Fast and Reproducible Fiber Bundle Selection in DTI Visualization
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ABSTRACT

Diffusion Tensor Imaging (DTI) is an MRI-based technique for
quantifying water diffusion in living tissue. In the white matter of
the brain, water diffuses more rapidly along the neuronal axons than
in the perpendicular direction. By exploiting this phenomenon, DTI
can be used to determine trajectories of fiber bundles, or neuronal
connections between regions, in the brain. The resulting bundles
can be visualized.

However, the resulting visualizations can be complex and diffi-
cult to interpret. An effective approach is to pre-determine trajec-
tories from a large number of positions throughout the white matter
(full brain fiber tracking) and to offer facilities to aid the user in
selecting fiber bundles of interest.

Two factors are crucial for the use and acceptance of this tech-
nique in clinical studies: Firstly, the selection of the bundles by
brain experts should be interactive, supported by real-time visual-
ization of the trajectories registered with anatomical MRI scans.
Secondly, the fiber selections should be reproducible, so that difter-
ent experts will achieve the same results.

In this paper we present a practical technique for the interactive
selection of fiber-bundles using multiple convex objects that is an
order of magnitude faster than similar techniques published earlier.
We also present the results of a clinical study with ten subjects that
show that our selection approach is highly reproducible for frac-
tional anisotropy (FA) calculated over the selected fiber bundles.

CR Categories: 1.3.8 [Computing Methodologies]: Computer
Graphics—Applications 1.3.6 [Computing Methodologies]: Com-
puter Graphics—Interaction Techniques
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1 INTRODUCTION

In recent years, MR diffusion tensor imaging (DTI) has emerged as
a new technique for the quantification of water diffusion in living
tissue [10, 9]. Diffusion is commonly represented for every voxel
by a second-order symmetric positive definite tensor. These tensors,
derived from a sequence of diffusion-weighted scans, each sensitive
to a different diffusion direction, describe the free motion of water
molecules in tissue. This makes the technique very suitable for
imaging fibrous tissue, as there are large differences in diffusion
speed parallel with the fiber direction, and perpendicular to it. The
anisotropy is reflected in the tensor data; the amount of anisotropy
and the main directions of diffusion can be made explicit by eigen
analysis of each tensor.
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DTT is now widely used as a research tool for studying the micro-
structure of white matter tissue in the brain. Examples of applica-
tions are studies to differentiate the global nerve structures between
brains malformed by disorders and healthy brains, quantification of
the strength and integrity of nerve tracts (e.g. for stroke patients),
and studies to determine the connectivity structure between differ-
ent parts of the brain.

Based on the diffusion tensors, the directional structure of the
underlying tissue can be determined and visualized by tracing paths
that follow white matter tracts. This operation is usually called fiber
tracking, or white matter tractography in brain applications [6, 2].
From a number of seed points placed in a region of interest, large
numbers of fibers can be tracked. The fibers generated can be used
for visualization, but the resulting images are complex and difficult
to interpret. An effective approach is to pre-determine trajectories
from a large number of positions throughout the white matter (full
brain fiber tracking) and to offer facilities to aid the user in selecting
fiber bundles of interest connecting specified regions in the brain,
or passing through a specified region.

Two factors are crucial for the use and acceptance of such a tech-
nique in clinical studies: Firstly, the selection of the bundles by
brain experts should be interactive, supported by real-time visual-
ization of the trajectories, registered with anatomical MRI scans.
Secondly, the fiber selections should be reproducible, so that differ-
ent experts will achieve the same results.

Therefore, interactive techniques are needed that allow brain ex-
perts to select the anatomically correct fiber bundles. If a number
of fibers can be collected that meet the same requirements, such as
connecting the same regions or passing along a certain location, the
selected set can be considered to correspond to a fiber bundle. If
such fiber bundles can be extracted in a reproducible way by dif-
ferent expert operators, then they can be used for quantification of
diffusion along specific bundles to compare their characteristics be-
tween different patients, or for one patient at different times.

In this paper we describe a practical technique for fast interac-
tive selection of fiber bundles with multiple convex objects that are
defined by half-spaces. The selection technique is about an order of
magnitude faster than a similar selection technique presented earlier
[1], and thus selection remains interactive for far larger numbers of
fibers. In addition, we present a specific selection approach based
on three selection boxes and then show the validity of this approach
with a group of ten subjects and two operators. The result is that this
approach yields a high inter-operator reproducibility for fractional
anisotropy, or FA, calculated over the selected fiber bundles.

The rest of this paper is structured as follows: Section 2 contains
a summary of existing work on the visualization of DTI data. In
section 3 we explain how to perform real-time fiber selection with
multiple convex selection objects. We present the reproducibility
study in section 4. In section 5, we give a brief overview of our DTI
visualization software tool, called DTII. We present a summary and
our conclusions and indicate possible avenues for future research in
section 6.
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2 RELATED WORK

Many techniques have been developed for the visualization of dif-
fusion tensor data. For example, each tensor can be visualized with
various kinds of glyphs that reflect the properties of the tensors that
they represent [10, 4]. Direct volume rendering techniques can be
applied where the color and opacity transfer functions are deter-
mined by anisotropy metrics that are derived from the tensor [5].

White matter tractography [6, 2], or fiber tracking, attempts to
calculate and visualize the probable trajectories of neural pathways
in the white matter of the brain. These pathways are formed by
bundles of neuronal axons. This is probably one of the most popular
techniques for visualizing DTI data.

Until recently, most fiber tracking implementations have focused
on allowing the user to select volumes of interest and then com-
puting the fibers that pass through these regions. However, recent
work has investigated the merits of pre-calculating a large number
of fibers throughout the brain and analyzing the results.

For example, fibers can be automatically clustered and visual-
ized [11, 3]. It has also been demonstrated that pre-calculating a
large number of fibers throughout the brain and enabling flexible in-
teraction with the fibers is an effective approach [1]. Fiber bundles
can be interactively selected by manipulating a number of selection
boxes or ellipsoids and combining the selected fibers with logical
operations. This paper emphasized the importance of interactivity
as an important component of this approach.

In this work, we show that such a selection technique leads to
highly reproducible FA measurements over fiber bundles and can
therefore be used as a measurement tool in pre-clinical studies. In
addition, we improve on the interactivity aspects by presenting a
technique whereby fiber selection with multiple convex selection
objects can be performed extremely rapidly.

3 REAL-TIME FIBER SELECTION

As explained above, interactive selection of pre-calculated fiber
bundles with multiple selection objects is an important component
of effective visualization of DTI data. However, it is crucial that
this selection can be done in real-time while the user interacts with
the system.

In this section, we present a technique for the real-time selection
of fiber bundles based on their intersection with an arbitrary number
of convex objects. The final selection of fibers is the result of an
arbitrary binary relation between the different selection objects. For
example, one could request all fibers that intersect with objects A
and B but not with C.

3.1 Overview

Fibers are represented as collections of short line segments. The
simplest way to check which fibers intersect with a given selection
object, is to check all line-segments of all fibers against the selec-
tion object. However, this would be quite slow, since there is a large
number of line segments: an average dataset contains 45000 fibers
with on average 60 line segments each resulting in a total of 2.7
million points.
Instead, we chose to implement this test as follows:

1. During pre-processing, all points that make up the fibers are
inserted into a spatial data-structure.

2. All points inside the given selection object are enumerated.

3. All fibers that have at least one point inside the selection ob-
ject are marked.
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Figure 1: A two-dimensional kd-tree of depth 4 containing 32 points.

Instead of intersecting the polylines that represent the fibers with
the selection object, we check simply for containment of the ver-
tices that define these polylines. Since the length of a line-segment
is small compared to the size of a selection object, this does not sig-
nificantly affect the results. The spatial data-structure that we use
is the kd-tree. This can be used to enumerate all points inside any
convex polyhedron. Each point is linked to its fiber, so that visited
points can quickly be mapped to visited fibers.

In the following subsections, we explain how the kd-tree is built
and how it should be traversed, and we show how the technique
can be applied to combinations of multiple selection objects. We
conclude with some performance figures for the three-box selection
method described previously.

3.2 The kd-Tree

The kd-tree is an n-dimensional tree of spatial subdivisions [7].
Each subdivision splits a rectangular sub-space into two halves,
which preferably contain an equal number of points. The splitting
planes are axis oriented, and their orientation cycles with each level
of recursion. For a two dimensional tree, this means that on level 1
the tree splits on the x-axis, on level 2 on the y-axis, and on level 3
on the x-axis again.

In contrast to other spatial subdivision schemes like the octree,
we can freely choose the coordinate of the splitting plane, which
gives us the freedom to balance the tree. If we choose each splitting
location exactly at the median of the points sorted along the splitting
direction, then each split space contains the same number of points,
thus producing a balanced tree structure.

The fiber selection uses a 3 dimensional version of this tree, but
for illustration purposes we will examine the two dimensional case.

To illustrate how this splitting technique works, 32 two dimen-
sional points and their corresponding kd-tree are shown in Figure 1.
Each split is marked with its depth, such that level O and 2 split
along the x-axis, and level 1 and 3 along the y-axis. As we can see,
each leaf node contains 2 points, but since the distribution of the
nodes varies, not all leaf-nodes have the same dimensions.

3.3 Traversal

Once the kd-tree has been constructed, we can use it to determine
which fiber vertices are contained in an arbitrary convex polyhedron
P. We describe the polyhedron P as the intersection of a set of half-
spaces Hy ... Hy:
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Figure 2: In two dimensions, the intersection of three half-planes
yields a convex polygon. The three half-planes are hatched in red,
green and blue respectively. Each area is marked with its bit vector,
so that (111) forms the polygon. In three dimensions, the polygons
become polyhedra, and the half-planes become half-spaces.

To indicate in which half-spaces a given point x is contained, we
use a binary vector v of length n.

x € H;

1
Vi = {0 X¢Hi

These binary vectors form a way of classifying areas, as can be
seen in Figure 2.

The general idea of our approach is to recursively traverse the kd-
tree in order to determine which nodes of the kd-tree are contained
in P, while visiting as few nodes as possible.

A pseudo-code version of the traversal procedure is shown in
Algorithm 1. Refer to this during the following explanation.

We start by examining the root node of the tree, which contains
all points. Each visited node is classified respectively to the given
polyhedron P. A node can be either completely inside of P, com-
pletely outside of P, or partially inside (see Figure 3).

A node is classified into one of the three categories by examining
all corners of the bounding box of that node. In our case, this three-
dimensional box has 8 corners, denoted by b ...bg. The collection
of all eight corners is denoted B.

If all corners of the bounding box are inside of P then, as a re-
sult of the convexity of P, the entire box must be contained in the
polyhedron. In this case, we can simply mark all points contained
in this node as “inside”, and no further testing is necessary.

If this is not the case, then we try to establish whether the bound-
ing box is completely outside of the polyhedron. We do this by
checking whether there is any half-space in P for which all points
are outside. If this is the case, then we can conclude that none of
the points inside the bounding box can be inside P, and no further
recursion is necessary.

When neither of the two previous cases are true, then it is possi-
ble that the points are partly inside and partly outside convex poly-
hedron P. This is where we exploit the kd-tree’s spatial subdivi-
sioning by recursively examining both child-nodes. This recursion
continues until all points contained in the kd-tree have been classi-
fied.

i=1...n

Algorithm 1 The recursive kd-tree search algorithm.

function recurse
if leaftnode then
visit()
else
alllnside <=1
for allh € H do
allOutside <= 1
for all x € Bdo // iterate the x over all corners of the box
if x € h then // x is inside the half-space h
allOutside <= 0
else // x is outside
alllnside <=0
end if
end for
if allOutside = 1 then
return
end if
end for
if alllnside = 1 then // all points were inside all half-spaces
visit_all() // completely inside: visit all points
return
end if
recurse(left)
recurse(right)
end if
The main kd-tree search algorithm. The auxiliary function visir tests all points con-
tained in the leaf node against the polyhedron, and flags all points that are inside. The
visit_all function does the same but assumes all points are always inside.

// iterate the h over all half-spaces

// all points were outside h
// completely outside: visit no points

In short, the procedure we described is recursive and starts by
examining the root node. It examines the surrounding box for the
node and efficiently decides how the corners of the box relate to the
convex search area. This relation can be classified in three cases:
fully inside, fully outside, neither. Only in the last case further
recursion is necessary. Figure 4 shows a graphical representation
of all the visited nodes of the kd-tree after the cingulum has been
selected.

3.4 Marking the fibers

Now that we have found all the points, we still need to find all the
corresponding fiber bundles. Since each point only belongs to a
single fiber we store a simple fiber-reference with each point (see
Figure 5). Using this pointer, we can quickly flag all fibers that
contain visited points.

3.5 Multiple Convex Regions

We can expand this idea to work with multiple regions by changing
the fiber flag to a bit-vector. For each convex region we reserve a
single bit.

We initially set all bit-vectors to zero, and then for each region
flag all fibers that have points inside the region. After processing
all regions, each fiber will have a bit-vector corresponding to which
regions it intersects. This can be easily used to select all fibers that
correspond to any given logical combination of selection objects.

A useful selection approach is a logical AND of three boxes, so
that only the fibers that cross all three boxes are visible. This allows
us to select most standard fiber tracts.

Sometimes these selection methods erroneously mark extra
fibers. To get rid of these fibers we introduce extra boxes that work
in a negated fashion: any fibers that pass through any of these boxes
are filtered out. This allows for easy manual pruning of a selection
set.
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Figure 3: The three classes of containment for a box with of 4 corners b, ...b4, with respect to a polyhedron defined by the intersection of four
half-spaces h; ...hs. On the left, the box is completely contained. In the middle, all points are outside the half-space &3, so the box is completely
outside the polyhedron. In the rightmost figure neither is true, and further recursion is necessary.

Figure 4: The visited nodes of the kd-tree for the selection of the
cingulum.
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Figure 5: A number of points in a leaf-node, each with a reference to
a fiber mask entry.

3.6 Performance

The performance of any selection method of this type is dependent
on the size of the dataset, the number of fibers in the data, the size
of the selection objects and the current position of the selection ob-
jects. We measured the performance of the implemented techniques
by making use of a dataset with 47500 fibers and we used three se-
lection objects as explained in section 4. By moving the selection
boxes to different parts of the brain, we measured a range of selec-
tion speeds.

In all cases, the system remained completely responsive, and the
fiber selection was updated in real-time during intensive interac-
tion with the selection objects. On a first generation Pentium-M
at 1.6GHz, our implementation processed between 1 and 2 million
fibers per second. On a Pentium 4 at 3GHz, it processed between
1.5 and 3.5 million fibers per second. This includes selection and
rendering of the selected fiber bundles.

This is at least an order of magnitude faster than the figures pub-
lished in [1]: on a “1.6GHz Pentium laptop PC” they were able to
intersect a single VOI with between 80000 and 220000 pathways
per second. We attribute this improvement to the fact that our se-
lection and rendering implementations were purpose-designed for
highly-interactive DTI, whereas general-purpose visualization and
collision-detection libraries were used in [1].

4 VALIDATION OF THREE-BOX SELECTION METHOD

In a DTI-based study of healthy and schizophrenic subjects, a selec-
tion method was required whereby sections of fiber bundles could
be easily and reproducibly selected. DTI-derived parameters, such
as for example the FA, or fractional anisotropy, can then be calcu-
lated over these sections and be compared for different test subjects.

Based on the techniques presented in section 3, we chose an ap-
proach based on three bounding boxes. All three bounding boxes
can be freely positioned, rotated and resized within the DTII user
interface. One or more slice-views of the data can be used as con-
text during this navigation. All fibers intersecting with any one of
the three cubes are pre-selected. One of the three bounding boxes
also functions as the section selector: only sections of the pre-
selected fibers that are contained within this box are added to the
final selection. Figure 6 shows such a fiber selection in progress.
Unselected fibers are shown with a different shading to serve as
context for the selected fibers. The box in the middle is the section
selector in this case: only the fiber sections contained in this box are
actually selected. These are marked with red dots. The selection is
performed and shown in real-time throughout the user’s interaction
with the system.
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Figure 6: The three-box selection method in progress.
selection is made of all fibers that intersect all three boxes. Out of
this pre-selection, only fiber sections that are contained within the
center box are selected for further processing.

Left Cingulum Right Cingulum
Percentile Obs. 1 Obs. 2 Obs. 1 Obs. 2
25 4359.25 4370.25 | 4969.00 5039.25
50 4801.00 4742.00 | 5505.50 5513.00
75 5196.75 5329.75 | 5689.50 5760.00
IQR 837.50  959.50 | 720.50  720.75

Table 1: 25, 50 and 75 percentiles and the interquartile ranges (IQR)
for the FA measurements by each of the observers on the left and
the right cingulum. The FA measurements have been scaled to the
range [0, 10000].

DTI datasets were acquired of five healthy and five schizophrenic
subjects on a Philips Intera 3 Tesla MRI scanner. The datasets were
acquired along 16 different diffusion directions. Each direction was
scanned twice and averaged to improve the signal to noise ratio.
The scan time was approximately 6 minutes per patient and the final
resolution of the DTI dataset was 2 x 2 X 2 mm.

Two users applied the method described above to select the fiber
bundles corresponding with the left and the right cingulum in all
ten datasets. In other words, 40 independent selections were per-
formed. On average, each selection took less than two minutes.

The average FA, or fractional anisotropy, was calculated over
the selected fiber sections, resulting in four FA measurements per
subject. The fiber tracking was performed anew by each user. We
made use of FA due to the specific clinical questions that were being
asked and due to its popularity in clinical DTT literature. In the
future, we will continue our research by investigating other metrics,
both existing and newly developed.

Due to the relatively small sample size, we chose to make use of
non-parametric statistics to analyze our data.

Table 1 shows the 25th, 50th and 75th percentiles as well as the
interquartile ranges (IQR) for the measurements by each of the ob-
servers on the left and on the right cingulum. The interquartile
ranges show that the FA measurement varied significantly over dif-
ferent patients.

For the left cingulum, the non-parametric Spearman correlation
between the two observers was 0.903 and for the right cingulum it
was 0.976, both with a two-tailed significance of less than 0.001.
This shows that the inter-observer correlation is sufficiently high
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Figure 7: The main user interface of DTI. A T1-weighted and
T2-weighted anatomical scan are combined using color fusion
(blue/orange). This is used as a background context against which
the fiber selection of the cingulum is performed using the three-box
method.

for the reproducible selection of fiber bundles and subsequent mea-
surement of FA over these selections.

5 THE DTII SYSTEM

The DTII platform was designed to provide functionality for the in-
teractive exploration of DTI data. It was developed in cooperation
with the Academic Medical Centre in Amsterdam. The software
performs full brain tractography as a preprocessing step and al-
lows the user to perform interactive selections on the pre-calculated
fibers by using the techniques presented in section 3. In addition,
other MRI data can be combined with the DTI visualization to pro-
vide context. It supports fusion of anatomical MRI, functional MRI
(fMRI) and DTI data. This data is usually acquired in a single scan-
ning sequence, but with proper registration multiple scans can also
be combined. Figure 7 shows the the main user interface of the soft-
ware. This tool was used in the reproducibility study documented
in section 4.

DTII employs the the TEEM library for all data handling and fiber
tracking. TEEM is an open-source image processing and visualiza-
tion library that also supports tensor processing. Via this toolkit,
DTII offers two types of fiber tracking: fourth-order integration
based streamlines on the primary eigenvectors of the diffusion ten-
sors or tensor lines [8].

All visualization methods in DTII support progressive updates in
order to maintain high frame-rates even during complex manipula-
tions. DTII was written in G+ and is highly portable, depending
only on a few external libraries. Currently, versions for Windows
and Linux are in use. It is complemented by a conversion utility
which can convert both MRI and DTI DICOM series to the native
DTII data format. This facilitates deployment in a medical environ-
ment.

The user interface is customizable so that only the components
relevant to the task at hand are displayed. This greatly eases repet-
itive selection processes, as the user is no longer distracted by su-
perfluous user interface elements.

Feedback from clinical users has been positive.
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6 CONCLUSIONS AND FUTURE WORK

This paper presents two contributions to the field of DTI visualiza-
tion. Firstly, we presented a technique that enables the real-time se-
lection of fiber bundles with multiple convex selection objects. Sets
of fibers that intersect with the convex selection objects can be com-
bined with logical operations. The kd-tree datastructure combined
with the halfspace representations of the selection objects is very
efficient: selections with three objects in a full brain dataset with
2.7 million fiber points works very well in interactive mode. We
showed that this technique performs an order of magnitude faster
than similar previous techniques.

Secondly, we have tested the interactive selection of DTI-derived
fibers with three manipulable boxes on 10 subjects. For each of
these 10 subjects, two users independently selected the fiber bun-
dles corresponding to the left and the right cingulum. The average
fractional anisotropy (FA) was calculated over these fiber bundles.
Our analysis of the test data shows both a significant variation of
the FA over the different subjects and a significantly high correla-
tion between the measurements by the two observers. This inter-
observer reproducibility indicates that this type of approach can be
used as a measurement tool in pre-clinical studies.

The interactive bundle selection may be combined with semi-
automatic methods such as similarity clustering. We will continue
developing the DTII tool and plan to continue working on its in-
tegration in a clinical setting. We will also perform more similar
studies on test subjects to determine the reproducibility of other
fiber selection based metrics. Ultimately, we wish to develop reli-
able and reproducible connectivity metrics that can be used to mea-
sure the “strength” of a neural connection between two regions of
interest. In this way, diagnostic test sets can be developed to ex-
amine the main connection pathways in the brain to diagnose brain
disorders. Visualization will play an important role in this type of
diagnosis.

Our selection method is based on multiple convex polyhedra. At
the moment there is no requirement for concave selection objects,
but if this requirement arises, we plan to extend our approach by in-
tegrating methods for decomposing concave polyhedrons into mul-
tiple convex polyhedra.
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