentioned above,
setting a play duration constraint should not only determine
the time to play, but also smoothly scale the full gameplay
experience under that constraint. We envision that this form
of adaptive PCG provides a powerful basis to accommodate
for a variety of player-related contexts. In this research, we
investigated a first example of context-driven PCG: level
generation for an explicitly set play duration constraint.

Our case study in this paper is a first step towards demon-
strating that experience-driven and context-driven generation
fit well together to support an adaptive mobile game expe-
rience. For this, we developed a game that allows you to
specify how much available time you have to play; a level is
then generated online, fitting both: (i) that time-constraint
(context-driven PCG), and (ii) your measured skill level
(experience-driven PCG). For this, gameplay semantics, i.e.
gameplay information about the world and its objects, is
used to support and steer the procedural content generator.

The above mentioned demands of mobile gaming (large va-
riety of players, skills and contexts) cannot be met anymore
by simply using handmade static levels. We believe that both
experience-driven and context-driven game levels provide a
much better and richer alternative, and that our adaptive
PCG proposal is a valuable contribution to solve this mo-
bile gaming challenge. Recent mobile games like Canabalt
(2009) or Robot Unicorn Attack (2010) confirm this trend,
by already incorporating a simple form of experience-driven
PCG. Game content is there generated on the fly, based on
player performance, but only sampled at the single instant
generation is executed [6]. Our research, on the other hand,
uses collected player performance (plus time) progression,

'a video on this research can be found at

http://graphics.tudelft.nl/ rval

over the whole game session, to steer generation.

This paper is structured as follows: in Section 2, we survey
existing related work. Section 3 outlines the methods behind
our case study’s generator. In Section 4, we explain our
dynamic difficulty adjustment method and player modeling
approach. Section 5 presents and discusses our results (play
testing), preceding our conclusions in Section 6.

2. RELATED WORK

This sections analyzes previous work related to our research
goals and methods.

2.1 Dynamic difficulty adjustment

When supported by PCG, DDA can be considered a type
of experience-driven PCG. Some previous research has been
done on DDA, either PCG-based or not. Among others, non-
PCG DDA approaches have been used to influence players
health or ammo in a first-person shooter, depending on their
individual performance, through probabilistic models [3],
assign dynamic scripts to control NPC behavior, in response
to weights associated with the player behavior [13], evolve
opponent Als in real-time strategy games, through neural-
evolution methods [10] and adapt intelligent agents behavior
to fit the players skills, using reinforcement learning [1].

For our case, PCG-based DDA is more interesting and ap-
plicable. Shaker et al. [11] generate platform levels for Super
Mario Bros, using grammatical evolution. The grammati-
cal evolutionary algorithm uses models of collected player
experiences as the fitness functions to search through the
generative space. The authors go beyond DDA, optimizing
(off-line) the game levels to improve engagement, frustration
and challenge. Our work differs significantly, since we fo-
cus on on-line generation of platform levels, as the player is
playing, for DDA purposes.

Jennings-Teats et al. [4] also focus on generating (on-line)
platform levels to balance difficulty with player skills. A
statistical model of difficulty and a model of the player’s
current skill level are used, through mass data collection
and machine learning techniques, to select the appropriate
level segments to generate. Although our work uses a similar
recombination approach to generate levels, it differs by: (i)
the use of semantics to support it, and (ii) integrating context-
driven PCG to the DDA approach. The use of semantics is
of distinct importance because it allows designers to control
the generator while enabling the reusability of our approach
in similar games.

2.2 Context-driven and mobile PCG

Context-driven PCG, as we defined it, has not been so
widely investigated as DDA. There are however some related
methods that share context-driven PCG requirements. Smith
et al. [12] created Endless Web, a platform game in which
the player directly interacts with the level generator. The
game goal is to reach certain locations in the map of the
generative space, by changing the way the level is generated
with explicit player actions. It somehow relates to context-
driven PCG since it allows the player to have a direct effect
on the procedural generator.

Verma and McOwan [15] proposed a methodology to adapt
a classic mobile game (Snake) to suit the player skills. The
user plays a version of the game, and then selects to play an
either easier or more difficult game than the previous one. A
genetic algorithm uses player and previous level data to search

Figure 1: 7’s Wild Ride: player character is strug-
gling with balance on the snowball due to an up-
wards slope (danger zone). Also, the snowball is
about to pickup the obstacle cone halfway the slope.

for a game that fits the request. Although mobile-based and
allowing for user interaction, our research differs significantly
not only because generation occurs on-line, but also because
we consider a context-driven strategy: converting requested
play duration into an appropriate generated level.

3. CONTENT GENERATOR

To demonstrate our approach proposed in Section 1, we
implemented an adaptive version of a mobile game developed
(in the Unity game engine) by a multidisciplinary team for a
course project at the Entertainment Technology Center of
Carnegie Mellon University. The game, 7’s Wild Ride (in
Fig. 1), is a side-scrolling platform game where players have to
prevent the main character from falling off a rolling snowball.
They keep the character in balance by: (i) tilting the mobile
device left and right to counteract the gravity effects of
navigating slopes, and (ii) by jumping on the snowball over
obstacles that it picks up. Additionally, score points, power
ups and achievements are part of the game. To balance the
character, the player has to keep it in a safe zone, on the top
of the snowball. If the player is riding the snowball in an
unstable position, an animation is triggered to warn that he
must correct his balance to avoid falling (see Fig. 1).

This mobile game was originally developed using a fixed
set of designer-handmade levels. Therefore, our first step
was to develop a content generator able to create levels on-
the-fly?. Control over the generator (as explained in Section
4) supports its dependency to player experience and context.

The generator creates levels by selecting and combining
level segments (chunks) from a content library, as the player
advances through the level. Level obstacles are also selected
independently from the content library and placed on valid lo-
cations of the level segments. This means that level segments
can be dynamically coupled with obstacles, to synthesize
different combinations, thus ensuring increased variability.

The generator is always running as the player advances
through the level. When the player reaches the midpoint of
a level segment, it immediately selects and retrieves the next
chunk from the library, placing it accordingly. Supported
level segments can have different lengths. The character’s

2from this point on, all 7’s Wild Ride mentions refer to the
new adaptive version

speed and the hardware capabilities of current mobile devices
ensure that online generation does not cause performance
drops. The framerate remains identical to the original game.
Additionally, and since this game is a right side-scrolling
game (going left is not allowed), previous level segments are
removed, to save up memory. This means that, at any given
moment, only a fixed number of level segments exist before
and after the player’s current position. Players are unaware
of this due to the limited camera field of view (see Fig. 1).
Fig. 2 shows examples of the level segments included in the
library, and an example global view of a generated level, at
a given instant.

4. ADAPTIVE CONTROL

Control over the content generator can be exerted by se-
lecting which level segments, obstacles and obstacle locations
to combine. In this section, we describe the main methods
used to support this on 7’s Wild Ride adaptive case study.

4.1 Semantics and DDA

To investigate experience-driven PCG in the context of
our research goal, we implemented DDA on 7’s Wild Ride.
We used virtual world semantics to control the procedural
generator. In our own previous work [14], we define virtual
world semantics as all information about the world and its
objects, beyond their geometry. This includes object prop-
erties, high-level attributes and functional information, as
well as interrelationships (geometric, functional, etc) among
different objects. Our semantic library Entika [5], a hierar-
chical class (relational) database, is responsible for storing
all game objects and each of its associated semantics. Game
designers use this library to specify semantics, atop game
world geometry, in a generic and reusable way. Semantics
imported from this library can be used as knowledge to
automatically constrain and control PCG methods. This
approach has already been successfully deployed to generate
experience-driven game worlds, which adapt to a player’s
behavior [8].

In 7’s Wild Ride, additional knowledge on the semantic
level segments and obstacles entities can be specified, prior to
the game’s deployment. The generator searches and selects
content only if its semantics match some desired input, typi-
cally expressed in the same semantic terms. An example is
obstacle placement: locations for placement are only selected
if they were marked semantically as valid.

Semantics was also used to label and select the difficulty
associated with the different segments and obstacles in the
library. Partnering with the original 7’s Wild Ride designers
team, we were responsible for not only specifying the new
semantics, but also for designing the new DDA mechanism.

Three independent difficulty scales were defined: (i) slope
selection, (ii) obstacle placement, and (iii) obstacle frequency.
These were deemed sufficient to capture and influence all
difficulty-related aspects of the core gameplay. Semantics
was pre-specified for all content, describing (i) the difficulty
of the shape of a level segment (combinations of two level
segments were also considered), and (ii) the specific difficulty
of each valid location for the obstacle placement. For this,
two independent numerical scales were defined.

Control over the generator can be exerted by supplying
input values for these three independent difficulty scales.
For a certain input, the generator algorithm retrieves which
library content was specified as appropriate to that difficulty

(a)

(0)

Figure 2: (a) Examples of chunk level segments, to be used by the content generator, (b) Example of a level
generated during play (debug view). Notice the two placed obstacles (next to the player and at the far right).

scale. Additionally, obstacles placement follows a frequency
constraint: only every N level segments is an obstacle se-
lected and placed. Each input combination of the two diffi-
culty scales might have several possible results (level segment
and obstacle placement combinations). Since they were all
deemed as equally difficult, the generator selects one ran-
domly.

With this approach, semantics can enable designers to
author the DDA mechanism, with no programming involved.
By changing the semantic attributes of placement and dif-
ficulty for all associated content, designers can effectively
influence the behavior of the generation algorithm. This
opens new possibilities for designers to hold some expressive
power over this form of adaptive PCG.

4.2 Experience-driven PCG

The above semantics-based control of the generator already
supplies a basis to support DDA. To fully realize this we
developed a specific player model to steer the generator.
Working jointly with the original 7’s Wild Ride team, we
were most familiar with its design goals and principles. As
such, we created this player model.

The proposed player model directly maps measured skills
into the three difficulty scales described above. Player per-
formance is measured and converted into a desired new level
of difficulty for that player. Each difficulty scale is influenced
by the following measured skills:

e slope selection: BalancePerformance, BalanceDeath
e obstacle placement: BalancePerformance, ObstacleDeath

e obstacle frequency (or period): ObstacleDeath

BalanceDeath and ObstacleDeath flag whether the player
died because of, respectively, loosing balance or hitting an
obstacle. BalancePerformance measures the rate of tran-
sitions between the character’s safe and danger zones (see
Section 3). A player with less of these transitions is typically
more skilled at balancing his character.

For all skills and difficulty scales, the same strategy was
applied: an improvement on skill performance leads to an
increment on the corresponding difficulty scales, and a de-
crease, to a corresponding decrement. Since all difficulty

scales are independent, individual and specific behavior can
be captured by the player model. This can lead to special-
ized reactions by the generator. For example, if the player is
mostly dying from hitting obstacles, only the obstacle related
difficulty scales are affected. Below is the pseudo-code for
the mapping of skills performance into the difficulty scales
they affect.

// All difficulty scales are pre—initialized to
their minimum values

//transitions measured per time elapsed per level
segment

//performance is normalized to the current
difficulty

balancePerformance = transitions / (timeElapsed/
obstaclePeriod);
balancePerformance = normalize (balancePerformance,

slopeSelection) ;
//BalancePerformance
if (balancePerformance>balancePerformanceAvg OR
transitions = 0)

slopeSelectiont=s1;
obstaclePlacement+=o01l;

else
slopeSelection—=s2;
obstaclePlacement—=o02;

//BalanceDeath

if (BalanceDeath AND timeAlive<timeAliveAvg)
slopeSelection—=s3;

//ObstacleDeath

if (ObstacleDeath AND timeAlive<timeAliveAvg)
obstaclePlacement—=o03;
obstacleFrequency—=f1;

This player model is re-evaluated every N level segments,
which might lead to difficulty scale changes. If, in the cur-
rent N segments, a player improves his BalancePerformance
(compared to his past average) on the current N segments,
the values for both the slope selection and the obstacle place-
ment difficulty will increase. A decrease of these occurs in
the opposite case. Both difficulty scales are affected since
jumping over obstacles can provide additional balance chal-
lenge. When the character dies and his last life duration
was shorter than the average, difficulty scales are decreased
accordingly, for each death type. The player model above
only contemplates obstacle frequency decreases. The simulta-
neous presence of frequency increases and our context-driven

(a)

(©)

Figure 3: In (a), player dies by not jumping successfully over the obstacle. Later on, in a subsequent life,
an obstacle is placed at an easier location, in a similar situation (b). Eventually, after repeated deaths by

obstacle collisions, no obstacle is placed at all (c¢).

PCG approach, explained in the next section, would lead
to steep difficulty increases, overburdening players. All the
increase and decrease operations might not lead to imme-
diate difficulty changes. We implemented two aspects to
assure that the generator affects gameplay and difficulty only
when continuous consistent performance improvements or
declines occur. First, each increment is smaller than 1 (e.g.
$1=0.2). Second, the generator only considers new inputs
from the player model when a difficulty scale changes its
integer value. Each of the difficulty scales are numeric scales:
1-5 for slope selection, 1-4 for obstacle placement, 0 to M
for obstacle frequency. All the values for the parameters
(N,M,s1,52,83,01,02,03,f1) were determined experimentally,
with users, as described in Section 5.

With this player model in place, player performance can
be converted into gameplay skills which are translated into
dynamic difficulty scales. These scales steer the semantic
generator to synthesize the appropriate content, classified ac-
cording to that difficulty. This way, the difficulty of the level
generated ahead is adjusted to match the player performance.
In Fig. 3, you can see an example of the functionality of our
experience-driven DDA, as observed in a user evaluation.

4.3 Context-driven PCG

To investigate context-driven PCG, the generation of 7’s
Wild Ride game levels has been made dependent on a time
constraint, explicitly specified by the player. The conse-
quence of such a constraint is that it will directly steer the
generator, adjusting the game to a context, in this case, the
available time.

We implemented a straightforward solution to support this,
based on our generation approach (online recombination of
level segments). A timer is responsible for stopping level gen-
eration and gameplay, thus respecting the requested context.
Additionally, we opted for a strict strategy for this timer,
where the pause and death menus do not interrupt time
counting, even though no generation is occurring. This way,
we give high priority to fulfill the player’s request, regardless
of interruptions.

More importantly, and as explained in Section 1.2, setting a
time constraint should also scale the full gameplay experience
to that requested time. In our case, the requested time has
a direct effect on the difficulty of the game level, which is
adjusted (scaled) not only to fit the player experience, but
also to fit the requested time.

This scaling relates to game progression. In many games,
difficulty typically increases with the advancement on a hand-
made game level, where the final sections provide harder chal-
lenges than the initial sections. The same happens between
different handmade levels, to provide the player a sense of
progression.

In our case, we applied the same progression principle, but
in the context of available time. As the player advances in
the generated game level, approaching the requested time
limit automatically increases difficulty to give the player a
notion of proportionally scaled progression.

The generator starts by dividing the requested time into
five equal slots which correspond to the five slope selection
difficulty values. The second and third time slots are grouped
to create four time-based level sections: beginning, middle,
pre-final, final. As you progress through these sections, all
difficulty scales increase automatically by a parameter ¢,
every P level segments. Both ¢ and P change according to
the section the player is in. The closer a player approaches
the final section, the more difficulty increases in frequency
and value. As before, all parameter values were determined
experimentally, with users, as described in Section 5.

With this approach, the context-driven PCG loop is closed:
the requested time context affects difficulty increases, which
has a direct effect on the generated content, which scales
gameplay progression to the available and requested time
context. Additionally, this difficulty progression is still being
balanced by the experience-driven DDA, which guarantees
that each progression is still adjusted to each individual
player performance. Ultimately, difficulty and content are
being dynamically adjusted to both the individual player
performance and requested time context, thus creating per-
sonalized and unique gameplay experiences.

We are aware that PCG and, specifically, DDA can poten-
tially prevent fair comparison of game scores and achieve-
ments, among players. We are interested in the debate on
the (un)desirability of such comparisons, but that concern
is not currently present in our research goals. Therefore, no
scoring or collectibles game mechanics were implemented in
our case study.

4.4 Semantics and reusability

Our proposed approach can be generalized and applied to
other games beyond 7’s Wild Ride. This is, in fact, enabled

by the semantics-based generator, while saving considerable
work.

The content generator can be applied to any game (most
notably platformers) which levels/world can be generated by
the sequential combination of world segments and placement
of additional game objects. The semantic library combines
all information about the individual content (geometry) with
the knowledge that steers its retrieval and placement by
the generator. In our case, we defined the difficulty scales
as these steering semantic attributes, which means they
can be reused and extended in other projects. Using other
generation control mechanisms beyond difficulty can be easily
achieved; it would entail using Entika to create and label
new semantic attributes and minor changes to the retrieval
process. As for our simple player model, it is certainly
specific to 7’s Wild Ride, as it converts player performance
data into our semantic difficulty scale values. Except for some
machine-learning methods, typical player models are mostly
dependent on specific games. However, with semantics, the
implementation of a conversion from performance data to
semantic attributes, as a new final step within such models,
will assure their smooth integration with the generator.

As for our first experiment on context-driven PCGQG, this
approach does not take advantage of gameplay semantics
yet. In our future work, we plan to not only investigate new
forms of context-driven PCG (beyond time), but also their
integration with gameplay semantics. As with DDA, this
would ensure their generalization and reusability.

S. RESULTS AND DISCUSSION

To evaluate our approach, we performed two distinct user
studies. We opted to use two distinct sets of participants to
investigate each of our PCG-based methods: time context-
driven and DDA. This not only avoids longer questionnaires,
but also appeals to the different characteristics of both user
groups, as explained below.

5.1 Time context-driven PCG

In our first user study, 17 participants (college students)
played several game sessions and were interviewed. The goal
was to define which parameters (see Section 4) should be
used in the generator, to maximize a satisfying gameplay
experience. Participants played two different versions of
the game (different sets of parameters), and even re-played
them by directly changing the parameters (available in these
versions interface). This resulted in the best set of parameters
to use in our second user study.

Since college students understand better the concept of
limited time (when compared to our second user group),
participants also evaluated our context-driven PCG approach.
We performed a questionnaire to investigate the value of
our context-driven PCG implementation, as seen by players.
Participants were invited to choose the time available for
their game session, using a slider available in the game start
menu. Additionally they were briefed on the meaning of our
time-based level constraint, i.e. on the fact the game session
would be generated to fit the requested time window.

We asked participants to rate, from 1(less) to 5(more), how
valuable they thought this time context-driven generation
was. Additionally, we asked them which type of levels they
would rather play again, on their mobile devices: time-based
generated levels or normal levels. 35% of participants ranked
the value of time-based generation as 3, another 35% as 4

and 30% as 5. 65% of the participants would prefer to play
time-based generated levels again, and 35% normal levels.

These results demonstrate the potential value in games
which generate content in response to a player-specified time
context. All the participants, even the minority which would
not prefer this mechanism over traditional ones, recognized
some positive value in this type of approach. It was clear
from the interviews that everyone saw multiple applications
for this method, even beyond time constraints.

Additionally, we decided to ask about the role of adap-
tive PCG when it comes to comparing gameplay (scores,
achievements). After explaining to participants to what ex-
tent adaptive PCG was supporting this game, 58% of the
participants found the loss of gameplay comparison (between
players) as important. This demonstrates that this is an
important issue needing to be addressed. Finding ways of
normalizing PCG-enabled gameplay and making dynamic
game levels comparable (in terms of gameplay) remains an
open question that deserves future research.

5.2 Dynamic difficulty adjustment

In our second user study, we focused on assessing our
DDA’s case study. 22 participants (children between 6 and
12, visiting a science museum) played 7’s Wild Ride, using
the set of parameters discovered in the first user study. Data
about their performance was logged automatically and a
short interview was individually conducted to assess the
DDA mechanism. Before each game session (3 minutes),
players had to complete a tutorial to learn the basic game
mechanics: balancing and jumping. The children selected for
this user study were identified in loco as more casual players
with less experience, thus less commitment and skill.

Among other data, we logged the variation of the slope se-
lection difficulty scale, measured throughout the game session
for all participants. From the analysis of the collected data,
we can identify two player categories: without progression
(Fig. 4a) and with progression (Fig. 4b). For players with-
out progression, the difficulty scale typically shifts back and
forth between two or three values, between 1 and 3. For play-
ers with progression, the difficulty scale gradually increases
more or less linearly, between 1 and 5. These patterns cap-
ture an underlying skill evolution, where players improve (or
maintain) their performance. As expected, players without
progression died more often (average of 6.72 deaths) than
players with progression (average of 3.6 deaths), indicating
this skill difference.

Challenge - We asked all participants to rate the chal-
lenge they felt throughout the game, from 1(less) to 5(more).
Answers are summarized below, in Table 1.

Table 1: Questionnaire ratings: game challenge and

unfairness

1(less) 2 3 4 5(more)
Challenge 0% 0% 55% 41% 1%
Unfairness 9% 45% 23% 15% 9%

Challenge results for rate 3 seem to indicate that the game
is balanced, an indicator of a successful DDA mechanism.
However, the remaining participants felt a high degree of
challenge. By correlating these answers with the two player
categories from Fig. 4 (Table 2), we find some explanations.

This seems to indicate that participants rated the ex-
perience as more challenging due to their improved skill

slope selection difficulty scale

time (%)

@ (Player)1 W2 A3 <5 19 @13 14 =16 —17 @18 W19

2 - ol @
o

g

a

>

=

3

g - ~- * @ > L] i ® - L}
£

c

2

8- & & &« WA
K

[

ﬂ)

Q

=]

@ e =" L] ® A

time (%)

#(Player)6 W8 A10 11 112 @15 20 =21 —22

(a)

(0)

Figure 4: Variation of slope selection difficulty scale during the game session time, for all user study par-
ticipants. Two categories were identified: (a) players without skill progression and (b) players with skill

progression .

Table 2: Questionnaire ratings: game challenge

Players 1(less) 2 3 4 5(more)
without progression 0% % 73% 2% 0%
with progression 0% 0% 33% 56% 11%

progression and, consequently, to having reached higher diffi-
culty scale values. Similar results on the obstacle placement
difficulty scale confirm these observations.

Fairness - We asked all participants about the fairness
of the game’s progression. We wanted to detect whether
the DDA mechanism was effective in providing the most
appropriate balance, in a non-obtrusive way. Participants
were asked to rate the unfairness felt throughout the game,
from 1(less) to 5(more). Being children, this concept was
hard to explain. Therefore, this question was posed with
a more negative connotation than the challenge question,
where participants would assess frustration (or satisfaction)
and injustice. The answers are summarized in Table 1.

These results show that the majority of the participants
found the game either fair and satisfying (rate 1,2) or bal-
anced (rate 3). The positive/negative assessment nature of
this question seems to further confirm our previous findings:
again, the game seems balanced, an indicator of a successful
DDA mechanism.

Further conclusions are observed if we correlate these an-
swers with the two player categories from Fig. 4. As shown
in Table 3, for players without progression, 64% rated the
game’s fairness and frustration as 1,2 or 3 (fair, satisfying
and balanced). For players with progression, 89% rated the
same way. This seems to demonstrate that: (i) the major-
ity of the participants are satisfied with the game’s balance
of difficulty, and (ii) this satisfaction is stronger for play-
ers with progression. With these results, we observed that
although gradual difficulty progression (Fig. 4b) implied a
higher degree of challenge, that actually lead to a higher de-
gree of satisfaction. This seems to indicate that the balance
of difficulty to skill (DDA) was actually improved with the
integration of a context-dependent difficulty progression.

Nevertheless, and since we had hoped for a balanced chal-
lenge level, we also made an effort to identify the reasons

Table 3: Questionnaire ratings: game unfairness

Players 1(less) 2 3 4 5(more)
without progression 9% 37% 18% 18% 18%
with progression 11% 56% 22% 11% 0%

for that not to happen. We asked only the participants who
identified high challenge (rate 4 or 5) to justify their answers.
Although no one identified progression as the reason, 40%
mentioned the new paradigm of using the accelerometer as
the game controller, and 60% identified the jumping mechan-
ics. Logged data seems to validate these answers: (i) players
with jump issues died more performing jumps than everyone
else (8.8 deaths to 7.6), and (ii) players with control issues
died more of lack of balance than everyone else (6.25 deaths
to 5.5).

Jumping seems to be a special case, deserving attention.
The concerns that it raised among players essentially relate
to gameplay mechanics. In the game, the snowball picks
up an obstacle (see Fig. 3b) which attaches itself to the
snowball. To avoid the obstacle, the player has to jump
when it is approaching from behind, in the snowball, as
it rolls on. Participants who identified the jumping as a
challenge concern (and even others) often over-reacted by
jumping as soon as they saw an obstacle on the screen, before
snowball attachment. They were mimicking behavior found
in classic platform games, where the player character simply
jumps above obstacles. These results give valuable feedback
on the design of 7’s Wild Ride jumping mechanics, which
might not be the most intuitive for some casual players.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the integration of experience-
driven and context-driven PCG to support mobile adaptive
game levels. We investigated this approach by implementing
time-constrained level generation and DDA in the game 7’s
Wild Ride, and evaluated it with two distinct user studies.

Evaluation with users allowed us to conclude that our DDA
mechanism can accommodate for different players and skills.
It has the potential to adjust the game to different player
categories(e.g. with and without progression), while keeping

it balanced and players satisfied. User study participants
were receptive on our context-driven PCG approach, even
valuing our time context-driven level generation above tradi-
tional mobile game levels, while recognizing its usefulness in
the mobile games domain. Furthermore, our results allowed
us to observe that the integration of context-driven PCG
(specifically the gameplay progression it implied) with DDA
actually lead to an increase in player satisfaction.

Some future research still remains open. More user studies
could be performed to formally compare our PCG-based
levels with the original designer-made fixed ones (which
would involve correcting gameplay issues like jumping and
adding scoring and collectibles). For the long-term, research
should include the normalization between PCG-supported
levels to allow some sort of common gameplay comparison
(and "bragging”) among different players, like with normal
levels. Additionally, there are many research opportunities
in other forms of context-driven PCG, using, for example,
player location, local weather or time of the day to control
the generator.

Anyway, we can conclude that these two modalities of
adaptive PCG can work well together in accommodating
some of the characteristics of mobile gaming. The casual
and context-dependent nature of mobile gaming seems to
naturally call for this integration of PCG approaches, and we
anticipate further research on this topic in the near future.

7. ACKNOWLEDGMENTS

This work was supported by the Portuguese Foundation for
Science and Technology under grant SFRH/BD/62463,/2009.
We thank the TU Delft Science Center for hosting our play
test sessions. We thank Marlou Pors, Noeska Smit and Gerrit
Rijken for their invaluable contribution to those play test ses-
sions. We thank the CMU ETC student team responsible for
creating the original 7’s Wild Ride game: Amol Deshpande,
Brian Lee, Marc Mundy, Chris Thompson, and Zifeng Tian,
along with co-authors Ken Hilf and Luke Jayapalan. Finally,
we thank Brenda Harger of CMU ETC for her role as faculty
advisor to the student project.

8. REFERENCES

[1] G. Andrade, G. Ramalho, A. S. Gomes, and
V. Corruble. Dynamic game balancing: an evaluation
of user satisfaction. In AAAI conference on Artificial
Intelligence and Interactive Digital Entertainement,
pages 3-8, 2006.

[2] M. B. Farrell. Apps shake up video game industry. The
Boston Globe, November 2012.

[3] R. Hunicke. The case for dynamic difficulty adjustment
in games. In Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in Computer
Entertainment technology, pages 429-433. ACM, 2005.

[4] M. Jennings-Teats, G. Smith, and N. Wardrip-Fruin.
Polymorph: dynamic difficulty adjustment through
level generation. In Proceedings of the 2010 Workshop
on Procedural Content Generation in Games, PCGames
’10, pages 11:1-11:4, New York, NY, USA, 2010. ACM.

[5] J. Kessing, T. Tutenel, and R. Bidarra. Designing
semantic game worlds. In Proceedings of the third
workshop on Procedural Content Generation in Games
(PCG 2012), Raleigh, NC, USA, May 2012.

[6]

[7]

8]

[9

(10]

(11]

(12]

(13]

(14]

(15]

(16]

C. Lager. Adam Atomic on Canabalt. Gaming Daily,
September 2009.

R. Lopes and R. Bidarra. Adaptivity challenges in
games and simulations: a survey. IEEE Transactions
on Computational Intelligence and AI in Games,
3(2):85 —99, june 2011.

R. Lopes, T. Tutenel, and R. Bidarra. Using gameplay
semantics to procedurally generate player-matching
game worlds. In PCG ’12: Proceedings of the 2012
Workshop on Procedural Content Generation in Games,
Raleigh, North Carolina, USA, 2012. ACM.

Nielsen Company. Insights on casual games, September
2009.

J. K. Olesen, G. N. Yannakakis, and J. Hallam.
Real-time challenge balance in an rts game using rtneat.
In IEEE Symposium On Computational Intelligence
and Games, 2008 (CIG '08), pages 87-94, 2008.

N. Shaker, G. N. Yannakakis, J. Togelius, M. Nicolau,
and M. O’Neill. Evolving personalized content for super
mario bros using grammatical evolution. In Proceedings
of Artificial Intelligence and Interactive Digital
Entertainment Conference, 2012.

G. Smith, A. Othenin-Girard, J. Whitehead, and

N. Wardrip-Fruin. PCG-Based Game Design: Creating
Endless Web. In Foundations of Digital Games 2012
(FDG ’12), Raleigh, NC, 2012.

P. Spronck, M. Ponsen, 1. Sprinkhuizen-Kuyper, and
E. Postma. Adaptive game Al with dynamic scripting.
Machine Learning, 63:217-248, June 2006.

T. Tutenel, R. Bidarra, R. M. Smelik, and K. J. de
Kraker. The role of semantics in games and simulations.
ACM Computers in Entertainment, 6:1-35, 2008.

M. Verma and P. McOwan. An adaptive methodology
for synthesising mobile phone games using genetic
algorithms. In The 2005 IEEE Congress on
Evolutionary Computation, 2005, volume 1, pages 864
—871, sept. 2005.

G. N. Yannakakis and J. Togelius. Experience-driven
procedural content generation. IEEFE Transactions on
Affective Computing, 99:147-161, 2011.

