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Abstract Finding a correct a priori
back-to-front (BTF) visibility order-
ing for the perspective projection of
the voxels of a rectangular volume
poses interesting problems. The
BTF ordering presented by Frieder
et al. [6] and the permuted BTF
presented by Westover [14] are
correct for parallel projection but
not for perspective projection [12].
Swan presented a constructive proof
for the correctness of the perspective
BTF (PBTF) ordering [12]. This
was a significant improvement on
the existing orderings. However, his
proof assumes that voxel projections
are not larger than a pixel, i.e. voxel
projections do not overlap in screen
space. Very often the voxel projec-
tions do overlap, e.g. with splatting

algorithms. In these cases, the PBTF
ordering results in highly visible and
characteristic rendering artefacts.
In this paper we analyse the PBTF
and show why it yields these ren-
dering artefacts. We then present
an improved visibility ordering that
remedies the artefacts. Our new
ordering is as good as the PBTF,
but it is also valid for cases where
voxel projections are larger than
a single pixel, i.e. when voxel pro-
jections overlap in screen space.
We demonstrate why and how our
ordering works at fundamental and
implementation levels.

Keywords Volume rendering ·
Visibility ordering · Splatting

1 Introduction

In volume visualisation, there are three main options: two-
dimensional slices of the volume can be rendered, ex-
tracted surfaces can be rendered, or direct volume render-
ing (DVR) can be utilised [3].

Direct volume rendering [5, 7] (DVR) allows the vi-
sualisation of structures in the data without having to
make decisions about the precise location of object bound-
aries by extracting polygonal surfaces. Instead, we can
define multidimensional transfer functions that assign op-
tical properties to each differential volume element and
directly visualise structures on the grounds of this trans-
formation. Most DVR methods can be classified as either
image-order or object-order.

Image-order algorithms [7] entail that all pixel loca-
tions of the expected result image are traversed. At each
pixel location, a view ray is cast through the volume. The
volume is sampled at regular positions along this ray.
At each position, the scalar volume value is interpolated,
very commonly with a trilinear interpolator. These values
are transformed by the accompanying transfer function to
their corresponding optical characteristics. The order of
this operation can be changed: the optical characteristics
can be determined before the interpolation stage. All the
transformed characteristics along a ray are composited in
order to determine the optical characteristics of a single
pixel.

In traditional object-order volume rendering, one tra-
verses voxel locations instead. At each voxel location, the
full contribution of that voxel to the final image is deter-
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mined and composited. An important advantage of object-
order rendering is that any voxel value is retrieved only
once, whereas with ray casting it is most often the case
that a single voxel value is sampled multiple times during
a single rendering. Ray casting does make early ray ter-
mination and frustum clipping optimisations possible. In
the same vein, object-order rendering can make use of for
instance run length encoding and empty space skipping.
However, in order to ensure correct image composition
during object-order rendering, one must visit and project
the voxels in a strictly front-to-back (FTB) or back-to-
front (BTF) order.

Satisfying the ordering constraint means one of the fol-
lowing:

1. The voxels can be sorted according to their distance
from the viewpoint before rendering.

2. The inherent regularity of the volume grid can be used
to derive a valid a priori visibility order, so that the
voxels are retrieved in a correct BTF or FTB ordering.

It is obvious that the latter method, if possible, has the
potential to be more efficient, as no sorting operation is
required for each rendered view.

For parallel projection, this traversal exists and is easy
to find. For perspective projection, the situation is not as
positive. The conventional traversals for parallel projec-
tion are incorrect for perspective projection, as demon-
strated by the leftmost image in Fig. 1. Alternative solu-
tions have been proposed, of which the perspective back-
to-front ordering, or PBTF, is ‘most correct’ [12]. PBTF
has been proven to be correct for cases where each voxel
contributes to at most a single pixel in the resulting image.
However, this is most often not the case.

When each voxel affects more than a single pixel, the
PBTF ordering introduces very visible rendering artefacts.
The centre image in Fig. 1 and the image in Fig. 2 show
examples of one such artefact. The ‘cross’ artefact can
easily be seen on the engine block. In the case of the skull,
the cross centre is right above its left eye. The skull also
shows shading and stairstepping artefacts that are due to
incorrect visibility ordering. The reasons for both of these
artefacts are explained in Sect. 4.

This is a significant problem, as there is no alternative
ordering for perspective object-order volume rendering of
discrete voxels.

The research question we attempt to answer in this pa-
per is: How can we traverse a regularly spaced voxel grid
during object-order perspective mode rendering, where
voxel projections potentially overlap in screen space, so
that a back-to-front ordering with regards to the viewpoint
can be derived, without explicitly sorting the voxels?

This problem is analysed and a solution is proposed.
We explain why the PBTF ordering is only partially cor-
rect. We then propose a new ordering, called IP-PBTF,
that is based on PBTF and rectifies the demonstrated
problems. We explain why it works at basic and im-

plementation levels. We also present a method to imple-
ment the IP-PBTF ordering that is compatible with empty
space-skipping volume rendering implementations. The
presented implementation is just as fast as the regular
PBTF. An implementation of hardware-accelerated splat-
ting incorporating our new ordering is available.1

The rest of this paper is organised as follows. In
Sect. 2 we discuss the existing orderings in more detail.
We also discuss splatting as one of the better known
examples of object-order volume rendering algorithms.
The PBTF is explained in Sect. 3, where we also show
when, why and how the PBTF fails. We present our
new ordering in Sect. 4. In this section we also give
implementation-oriented tips and we also show how to
implement the ordering for empty space-skipping imple-
mentations. Performance timings are given and briefly dis-
cussed in Sect. 5. In Sect. 6 we discuss our findings.

2 Related work

It has been shown that, for parallel projection, one can
select a traversal direction for each of the axes of the rec-
tilinear grid on which the volume was defined so that the
retrieved list of voxels would be ordered strictly back to
front with respect to the viewing plane [6]. This BTF or-
dering is not correct for perspective projection, however.
An extreme example of this is shown in the leftmost image
in Fig. 1.

Westover’s ordering, henceforth called the WBTF as
per Swan’s exposition [12], added a permutation con-
straint [14] to the BTF. The permutation constraint deter-
mines how the axes should be nested during the traversal:
the axis most perpendicular to the view plane is traversed
in the outer loop and the axis most parallel to the view
plane is traversed in the inner loop.

The WBTF is correct for more cases than the conven-
tional BTF during perspective projection, but it is rela-
tively easy to construct simple examples where it yields
incorrect orderings. In practical terms, it yields similar but
less severe rendering artefacts than those of the BTF.

Swan unified and proved [12] the perspective-correct
orderings previously published by Anderson for 2D [1]
and Max for 3D [8]. This order will henceforth be called
the PBTF. The PBTF was a significant improvement on
the existing orderings and was proved to be correct for
cases where voxel projections are no larger than a pixel.
However, when this is not the case, the use of the PBTF
ordering results in very noticeable rendering artefacts. The
centre image in Fig. 1 and the image in Fig. 2 show the
very typical PBTF ‘cross’ artefact.

This is quite a serious problem, as PBTF is currently
the only known correct ordering for perspective object-
order volume rendering of discrete voxels. In Sect. 3 we

1 http://cpbotha.net/ShellSplatter
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Fig. 1. A perspective splatting of the Stanford CT Head dataset from the same viewpoint with three different orderings: traditional BTF,
PBTF and our IP-PBTF

Fig. 2. Close-up of splatting of ‘engine block’ dataset showing the
cross artefact caused by PBTF ordering. The cross artefact occurs
at the volume subdivision boundaries due to the fact that splats
overlap in screen space

explain the PBTF ordering in more detail and also show
why and how it breaks.

In [4], the problem was worked around by adapting
the data structures so that the viewing angle was always
large relative to the splat size. This minimised the visual
artefacts. However, ensuring a large viewing angle in all
applications is often not practical. This work also recog-
nised the importance of the traversal axis permutation.

A good summary of direct volume rendering algo-
rithms is available [9]. Splatting is a popular object-order
(i.e. forward projection) direct volume rendering method
that treats an N-dimensional sampled volume as a grid
of overlapping volume reconstruction function kernels,
weighted with voxel densities. These weighted kernels, of-
ten modelled as Gaussians, are projected onto the image

plane to form ‘splats’ that are composited with affected
pixels [13]. In this way, splatting approaches the prob-
lems of volume reconstruction and rendering as a single
task.

In original splatting, the volume is traversed from front
to back or from back to front. Centred at each voxel pos-
ition is a reconstruction kernel integrated along the view
axis to form a pre-integrated 2D kernel footprint. The ker-
nel footprint is used to modulate the looked-up and shaded
voxel optical characteristics (colour and opacity) of that
voxel and projected onto the image plane where it is com-
posited with the affected pixels. During splatting, a single
voxel typically affects more than one pixel, and thus the
PBTF ordering is not correct for perspective projection in
this case.

The use of pre-integrated reconstruction kernels causes
inaccuracies in the composition as each kernel is in-
dependently integrated and not in a piecewise fashion,
along with other kernels in the path of a view ray. This
can result in colour-bleeding of obscured objects in the
image. Westover proposed first performing compositing
of piecewise kernel integrations into volume axis-aligned
sheet buffers and then onto the image buffer to alleviate
this effect [14]. However, the axis-aligned sheet buffer-
ing resulted in sudden changes in image brightness, also
known as ‘popping’, during rotation. Mueller et al. in-
troduced image-aligned sheet buffers to eliminate this
problem [10, 11].

Image-aligned sheet-buffer splatting does not show
any of the mentioned artefacts due to the fact that sections
of voxel-centred reconstruction functions are accumulated
into sheet buffers first. This technique yields the high-
est quality renderings. However, it is slower and more
complex than traditional per-voxel splatting. Also very
importantly, per-voxel splatting translates easily to sim-
ple and ubiquitous graphics hardware and allows easy
hardware-assisted blending with traditional opaque geom-
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etry. This is invaluable in, for example, surgical simula-
tion.

In short, traditional per-voxel splatting fills an import-
ant niche in the direct volume rendering world. This ac-
centuates the necessity of a correct perspective ordering
for the object-order rendering of discrete voxels.

3 PBTF

In this section, we explain the PBTF ordering as pro-
posed by Anderson for 2D [1], Max for 3D [8] and proven
by Swan [12]. We also point out, for the first time, the
straightforward relationship between the Meshed Polyhe-
dra Visibility Ordering (MPVO) algorithm [15] and the
PBTF.

Let v = (vx, vy, vz) be the position of the camera or
viewpoint. Depending on the location of v relative to the
volume, the volume is partitioned into smaller subvol-
umes. Very simply speaking, the volume is divided into
subvolumes by three dividing planes, each orthogonal to
a different volume grid axis and passing through v.

For example, if v were completely inside the volume,
the three dividing planes would divide the volume into
eight subvolumes. This is called the ‘volume-on’ case. If
v were to move in the x direction until it was outside the
volume, the three dividing planes would divide the volume
into four subvolumes, as the plane orthogonal to the x-axis
passing through v would no longer intersect the volume.
This is called the ‘face-on’ case. If v were now to move
in the y direction until it was above the highest extent of
the volume, the three dividing planes would divide the vol-
ume into two subvolumes, as only the plane orthogonal to
the z-axis would still intersect the volume. This is called
the ‘edge-on’ case. Moving v in the z direction until the
z-orthogonal plane does not intersect the volume would
not result in any partitioning. This is called the ‘corner-on’
case. Algorithm 1 shows a pseudo-code description of the
PBTF partitioning. For each iteration of k, a single axis is
split.

Algorithm 1. Determining volume partitioning for the
PBTF

Volume dimensions are (x0, x1, y0, y1, z0, z1)
v = (vx, vy, vz) is perspective viewpoint
for k = x, y, z do

if vk < k0 or vk > k1 then {vk is ‘outside’}
(kmin 1, kmax 1) ⇐ (k0, k1)
(kmin 2, kmax 2) ⇐ (0, 0)

else {vk is ‘inside’}
kv ⇐ vk rounded to nearest voxel
(kmin 1, kmax 1) ⇐ (k0, kv −1)
(kmin 2, kmax 2) ⇐ (kv, k1)

end if
end for
output: (kmin 1, kmax 1), (kmin 2, kmax 2) partitioning for each axis

After having determined the volume partitioning, a tra-
ditional BTF traversal is executed for each subvolume,
i.e. for each partition an independent set of traversal di-
rections is chosen according to the BTF. Swan’s test im-
plementation does indeed include a WBTF per volume
subdivision, but his proofs explicitly allow any permuta-
tion.

For a given viewpoint, no voxel in any subvolume
can occlude any voxel in any other subvolume. This is
easy to see, as the planes dividing the volume into sub-
volumes all pass through the viewpoint. None of the
view rays radially emanating from the viewpoint can
ever intersect any of the dividing planes, i.e. no view
ray can pass through more than a single subvolume.
Hence, there can be no occlusion between subvolumes.
In other words, we can treat the partitioned subvolumes
as independent volumes and render each one separately
with a traditional BTF traversal. It is important to note
that each partitioned subvolume constitutes a corner-on
case.

It is interesting to note that the Meshed Polyhe-
dra Visibily Ordering (MPVO) algorithm proposed by
Williams [15] reduces to the PBTF ordering and volume
subdivision for a rectilinear volume. Swan mentions this
work but does not show the relationship to the PBTF.
The MPVO orders the polyhedra in convex meshes by
constructing a directed adjacency graph for all polyhe-
dra. A direction is assigned to each edge by constructing
a plane through the face separating the two adjacent poly-
hedra. This plane divides the world into two half-spaces.
The direction of the edge is always towards the half-space
containing the viewpoint. If a topological sort of this dir-
ected adjacency graph is performed, the resultant ordering
is a valid BTF order.

The MPVO can be applied to regularly spaced voxel
grids if each voxel is seen as a cubic cell. If we were
to construct, for each cubic cell, six dividing planes (ac-
cording to the principle above), there would be a max-
imum of three main plane orientations. Continuing this
reasoning, it is easy to see that in the worst-case sce-
nario (viewpoint within the volume), the volume will be
divided into eight regions, where the voxel cuboids in each
of the eight regions will have identical graph edge di-
rections. A topological sorting of this graph will result in
eight volume subdivisions, each with its own BTF order-
ing. One can continue this mental exercise for all pos-
sible cases (volume-on, face-on, edge-on and corner-on),
and the MPVO will reduce to the PBTF ordering every
time.

Note that the MPVO, just like the PBTF, only de-
termines different sets of traversal directions for all
subvolumes but places no constraint on the axis per-
mutation of each subvolume. Any of the three permu-
tations (for any of the subvolumes) constitutes a cor-
rect topological sort of the directed adjacency
graph.
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4 IP-PBTF

By showing a few simple examples, we demonstrate the
two major reasons why PBTF generates incorrect order-
ings. Identifying the deficiencies leads directly to the
remedies. Subsequently, we analyse the problem in more
detail and show that our ordering is an improvement in
all possible cases. We then present some implementation
details.

4.1 Constructing the IP-PBTF

When voxel projections are no larger than a single pixel,
there is generally no occlusion between subvolumes.
However, when voxel projections are larger than a single
pixel, this assumption is incorrect, i.e. significant occlu-
sion takes place between subvolumes. This is the primary
reason why the PBTF ordering is incorrect for the case
where voxel projections are larger than a pixel. Figure 3
shows a very simple 2D example where the PBTF is not
sufficient. Notice that, due to the larger-than-pixel voxel
projections, voxel 2 is composited before voxel 4, and
voxel 3 is composited before voxels 4 and 5. In a larger
volume, this incorrect compositing will take place along
any subvolume division and cause the visible artefacts that
we have shown. The cross artefact in Fig. 2 is a specific
example of this.

Studying the problem at this scale already presents the
first part of our solution. By interleaving the voxels along
the volume division, i.e. rendering voxels alternatingly
from the top and bottom subvolume whilst still maintain-
ing the intrasubvolume BTF ordering, we would solve at
least the problem shown in Fig. 3. Figure 4 shows the re-
sults of this change.

In this simple case, the interleaving seems to solve
the visibility ordering. However, we can construct another
simple case that shows how the interleaving by itself is
not quite sufficient. In Fig. 5 interleaving has been ap-
plied: the voxels are rendered alternatingly from subvol-
umes 1 and 2. However, the slowest changing grid axis
index belongs to the axis orthogonal to the subvolume

Fig. 3. A simple 2D example showing how the PBTF visibility or-
dering is incorrect for cases where the voxel projection is larger
than a single pixel. Each numbered block represents a voxel

Fig. 4. Interleaving the ordering of the voxels in the subvolumes
solves the problem shown in Fig. 3

Fig. 5. Subvolume interleaving by itself is not sufficient to remedy
the PBTF visibility problems. In this simple case, in spite of in-
terleaving, voxels 3 and 4 have been incorrectly composited before
voxels 5 and 6

Fig. 6. Interleaving between subvolumes and selecting a suitable
axis permutation remedies the PBTF problems in this example

division. In this very simple case, voxels 3 and 4 are in-
correctly rendered before voxels 5 and 6. Once again, in
a more extensive volume, this will cause visible arte-
facts.

From this example, it is clear that one should care-
fully choose an applicable permutation: the slowest chang-
ing axis index should never be the one belonging to
the axis orthogonal to any of the subvolume division
planes. The result of applying this rule to the simple ex-
ample in Fig. 5 is shown in Fig. 6. Note that all voxels
are now projected in the correct ordering. We reiterate
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the fact that Swan’s proof allows any axis permutation
for the PBTF subvolumes, although his specific imple-
mentation did include a WBTF ordering for each subvol-
ume.

4.2 Analysis

Our new ordering for perspective object-order volume ren-
dering is called the Interleaved and Permuted Perspective
Back-to-Front ordering, or IP-PBTF. We have demon-
strated with a few simple examples why the PBTF is not
correct for cases where each voxel affects more than one
pixel and how the IP-PBTF would be correct in these cases
as well. There are two reasons why the PBTF is incorrect
for these cases:
1. There is a definite interaction between subvolumes.
2. A non-permuted BTF (i.e. traditional) ordering is of-

ten incorrect even for a simple corner-on case, which
is what every subvolume reduces to in the PBTF order-
ing.
Studying Fig. 7, which is valid for every possible

2D perspective projection configuration and can be con-
structed for the 3D case, it becomes obvious why the
PBTF breaks. From this figure, it is clear that render-
ing for example voxels 2, 3 and 4 before 1 would be
incorrect, as they are inside the outermost circle and 1 is
outside, indicating that 1 is further away from the view-
point and should be rendered first. This is exactly what
the PBTF ordering would do, as it would completely
render subvolume 1 (SV 1) before subvolume 2 (SV 2).
Interleaving the two subvolumes would order these cor-
rectly.

Interestingly, this figure also indicates the necessity for
a PBTF-based ordering, i.e. one where the volume is par-

Fig. 7. Circles (spheres in 3D) of equidistance from the viewpoint.
It is clear that the y-axis should be partitioned and that each par-
tition should be traversed in the opposite direction in order to
maintain a BTF ordering. This illustration also helps to show why
interleaving and permutation are required. See the text for more de-
tail. ‘SV 1’ and ‘SV 2’ refer to ‘subvolume 1’ and ‘subvolume 2’
respectively

titioned into viewpoint-related subvolumes. If we were to
attempt a WBTF ordering for the whole volume, x would
be chosen as the slowest changing axis, i.e. the outer loop,
and y as the fastest changing, i.e. the inner loop. How-
ever, the direction of y would be either 0 → y1 or y1 → 0,
neither of which can potentially yield a purely BTF order-
ing, as can be seen from the outermost circle: as we move
outwards from the volume division line, the distance in-
creases! This clearly indicates that the volume should be
split and that the subvolumes should be traversed in op-
posite directions of y, towards the subdivision line (plane
in 3D).

The figure also shows why the traversal axes of each
subvolume should be permuted so that the slowest chang-
ing axis is not orthogonal to the volume subdivision
line (plane in 3D). If we were to traverse subvolume 1
with the y-axis as the slowest changing, we would ren-
der for example voxel 5 before voxel 3 and all voxels
to its left, voxel 6 before voxel 2 and all voxels to its
left, and so forth. This is of course not a correct order-
ing.

The permutation constraint cannot be satisfied for the
volume-on case, i.e. the case where the viewpoint is lo-
cated inside the volume that is being rendered. In the
volume-on case, there are three volume subdivision planes
and eight subvolumes. There are three volume axes, i.e.
one orthogonal to each subdivision plane, which means
that it is impossible to select a slowest traversal axis that
is not orthogonal to a division plane. In this case, a good
practical solution is to select the axis which is most per-
pendicular to the view plane as the slowest changing
axis.

This also brings us to a limitation of almost all cur-
rent object-order direct volume rendering methods: Dis-
tance from the viewpoint increases radially outwards
from the viewpoint, i.e. the distance field is spheri-
cal, but grid-traversal orderings are constrained to the
orthogonal volume grid. Thus, there are still bound
to be cases when voxel pairs are incorrectly ordered,
especially with very large voxel projections. In other
words, if there were no constraints on processing speed,
one would employ extremely thin and spherical sheet
buffers with the viewpoint as centre. If there were no
constraints on processing speed, but one had to ren-
der a voxel at a time, the distance measure around the
viewpoint could be sampled at the voxel centres and
the voxels rendered in order of decreasing distance
value.

That being said, we believe that the IP-PBTF is cur-
rently the best grid-constrained ordering for the object-
order perspective direct volume rendering of dis-
crete voxels. It is applicable to all cases where a vol-
ume on a rectilinear grid is volume rendered with dis-
crete voxel projections overlapping in screen space and
where the cost of explicit sorting is not afford-
able.
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4.3 Implementing an interleaved split-dimension traversal

The IP-PBTF ordering is conceptually very simple. How-
ever, creating an efficient implementation is rather com-
plex. Subvolumes often have differing sizes on all dimen-
sions as each dimension is independently split. The inter-
leaving is not trivial, as the split most often yields two
parts of differing size, which means that the interleaving
only takes place part of the time. In addition, each subvol-
ume has its own set of traversal directions.

The crux of a good implementation is an efficient split-
dimension traversal, i.e. code to handle the interleaving
of the various axes. In order to facilitate implementation,
we show an efficient way of setting up and executing
a single split dimension. Algorithm 2 shows how to set
up a single split dimension. This has to be done for all
dimensions that have been partitioned by any of the di-
viding planes. Fortunately, this part happens only once per
frame rendered. Algorithm 3 shows how to iterate through
such a split dimension during the actual voxel projection
phase.

An axis is partitioned into two sections by the split
point kv. The largest section is determined and its end-
points are stored in b0 and b1. bi determines the direction
with which we traverse the largest section. We also de-
termine a threshold, bt . When the larger section index, b,
reaches this threshold, the interleaving with the smaller
dimension starts. s is used as an index for traversing the
smaller section of the axis. Its direction is always opposite
to that of the b index.

If the currently traversed interleaved axis has nested
axes, nestedLoop() is called twice. Each of the nest-
edLoop() calls represents another potentially split di-
mension, but could also represent a straightforward non-
interleaved axis traversal, depending on the relevant PBTF
partitioning case. If the axis that is being traversed is
already at the most nested level, visitVoxel() is called,
meaning that that particular voxel is rendered. For three
nested split dimensions for example, this means that vis-
itVoxel() will be called a maximum of eight times during
each iteration of the outer loop.

Algorithm 2. Setting up a split dimension. See Sect. 4.3
for details.
split-dimension is k0 ≤ k ≤ k1
split-point is kv

if kv −k0 > k1 −kv then
b0 = k0
b1 = kv +1
bi = 1
bt = (kv −k0)− (k1 −kv)
s0 = k1

else
b0 = k1
b1 = kv

bi = −1
bt = (k1 −kv)− (kv −k0)
s0 = k0

end if

Algorithm 3. Iterating through a single split dimension.
See Sect. 4.3 for details.
s = s0
if s = bt then

interleaved = true
else

interleaved = false
end if
if atMostNestedLevel then

action = visitVoxel
else

action = nestedLoop
end if
for b = b0; b �= b1; b = b+bi do

action(b)
if interleaved then

action(s)
s = s −bi

else
if b+bi = bt then

interleaved = true
end if

end if
end for

4.4 Efficient interleaving with space skipping

If the volume rendering algorithm allows random access to
the voxels without a performance penalty, the interleaved
split-dimension traversal described above is sufficient and
should not affect performance significantly.

However, many voxel-based volume rendering algo-
rithms make use of some form of empty space skipping.
In general, only voxels that will actually contribute to the
rendering are compactly stored and other voxels are com-
pletely ignored. Because the significant voxels account
for a very small percentage of the complete volume and
no time is wasted even examining non-significant vox-
els, these schemes result in significantly faster render-
ing.

The interleaved split-dimension scheme detailed above
performs explicit interleaving, i.e. we have counter vari-
ables iterating through all dimensions to ensure that the
interleaving is correctly done. With many empty space
skipping implementations, such an explicit interleaved
traversal would partly negate the advantages of the space
skipping, as non-significant voxel positions would still be
traversed by counter variables in order to ensure a correct
interleaving. Even if a particular voxel in one subvolume is
non-significant, the voxels at matching positions in other
subvolumes have to be rendered in an interleaved fash-
ion.

For cases such as these, an implicit interleaving traver-
sal is more appropriate. We have dubbed it ‘implicit’ as no
counter or traversal variable is involved. In this section we
present a simple technique for implicit interleaving and, as
we show in Sect. 5, the implicit interleaving allows us to
perform empty space skipping whilst correctly interleav-
ing, without a measurable speed difference compared to
the regular PBTF.
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For any given axis permutation, we make use of space
skipping only for the inner loop, i.e. the fastest changing
dimension. Consequently, we only make use of implicit
interleaving for the fastest changing dimension. For the
outer loops, i.e. the slower changing dimensions, we make
use of the standard explicit interleaving scheme described
in Sect. 4.3.

Algorithm 4 shows the implicit interleaving technique
over one complete inner loop. This is done for each combi-
nation of the two explicitly interleaved or non-interleaved
outer-loop counter variables.

At the start of the inner loop, the relevant space skip-
ping voxel run for each partitioned subvolume is deter-
mined and a pointer for each run is set to the start or the
end of that run depending on the PBTF-required traversal
direction. For each of these pointers, the distance to the
partitioning plane orthogonal to the space skipping dimen-
sion is calculated by a simple subtraction.

The greatest distance is determined. All current voxel
run pointers that represent a voxel with distance equal to
this greatest distance are rendered and then incremented or
decremented depending on the various required traversal
directions. These directions are always towards the parti-
tioning plane, so the distances and the maximum distance
are by definition decreasing. A new distance is calculated
for each incremented or decremented voxel. If a pointer
is incremented or decremented and the voxel that it rep-
resents subsequently crosses the partitioning plane, that
pointer is deactivated. After rendering, incrementing and
calculating new distances for the relevant voxels, we start
again by determining the new maximum distance. The in-
ner loop is terminated when all voxel pointers have been
deactivated.

Algorithm 4. The complete implicit interleaving inner
loop.

N ⇐ number of subvolumes (maximum 8)
for i = 0 to N −1 do

pi ⇐ initial voxel pointer for subvolume i
if IsValid(pi) then

di ⇐ distance of voxel pi from subdivision
∆pi ⇐ increment and direction for subvolume i

else
Deactivate(pi )

end if
end for
while IsActive(p0) or IsActive(p1) or . . . or IsActive(pN−1) do

dmax = max({d0, d1, ..., dN−1}) {only for active pi’s}
for i = 0 to N −1 do

if IsActive(pi) and di = dmax then
renderVoxel(pi )
pi = pi +∆pi
di ⇐ distance of voxel pi from subdivision
if di < 0 then {pi has skipped across the subdivision}

Deactivate(pi )
end if

end if
end for

end while

This scheme is simple to implement and makes effi-
cient use of the space skipping encoding whilst implicitly
interleaving voxels. In principle, it should work with any
space skipping technique where the IP-PBTF is applica-
ble.

5 Results

We have implemented the IP-PBTF ordering as part of
a specialised hardware-accelerated splatting implementa-
tion called ‘ShellSplatting’ [2]. The IP-PBTF ordering is
applicable to any object-order perspective volume render-
ing implementation where discrete voxels are projected.

Figure 8 shows the same rendering as in Fig. 2, but
with the IP-PBTF applied. The cross artefact has clearly
disappeared. Figure 9 shows two extreme close-up render-
ings of the engine block with all splats rendered as circles
instead of preintegrated Gaussians in order to emphasize
the nature of the cross artefact and the working of the
IP-PBTF ordering.

Fig. 8. The same rendering as in Fig. 2, but with the IP-PBTF or-
dering applied. The cross artefact has disappeared. In this case, the
permutation was already correct; only the interleaving had to be
applied

Table 1 shows some speed timings for three well-
known datasets.2 These timings were performed on
a 2.4 GHz Pentium 4 with a GeForce4 graphics card. The
image size was 512 ×512, and we zoomed in so that the
image was generously filled with the rendered volume.
We tested BTF, PBTF and IP-PBTF orderings. The first
two were unpermuted. The BTF was of course tested in
an orthogonal projection setting. A sequence of 3610 dif-
ferent frames was rendered three times per ordering for

2 The aneurism data are courtesy of Philips Research, Hamburg, and the
engine block is courtesy of General Electric. Both were downloaded from
http://volvis.org/. The CT Head is courtesy of Stanford University
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Fig. 9. Two close-up renderings of the engine block dataset with
circular splats to illustrate the nature of the cross artefact and the
IP-PBTF’s remedy. In the upper image a PBTF visibility ordering
was used, and in the lower image the IP-PBTF ordering was used.
The permutation has been corrected and the interleaving has been
applied

Table 1. Optimised splatter rendering frame rates for the different
orderings for a 512× 512 rendered image. The IP-PBTF is just as
fast as the PBTF but yields a more correct ordering

Frame rate (frames per second)
Aneurism CT Head Engine Block

Ordering 2563 2562 ×113 2562 ×128

BTF 49 12 12
PBTF 45 12 13
IP-PBTF 45 12 13

all datasets, i.e. the complete sequence was run 27 times
in total. For each ordering and dataset permutation, the
average of the three tests was taken and then this average
was rounded down to yield the final performance figure in
frames per second.

The results show that the IP-PBTF extension has no
measurable impact on the rendering performance of our
splatting implementation. In other words, the IP-PBTF is
just as fast as the PBTF and yields higher quality results.

Our implementation utilises empty space skipping, so we
have used implicit interleaving for the inner loop as dis-
cussed in Sect. 4.4. Experiments with explicit interleaving
in the inner loop resulted in 57% slower rendering for the
‘aneurism’ dataset. From this we conclude that implicit
interleaving is also crucial for an efficient implementa-
tion of the IP-PBTF that is compatible with empty space
skipping. For the ‘CT Head’ and ‘Engine Block’ datasets,
which have significantly less empty space than ‘aneurism’,
the difference is much smaller, but implicit interleaving
still yields the most efficient implementation.

6 Conclusions

In this paper, we have discussed existing visibility order-
ings for object-order volume rendering based on discrete
voxel projection. We have shown that, for the common
case where voxel projections are larger than a single pixel,
none of the existing orderings yields a correct BTF order-
ing for perspective projection.

We focused on the best of the existing orderings,
namely the PBTF, and showed how and why it is not valid
for cases where each projected voxel affects more than
a single pixel. By studying the nature of its failure on con-
structed simple examples, we were able to determine the
changes necesary to remedy these failures. The PBTF fails
because it assumes that there is no interaction between the
partitioned subvolumes. By visiting all voxels in an in-
terleaved fashion, i.e. alternatingly from all subvolumes
and by choosing a correct WBTF-like traversal for each
subvolume, the PBTF problems are remedied. We have
dubbed the new ordering IP-PBTF, or Interleaved and Per-
muted Perspective Back-to-Front.

We analysed our changes by looking at circles of
equidistance (spheres in 3D) with the perspective view-
point as centre. This showed why a permuted interleaving
of the PBTF was necessary. Coincidentally, it is also an ef-
fective way of illustrating the necessity of partitioning the
volume into subvolumes.

We then presented a possible implementation of it-
eration through an interleaved split dimension. We also
showed how to implement interleaving efficiently for
empty space skipping implementations. The former tech-
nique is called explicit interleaving and the latter implicit
interleaving.

We presented comparative timings of the BTF, PBTF
and IP-PBTF orderings in an accelerated splatting imple-
mentation. The results show that the IP-PBTF is just as
fast as the PBTF for our empty space skipping implemen-
tation, if explicit interleaving is used for the outer loops
and implicit interleaving for the inner loop.

For projections no larger than a pixel, IP-PBTF is as
good as the traditional PBTF, as the interleaving and per-
mutation still maintain the PBTF ordering as well. For
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larger-than-pixel voxel projections, it is clear that inter-
leaving and permuting properly ensures a more strict BTF
ordering during object-order perspective projection of dis-
crete voxels, without explicit sorting. This observation,
and the fact that these changes have no measurable impact
on performance, lead us to conclude that the IP-PBTF is
definitely to be preferred for the perspective object-order
volume rendering of discrete voxels.
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