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Classifying CT Image Data Into Material Fractions
by a Scale and Rotation Invariant Edge Model

Iwo W. O. Serlie, Frans M. Vos, Roel Truyen, Frits H. Post, and Lucas J. van Vliet

Abstract—A fully automated method is presented to classify 3-D
CT data into material fractions. An analytical scale-invariant de-
scription relating the data value to derivatives around Gaussian
blurred step edges—arch model—is applied to uniquely combine
robustness to noise, global signal fluctuations, anisotropic scale,
noncubic voxels, and ease of use via a straightforward segmenta-
tion of 3-D CT images through material fractions. Projection of
noisy data value and derivatives onto the arch yields a robust al-
ternative to the standard computed Gaussian derivatives. This re-
sults in a superior precision of the method. The arch-model pa-
rameters are derived from a small, but over-determined, set of
measurements (data values and derivatives) along a path following
the gradient uphill and downhill starting at an edge voxel. The
model is first used to identify the expected values of the two pure
materials (named and ) and thereby classify the boundary.
Second, the model is used to approximate the underlying noise-
free material fractions for each noisy measurement. An iso-sur-
face of constant material fraction accurately delineates the ma-
terial boundary in the presence of noise and global signal fluc-
tuations. This approach enables straightforward segmentation of
3-D CT images into objects of interest for computer-aided diag-
nosis and offers an easy tool for the design of otherwise compli-
cated transfer functions in high-quality visualizations. The method
is applied to segment a tooth volume for visualization and digital
cleansing for virtual colonoscopy.

Index Terms—Anisotropic Gaussian point spread function
(PSF), object segmentation, partial volume effect (PVE), transfer
function for visualization, voxel classification.

I. INTRODUCTION

SEGMENTATION isolates and delineates objects and struc-
tures of interest from their surroundings, e.g., an organ, the

colon or an arterial tree in a 3-D medical CT image. It is a fun-
damental task in image processing and a requirement for quan-
tification and high-quality visualization. Segmentation is often
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complicated by the limited and anisotropic resolution of the
image modality at hand. The resolution of a multislice spiral
CT scanner is limited by its configuration (size of the detector
elements) and the reconstruction algorithm [1]. The anisotropic
space-variant point spread function (PSF) resembles spiral pasta
[2], but is often modeled by an anisotropic 3-D Gaussian PSF.
We have shown that the edge spread across tissue transitions
can be accurately modeled by the erf-function and, hence, sup-
port the use of a 3-D Gaussian PSF [3]. Modeling the PSF by
a Gaussian also permits accurate edge detection of curved sur-
faces [4]. The finite resolution causes contributions of different
materials combined into the value of a single voxel. This is gen-
erally referred to as the partial volume effect (PVE) [5]. It results
in blurred boundaries and hampers the detection of small or thin
structures.

In this paper, we present a novel method that models the PVE
to estimate material fractions in the edge region. The method
deals with two-material transitions based on locally estimated
derivative values. We extended previous work [6] by incorpo-
rating the invariance to anisotropic noise and anisotropic scale
of the data and the generalization to an arbitrary order of deriva-
tives. Projection of noisy data value and derivatives onto the
appropriate arch model yields a robust alternative to the stan-
dard computed Gaussian derivatives. The method allows slowly
varying material intensities at both sides of the transition and
small structures because pure material voxels are not required
to estimate model parameters. We will demonstrate how this ap-
proach may be used to segment and visualize complicated struc-
tures of interest in a reproducible and simple way. It also facil-
itates digital cleansing for virtual colonoscopy.

A. Related Work

The method presented here is inspired by the work of Kindl-
mann [7] and Kniss [8]. Kindlmann creates a histogram of the
data value and the gradient magnitude (
is along the gradient direction). This yields arch-shaped point
clouds for edge regions [Fig. 1(a)]. Fig. 1(b) shows such point
clouds for a three-material phantom scanned with anisotropic
resolution. The arch connects the two materials at the base line
and its height depends on the scale across the edge. The second
derivative in the gradient direction is added
as a third dimension. Kindlmann estimates the first and second
derivatives and as a function of data value from
the 3-D histogram by slicing it at data value and finding the
centroid of the scatterplot of and at that value. Then
they apply a mapping of the signal value onto the distance to
the nearest edge using and the esti-
mated derivatives. The scale across edges is obtained from the
histogram using . Kindlmann
and Kniss use the histogram to visualize boundary information
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Fig. 1. (a) Schematic overview of a three material phantom using three multi-
planar reformatted images through a CT-volume. The axial resolution (z axis)
is lower compared to the lateral resolution (x; y plane). (b) Scatter plot of in-
tensity and gradient magnitude. (c) Scatter plot of intensity and scale-invariant
gradient magnitude. Three instantiations of the arch model are superimposed
corresponding to the three types of material transitions.

and guide the user in designing an opacity transfer function for
volume visualization. The user may select parts of the histogram
to avoid rendering all edges and may specify the opacity as a
function of distance to the nearest edge. The objective is to vi-
sualize regions close to selected material transitions as opaque.
Rather than rendering the volume based on a transfer function
that depends on only the measured signal value, Kindlmann’s
transfer function is derived from the triplet . The
height of the arch-shaped point cloud is spread over a wide range
due to anisotropic resolution of the scanner. Moreover, a global
fluctuation in data value hampers the estimation of derivatives
from the histogram. Consequently, the approximation of Kindl-
mann’s method is limited to data of isotropic resolution without
global fluctuation in data value.

Laidlaw [9] proposed a supervised Bayesian method for clas-
sification of partial volume voxels into material fractions by fit-
ting basis functions to local histograms of voxel values. For each
voxel, the relative contribution of each basis function yields
the material fractions. A disadvantage of this method is that
the voxel is modeled as a cubic region not explicitly modeling
the scale of the data or the blurring operator. Additionally, pro-
cessing a single voxel is susceptible to noise.

De Vries [10] aims to classify image-data into materials and
related interfaces. Radial basis functions are used to model the
probability of an image intensity to occur given a type of mate-
rial. Material-fractions are estimated by the a posteriori proba-
bility, which is expressed in the radial basis functions by Bayes’
rule. The priors are estimated from a local histogram of in-
creasing size until stabilization occurs. Finally, a partial volume
measurement is classified into pure materials based on the pre-
dicted edge position. A disadvantage of this method is that it
requires sufficient voxels that are not disturbed by the PVE to

obtain sensible priors for the pure materials in the Bayes rule.
Hence, the size of the neighborhood may be unfavorably large
or the method does not stabilize at all. Small objects are likely
to be misclassified because the method might stabilize on sur-
rounding materials.

Several problems remain when adopting the methods de-
scribed above. First, problems related to the resolution of the
data remain. The size of the structures of interest is often of
the same scale as the resolution function, the PSF. Hence, it is
favorable if the image processing does not further degrade the
scale. At the same time, filtering is usually applied to cope with
the noise in the data. A disadvantage of Kindlmann’s method
is that it implicitly assumes data of isotropic resolution. If the
data is not isotropic, filtering is required to adjust the smallest
scale to the largest scale.

Second, the segmentation of a single material connecting
to more than one other material cannot be based on a scalar
value alone, e.g., due to the PVE. An advantage of Kindl-
mann’s method is that it discriminates between different types
of boundary voxels that share the same range of data values
using the higher order image structure as obtained by image
derivatives. However, the method still requires several transfer
functions—one for each adjacent material—to visualize one
object. In addition to this, manually tuned transfer functions are
dependent on the expertise of the operator and may not be used
if reproducible and accurate object delineation is required.

Third, a typical problem with volume rendering methods is
that the transfer function is directly applied to the data value.
Since all images are hampered by noise, this noise may be am-
plified by the transfer-function in a nonlinear manner.

B. Objective

Our objective is to automatically classify scalar-valued 3-D
CT images into material-fractions. Our approach uniquely com-
bines robustness to noise, global signal fluctuations, anisotropic
resolution, noncubic voxels, and ease of use. An iso-surface of
constant material fraction provides a straightforward way to rep-
resent the boundary of a material in a reproducible manner. This
facilitates straightforward segmentation of images into objects
of interest for subsequent quantification in CAD or high-quality
scientific visualization. The latter is used to illustrate the ben-
efits of this approach. Our approach is rotation invariant, uses
a narrow strip of voxels in the edge region that is smaller than
the PSF footprint, does not rely on additional blurring for noise
suppression, and can, therefore, be applied to segment small and
narrow structures.

The work of Kindlmann et al. is limited to data of isotropic
resolution without global signal fluctuations, because it is based
upon estimating derivatives from a histogram. Laidlaw et al.
classify data into material fractions. However, a voxel is mod-
eled as a cubic region, not explicitly modeling the scale of the
data. Additionally, processing a single voxel is susceptible to
noise. De Vries et al. classify data into material fractions using
a neighborhood of the voxel. However, the method relies on suf-
ficient voxels that are not hampered by the PVE.

Standard methods for edge detection use the maximum edge
strength (Canny) or zero-crossing contours of the Laplacian-of-
Gaussians (Marr–Hildreth). Many methods for 3-D edge detec-
tion are based on convolutions with Gaussian operators. This
can be described as local fitting of a Gaussian with Gaussian
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Fig. 2. (a) Model parameters (L;H) are obtained by fitting the arch model
to the measurement pair (scaled to have isotropic noise). (b) Estimated model
parameters (L;H) are stored in the LH histogram. (c) Clustering of the LH
histogram yields material transitions and is used to classify voxels into transition
type. (d) Projection of the noisy data value and derivatives onto the edge-spe-
cific arch model yields a robust alternative to the standard computed Gaussian
derivatives. (e) Projected measurements are mapped on the material fractions
� � corresponding to material L and H .

blurred edges with the maximum response at the edge position.
However, with these methods the matched model is described as
a function of position. Our approach differs from these methods,
because it is based upon a model that describes Gaussian deriva-
tives as a function of data value or material fraction. This en-
ables straightforward extraction of contours at a constant mate-
rial fraction. In addition, fitting the arch model to the data does
not require an accurate estimate of the gradient direction, be-
cause the distance to the edge is not a parameter. By including
knowledge of the expected data value of pure materials, our
method generates contours that border on a specific material.
Still, it uses the best of previous methods, because it is based
upon the Gaussian.

II. METHODS

A. Outline

The proposed method (Fig. 2) employs an analytical ex-
pression called model, which relates the scale-invariant

th-order derivative to the data value, and, hence, the material
fractions along transitions.

A single arch function is parameterized by the expected pure
material intensities at opposite sides of the edge and
a scale parameter, the standard deviation of the apparent
Gaussian PSF (depends on the edge orientation for anisotropic
PSF of the scanner). The parameters and denote respec-
tively the low and high material intensities. The apparent scale

allows us to account for the space-variant, orientation-depen-
dent resolution of the scanner. The model has been constructed

such that it directly describes Gaussian derivatives without
having the distance to the edge as a parameter. In addition,
local fitting of this model results in material intensities as
function parameters [Fig. 2(a)]. The model is fitted to a set
of measurements acquired by applying orthogonal Gaussian
operators to a set of edge voxels. These edge voxels form a
path along the gradient direction inside the support of the PSF.
This yields local estimates for model parameters , , and .
The -parameter space is represented by an histogram
[Fig. 2(b)]. A peak in the histogram constitutes one type
of material transition, i.e., between the and values of the
cluster. Cluster membership is used to classify edge voxels into
transition types [Fig. 2(c)].

The measured data value and gradient magnitude for a single
voxel are independent, but display different noise variances.
First, we make them invariant to the edge-orientation depen-
dent apparent scale of the data and second we scale them in
such a way to obtain isotropic noise. Previous work (e.g., [6])
disregards edge-orientation-dependent apparent scale, which is
caused by the anisotropic resolution of the scanner and does not
model the noise properly. The scaled measurement pair is pro-
jected onto the model it has been assigned to in the voxel classi-
fication step [Fig. 2(d)]. The projection provides an estimate of
the underlying noise-free data value and the true gradient mag-
nitude that are less sensitive to noise than an estimate obtained
by Gaussian derivative filters of the same scale. The relative po-
sition of the estimated data value between the local and
yields the material fractions [Fig. 2(e)].

B. Transition Model

A two-material transition [Fig. 3(a)] is modeled by a unit
step-function (2) that is convolved with a 1-D Gaussian edge-
spread-function (ESF) (3) resulting in a cumulative Gaussian
distribution (1) [Fig. 3(b)]. The true edge-location is defined
at . It has been shown that the cumulative Gaussian is an
excellent model to describe the CT values across a two-material
transition [3]. For a given direction, the ESF is approximately
constant over the image and, therefore, has not to be re-esti-
mated for every voxel [3]

(1)

with

(2)

(3)

(4)

A compact description of edges is obtained using gauge co-
ordinates, a local Cartesian coordinate system with axes aligned
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Fig. 3. (a) Material transition modeled by the unit step edge u. (b) Data values
are blurred at two scales. (c) Scale-invariant gradient magnitude as a function of
position. (d) Single arch is obtained upon plotting the scale-invariant gradient
magnitude as a function of data value. (e) Gaussian derivatives (order n = 1,
2, 3, 4) of a step edge. (f) Arch function (order n = 1, 2, 3, 4) express the nth
Gaussian derivative as a function of the Gaussian filtered data value.

to the intrinsic local image coordinates. Let represent the gra-
dient direction, the basis of the isophote surface and

the scale of the Gaussian function along . Notice that a
description of transitions in gauge coordinates is by definition
both rotation and translation invariant.

We assume that a) materials are pure and only produce mix-
tures as a result of the convolution with the PSF; b) the scale
of the edge spread is known, for instance, by calibration. Ini-
tially, we assume that c) the expected data values at the transi-
tion are 0 and 1 such that denotes the

data value (1) and denotes the gradient
magnitude (3) (in E, we generalize the model). In the remainder
of the text, we occasionally drop the position information for the
sake of clarity. When plotting the gradient magnitude as
a function of data value , arch-shaped point-clouds appear
[Fig. 1(b)]. This representation is used by Kindlmann and Kniss
[7], [8] for visualization purposes.

C. Scale Normalization

Scanners with a significantly anisotropic PSF cause the
apparent edge scale , and, therefore, the observed gradient
magnitude depend heavily on the edge orientation. Fig. 1(a)
contains a three-material phantom after scanning with an
anisotropic PSF. Consequently, the scatter plot of intensity
and gradient magnitude as depicted in Fig. 1(b) yields
a wide range of arches between data values 0 and 1000. All
arches share the same base along the horizontal axis, but have
a height that is inversely proportional to . Let be
the scale-invariant gradient magnitude [11] along a transition
as depicted in Fig. 3(c). Plotting yields a single,

scale and rotation invariant arch [Figs. 1(c) and 3(d)] of height
. The dashed lines in Fig. 1(c) are generated by the

model. The spread that remains is caused by noise [Fig. 1(c)].

D. Analytical Expression

In this section, we will derive an analytical expression for the
scale-invariant arch function [Fig. 3(d)]. The arch function de-
scribes the —relation around the transition between
two materials in a 3-D image, irrespective of the edge orienta-
tion, even in the case of an anisotropic PSF and noncubic voxels.
A first step is to determine the inverse cumulative Gaussian
function . It is obtained by inserting (1) in
for . Solving for yields

(5)

The final step consists of multiplying (3) with to make the
gradient-magnitude scale invariant and substitution of with

of (5). This yields

(6)

The arch function is used to describe the scale-invariant gra-
dient magnitude as a function of . Both and are
measured at scale . Note that the does not depend
on a scale parameter. Therefore, the arch efficiently describes
scale-invariant measurements: an advantage that is also inher-
ited by the histogram (Section II-J).

In general, is the th-order scale-invariant deriva-
tive [Fig. 3(e)] as a function of the Gaussian filtered data value
[Fig. 3(f)]. It is obtained using a modified version of the Her-
mite polynomial of order , . The scale-invariant th-order
derivative of the cumulative Gaussian distribution becomes

(7)

Substitution of in (7) with (5) gives

(8)

with . The is
scale invariant and one curve efficiently represents all measure-
ments at a transition with the remaining spread caused by noise.
The Gaussian derivatives of up to the fourth order and the
corresponding arch functions are depicted in Fig. 3(e) and (f).



SERLIE et al.: CLASSIFYING CT IMAGE DATA INTO MATERIAL FRACTIONS 2895

The arch function is related to the inverse cumulative Gaussian
(9) through its derivative (Appendix I)

(9)

It can be concluded that closely resembles a para-
bolic function around the peak, where its derivative is approx-
imately linear. Moving away from the peak the function devi-
ates more and more from a parabolic function, as indicated by a
rapidly changing slope of .

Equation (6) is analytical but not in a closed form. Con-
sequently, evaluating is cumbersome, since it re-
quires finding the roots of . This
problem is circumvented by considering the inverse function

for that has a closed-form
expression (Appendix I)

for

(10)
The inverse arch function describes the Gaussian filtered data

value as a function of scale-invariant gradient magnitude:
.

E. Generalization Towards Arbitrary Intensity Levels

Thus far, we have assumed a transition between materials
with expected data values 0 and 1. The description is now gener-
alized by adding two parameters to represent the expected data
values and with . A two-material edge is modeled
as a scaled unit-step function

(11)

Let represent the Gaussian filtered step edge
at scale and the scale-invariant gradient
magnitude at the transition

(12)

(13)

The generalized arch function describes the scale-normalized
gradient magnitude as a function of the intensity and the
expected data values and

(14)

F. Noise Isotropy

Measurements, including , yield the noise-free
values (step edge convolved by Gaussian PSF) contaminated

by noise. The noise is assumed to be Gaussian distributed
with zero mean and variance (like in [4] and [12]). An
estimate of these noise-free values is obtained by mapping the
measured values of onto the “closest” point on the
corresponding arch. The distance metric to be used depends on
the covariance matrix of the noise. The two measurements are
obtained by orthogonal operators. Hence, these measurements
have , but may display different variances.
An isotropic (Euclidean) metric can be used if the derivative
is scaled by a factor such that the noise in is
isotropic. In that case, we can use the orthogonal projection
from the point onto the -weighted arch.

The relation between the variances (of the noise) before
and after convolution with a -order Gaussian derivative
of scale in -dimensional space is [4]

(15)

Typically, for medical images, the sampling along the
scanner’s axis (axial, slice pitch, out-of-plane) is often lower
when compared to the and dimensions (lateral or in-plane).
We would like to use Gaussian derivative filters that are not
sampled isotropically to minimize additional blurring. Let
denote the sampling pitch of the signal. As a rule of thumb, the
Gaussian operator should obey to meet the Nyquist
sampling criterion [13]. Using smaller scales requires inter-
polation of the data, which reduces to satisfy the sampling
criterion. Analogous to the PSF, we do not restrict the operator
to be isotropic in (i.e., anisotropic sampling of the operator).
In three steps, we 1) compute the variance after anisotropic
Gaussian filtering, 2) compute the variance of the gradient
magnitude as a function of anisotropic Gaussian filtering and
edge orientation, and 3) increase the gradient magnitude by a
scale factor to make the noise in isotropic.

First, consider the variance of the noise after (0th order)
Gaussian filtering: the first dimension of and the
independent variable of . Let be the axial scale
and the lateral scale of the operator with respect to
the -direction. Let be the variance of the noise on after
filtering. The noise isotropy is a prerequisite to using a Eu-
clidean metric to obtain the closest point on the model (arch).
The relation between the measurements of 0th and th order
is modeled using . Hence, absolute noise measurements
are not required and the variance on the measured input
data is not needed. Decomposition of the Gaussian filter into
an axial and a lateral component requires that we apply (15)
with and ,
respectively

(16)

Given that the two convolutions are applied in series (in arbi-
trary order since the convolution operator is commutative),
of the first pass is substituted for of the second pass. This
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Fig. 4. (a) Inverse arch function showing the projection of values along a line onto a single point on the arch. (b) This method is applied to obtain material fractions.
Notice that directly using intensity yields a different outcome (dashed arrow). (c) This projection is used as well to obtain L and H . A set of voxels along a path
in gradient direction trajectory both uphill and downhill is shown in part of a slice from a CT volume with the voxel under investigation marked by ( ). (d) L and
H are obtained by fitting an arch model to the set of (I; �� I ) measurements.

gives a fixed variance after filtering in 3-D, irrespective of the
orientation of the edge

(17)

Second, consider the variance of the noise when measuring
the gradient magnitude: the second dimension of
and the result of . This 3-D operation can be decom-
posed into a 1-D first Gaussian derivative filter in the gradient
direction and a 2-D Gaussian filter in the plane perpendicular
to . Let be the effective scale of the operator in the gra-
dient direction as a function of the angle between and

(18)

Applying (15) with and
, respectively, gives

(19)

These two convolutions applied in series provide the variance
of the noise after filtering in 3-D

(20)

Note that the variance of the gradient-magnitude remains a
function of the edge orientation . Finally, using (17) and (20),
the noise in is made isotropic with

(21)

Suppose, for example, that a Gaussian operator isotropic
in is used to measure derivatives with

. Then (21) is simplified considerably such
that . Assuming the previous isotropy of the
kernel, the noisy measurements ( , ) are projected
onto . Remember that is the overall edge
scale .

G. Orthogonal Projection on the

The measurements , obtained by orthogonal oper-
ators, are combined by projection onto the arch. To begin with,
we assume that and to keep the description
simple. The orientation of the projection is steered by the deriva-
tive of the arch. For this purpose, we use the closed-form inverse
arch function (10) and its derivative (22) as depicted in
Fig. 4(a)

(22)
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Let be the line orthogonal to with
slope and intercept , which crosses

in point . All measurements
on this line are projected onto point of the

(23)

(24)

For a particular measured ( , ), the unique
projection is achieved by numerically solving (24) for . The
second coordinate is found by evaluating .
In general, the projection of a measurement onto the arch pa-
rameterized by , and scaled by requires proper scaling of
the axes. This operation is written as .

H. Fitting the Function

The projection onto the arch function requires the expected
pure data values and at opposite sides of a transition to
be known in advance. Let be a set of measurement
pairs along the gradient direction in the neighborhood of an edge
sample [Fig. 4(c)]

(25)

A 3-D version of Canny’s edge detector is used for initial
finding of edge samples. Because the arch describes derivatives
as a function of data value and not as a function of position 1) an
edge sample needs not to be centered exactly at the edge, and
2) the strip of voxels needs not to be exactly in the gradient ori-
entation. Since an edge is intrinsically translation invariant in the
isophote plane, we select nearby voxel locations (perpendicular
to the gradient direction) rather than apply interpolation. Fur-
thermore, let be the orthogonal projection of a mea-
surement pair onto an arch. By minimizing the summed squared
residuals between the arch and the measurements [Fig. 4(d)]
using the conjugate gradient method [14], the best fitting arch is
obtained. It yields the and values that we are looking for.
The residual error may be used as a measure for the quality
of the fit

(26)

I. Initial Values for and

Local minima may occur for (26). Consequently, initial
values for the , parameters are required. The estimates for

and are obtained from , , (all measured in one
voxel) and (assumed to be known after calibration). Let
be the distance from the voxel to the nearest edge, estimated by

(27)

Equation (3) is used to compute that the predicted
gradient magnitude for and . The ratio between
the measured and model value defines

(28)

Now the predicted intensity at position for and
is computed using (12)

(29)

Finally, and are determined from

(30)

The previous derivation leads to analytical expressions for
initial guesses of and

(31)

(32)

J. Histogram

Fitting an arch to all sets of measurement pairs
yields , values for the voxels in the edge regions. All ,
values can be represented in a 2-D histogram [6]. An
histogram provides a compact description of the data. The
histogram can be interpreted as the resulting parameter space of
a generalized Hough transform [15]. The transform is applied
to a set of measurements in -space. Disregarding the
noise, all samples near a single transition contribute to one entry
in space.

If a material is connected to two or more other materials, their
arches share one base value. Hence, these transitions cannot be
separated in -space. Using higher order derivatives
does not solve this problem because the arches still meet at
a single base value. The histogram shows separate peaks
for each type of transition and allows identification of transi-
tion type through clustering. Fig. 5 shows how different transi-
tions yield separate clusters in -space. Four material sam-
ples yield crossing arches in -space that can easily
be separated since they map to different clusters in the his-
togram.

Unfortunately, the arch-model is not valid at locations where
material pockets are smaller than the size of the point-spread
function as well as at T-junctions. Thin structures (smaller than
the PSF) suffer heavily from the PVE. None of its voxels rep-
resent pure material samples. Consequently, the thin structure’s
pure signal estimate ( or ) is biased towards the value of
its background. A dark thin structure on a bright background
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Fig. 5. LH histograms with the corresponding L- and H-channel, the scatter plot of data value and scale-invariant gradient magnitude (a) before and (b) after
filtering of the L;H-channels. (a) The dashed rectangles mark regions in the L;H-channels where the arch model is not valid. (b) These invalid regions are
detected automatically by thresholding the gradient magnitude of the L- and H-channels. The clusters in the colored circles of the LH histogram have the same
color in the scatter plot.

will lead to horizontal lines between two clusters in the
histogram (a light structure on a dark background leads to a ver-
tical line). At a three-material T-junction with material intensi-
ties , either or stays fixed depending on

versus . In the histogram, such locations
are manifested as vertical (constant ) or horizontal (constant

) lines.
To discard these points from the histogram, thresholds

are applied to the gradient magnitude of both the -channel
and the -channel. The thresholds are selected automatically
from the histograms of the - and -channel gradients. First,
the peak is found by searching the maximum values in both
histograms. Subsequently, searching to the right, the 90% per-
centile is located. Because two-material transitions do occur far
more frequently than three-material transitions, the left parts of
both histograms include the majority of the two-material tran-
sitions. At last, those points are included in the histogram,
which have gradient magnitudes below the selected thresholds.
The filtered histogram describes the data adhering to the
arch model. Note that the histogram inherited some impor-
tant properties of the arch model such as translation, rotation,
and scale invariance.

K. Classification Into Material Fractions

A simple clustering technique applied to the filtered his-
togram allows identification of transitions [6]. This step implic-
itly segments the input data into transition types. Currently, we
retain the locally obtained values to be robust against fluc-
tuations in signal intensity. With the orthogonal
projection of the sample onto the selected arch, represent
the material fraction corresponding to and the material

fraction corresponding to material [Fig. 4(b)]. These mate-
rial fractions are obtained by

(33)

Material fractions remain undefined at positions where the
arch model is not valid. However, the majority of edges in 3-D
images are two-material edges and only a small number of appli-
cations would benefit from non two-material analysis. We may
ignore such locations or select the nearest transition type and
apply the previous mapping for a first-order estimate of true ma-
terial fractions (we adhere to the latter solution in the examples
presented).

L. Visualization

The concept of material fractions is useful to cope with a ma-
terial that borders on two or more other materials. The exact lo-
cation of such edges depends on the type of transition. Having
a material fraction volume allows one to delineate an object at
a single isosurface at threshold 0.5. The boundary of a single
material is visualized by defining a surface at a constant mate-
rial fraction. Currently available rendering engines can be used
after mapping the material fraction onto integer values. An accu-
rate volume measurement is obtained by summing the fractions
multiplied by the volume of a voxel [16]. Likewise, the union of
two objects may be represented by the boundary where the sum
of the two material volume fractions is equal to 50%. At last,
the “intersection” (or touching) surface between two materials
may be identified by the iso-surface where the difference of the
fractions crosses zero, provided that the first derivative of the
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difference is non zero to reject positions where both fractions
are zero.

III. RESULTS

We will demonstrate the usefulness of the presented methods
using phantom data, a publicly available CT volume of a tooth
and abdominal CT data for virtual colonoscopy. Typically, the
sizes of the data were voxels. The processing took approx-
imately five minutes per volume on an AMD64 2.4 GHz.

A. Example 1: Edge Localization

An important problem is the robustness of edge localization
in the presence of noise and small deviations in image inten-
sity. For instance, in CT images, contrast media will never be
distributed homogeneously. The accuracy and precision of the
edge-localization were tested using the tube phantom (Fig. 1).
Reference data were an ultrahigh-dose CT image (400 mAs).
The raw transmission measurements were replaced by a real-
ization of a Poisson process given a scaled version of the data
value as the expected value to simulate very low dose images
(20 mAs, HU) [17]. The resulting low-dose CT image
was modified to contain a small trend in data value to represent
inhomogeneities. In this way, the higher density of the contrast
matter is modeled while proceeding from cecum to rectum in the
CT colon images. The minimum and maximum values of con-
trast matter were 400 and 600 HU, respectively. The edge-po-
sition was estimated in high-dose data not containing the trend.
Thereafter, the edge-position was located in low dose data with
the trend added and the smallest displacement was retrieved
for all points (manually indicated) on the contrast-plastic tran-
sition.

Kindlmann’s method relies on obtaining estimates of
and from the histogram. The histograms obtained from
a high-dose image without a trend in signal value are shown in
Fig. 6(a) and (b) (with scale 1.4 voxel). For a fair comparison
with our method (see below), scale normalized derivatives were
used. The histograms obtained from the low-dose images that
did contain a trend are shown in Fig. 6(d) and (e). Apparently,
the trend results in errors on and due to the dis-
tortion of the arches in the histogram by noise and the trend in
signal value [Fig. 6(d) and (e)]. The resulting localization accu-
racy and precision are presented in Fig. 6(j) and (k) (gray lines).

Alternatively, it was tested if a Gaussian mixture model fit
through expectation maximization can be used to accurately de-
termine the location of the edge in noisy data [9]. The resulting
localization accuracy and precision measured in low dose data
are indicated in Fig. 6(j) and (k) by arrows. Only a single point
is obtained, since there is no kernel involved in the estimation.
Fig. 6(i) represents the tissue fraction in gray value (light gray
means 100% Lucite). From the result, it may be concluded that
a Gaussian mixture model is an excellent method to make a
first estimate of a voxel’s material constituency. However, the
edge-spread function is not explicitly modeled, which is visible
by sharp boundaries.

The arch-based method relies on being able to separate the
clusters in -space [Fig. 6(c) and (f) shows the outcome for
the tube without and with the trend]. Note that Kindlmann uses
the scatter plots such as Fig. 6(a) and (b) both to obtain the
derivatives and to classify the data into edges. A fundamental
difference with his work is that our classification is based on

Fig. 6. Histograms of (a) I , I and (b) I , I that are used by Kindlmann to
obtain estimates of I (I) and I (I). The graphs are obtained from a high-
dose CT image of the phantom shown in Fig. 1. (c) LH histogram by fitting
the arch: noise and global signal fluctuations are no problem if clusters are sep-
arated. (d)–(f) Similar graphs now obtained from a simulated low dose image
in which the tagged matter signal values contained a trend. (g) Part of a CT
slice; (h) Gaussian components of mixture model estimated from the local his-
togram using the expectation maximization method; (i) the estimated Lucite
component is indicated in gray value (light gray corresponds to 100% Lucite).
(j), (k) To compare methods, the smallest distance q between the estimated edge
position in ultrahigh-dose and low dose is measured. (j) The mean (q) and (k)
root mean square (q) are plotted for (gray line) Kindlmann’s method, (black
line) the arch-based method, and (gm) the mixture model.

modeled derivatives, local and values obtained from the
CT data, and the histogram. The resulting localization
accuracy and precision of our method are also displayed in
Fig. 6(j) and (k) (black lines). Note that our arch-based method
yields zero-bias throughout all scales and superior precision.
The projection of measurements onto the “correct” arch reduces
the variance significantly without giving rise to a bias term.

B. Example 2: Tooth

The input data consist of industrial CT data of a
human tooth from the National Library of Medicine:
http://www.nova.nlm.nih.gov/data/. The samples are spaced
1 mm apart within each slice and the slices are 1 mm apart.
Three types of materials and background can be identified:
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Fig. 7. (a) Cross section of tooth volume. (b) Delineations of the three ma-
terials (enamel, dentin and root canal) are combined into a single rendering;
(c) and (d) show that the root canal is almost completely visualized. (d) Inser-
tion of a clipping plane on the enamel-fraction volume enables cutting away
the crown and fully visualizing structures below. Thus, special preprocessing
or complicated transfer function definition are not needed to create high-quality
visualizations.

dark root canals and pulp chamber, gray dentin and cementum
and bright enamel and crown [Fig. 7(a)]. Our method is used
to extract three material-fraction volumes corresponding to the
three materials.

The and parameters for each point are determined by
fitting the arch model. These and values yield the his-
togram [Fig. 5(a)]. Clusters in the histogram correspond to the
two-material transitions between tooth-materials. In addition,
the histogram in Fig. 5(a) shows horizontal and vertical
lines connecting the clusters. These emanate from thin struc-
tures or junctions. An example is the junction of background
(B), dentin (C), and enamel (D) marked by the dashed circles
in the channels. This structure contains a smooth transi-
tion from one value to two values. These locations can
be detected (and masked out) by a large gradient magnitude in
the and/or channels. A “filtered” histogram is shown
in Fig. 5(b). This histogram is used to segment the image into
significant material transitions. The clusters within the colored
circles in the histogram of Fig. 5(b) correspond to similarly
colored dots in the scatter plot, which serves to illustrate the his-
togram’s capacity in identifying the various transition types. For
example, notice how well the volume samples in overlapping
areas in the labeled scatter plot [dotted squares in Fig. 5(b)] are
classified into separate clusters in -space. Subsequently, the
local arch fit of a particular volume sample is used to map it onto
material fractions as indicated in Fig. 4(b).

Fig. 8. Root-canal delineated using the reference method (a), (c), (e) and using
the method described in this paper (b), (d), (f). The top row (a), (b) shows
the root-canal rendering of the tooth volume using the reference method with
threshold 0.2, 0.3, and 0.5 and method with threshold 0.1 (dark), 0.2 (interme-
diate), and 0.5 (bright). (c), (d) The middle row shows the material mixture along
a profile. (e), (f) The bottom row shows the material fraction in gray-value with
five delineations superimposed using an iso-material mixture of 0.1, 0.2, 0.3,
0.4, and 0.5, respectively.

The three resulting material-fraction volumes of root-canal
dentin and enamel are used for visualization (Fig. 7). The de-
lineation of the root-canal is compared with a reference method
of [18] (Fig. 8). Sereda creates an histogram in which the
estimates of and are obtained by the result of a local min
and max filter, respectively, [19] rather than the arch model. The
data value is mapped on a mixture using as defined in
(33). Note that the estimates for and of small structures
will be biased towards the background value. This causes a bias
in estimated material fraction, which causes serious distortion
of wedge-shaped structures. A fundamental difference of our
method compared to the reference method is that the data value
does not serve as an input of the transfer function. First, it is pro-
jected onto the material transition model to deal with the noise
in an optimal manner. Second, and are estimated using
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Fig. 9. LH histogram with correspondingL andH channel of abdominal CT-data. The scatter plot of the image-intensity and scale-invariant gradient magnitude
(a) before and (b) after filtering the L;H-channels. Regions in the LH histogram where the arch model is not valid are automatically suppressed by thresholding
the gradient-magnitude ofL andH channels. (c) Unfolded cube visualization using original data and (d) digitally cleansed data. Notice that the entire colon surface
is presented for inspection after processing.

partial volume values without requiring “pure material” volume
samples to be present.

Consider the root canal as a tube with decreasing diameter.
A realistic surface delineation should convey this information
as well. If we analyze the reference method, the distance in in-
tensity between becomes smaller for decreasing root-
canal diameters by the PVE. When considering (33) the re-
sulting mixture will become biased: not providing a good visu-
alization [Fig. 8(a), (c), and (e)]. At parts of the root canal with
a decreasing diameter, a smaller mixture is found as expected
[Fig. 8(b), (d), and (f)]. The user may still visualize this by se-
lecting a smaller threshold on the material mixture. The refer-
ence method, however, even at a threshold of 50% root-material
suffers from noise and the PVE [Fig. 8(a)]. It does not reliably

convey the dimensions of the root canal. The user has less con-
trol of creating accurate object delineation.

C. Example 3: CT-Colonography

CT colonography [6], [20], [21] (also called virtual
colonoscopy) is a relatively new method to examine the
colon surface for the presence of polyps. An important problem
in virtual colonoscopy is to visualize the colon surface without
being hampered by intraluminal remains [6]. Moreover, the
PVE may restrict correct polyp detection and subsequent
quantification (diameter, volume) and accurate display of its
morphology [22]. Tagging, via an oral contrast agent, is intro-
duced to enhance the data value of remains. We have applied



2902 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 16, NO. 12, DECEMBER 2007

our method to derive the fraction of tissue, air, and tagging in
each edge voxel.

The data are acquired using a multislice CT scanner (Toshiba
Aquilion). The axial scale of the resulting image is 0.95 mm
and the lateral scale is 0.80 mm. Rendering opaque samples at
a 50% tissue level is assumed to yield an accurate representa-
tion of the colon surface. It reveals large parts of the colon sur-
face that were previously obscured by fecal remains [Fig. 9(c)].
Analogous to the tooth example intermediate processing results
are depicted in Fig. 9(a) and (b). The usefulness of our method
is further demonstrated in Fig. 9(d), which shows the unfolded
cube visualization [23] before and after processing.

IV. CONCLUSION

We presented a novel approach to automatically classify
scalar-valued 3-D CT images into material-fractions. Our
approach uniquely combines robustness to noise, global signal
fluctuations, anisotropic resolution, noncubic voxels and ease of
use. The method facilitates accurate and reproducible boundary
delineation for segmentation and visualization.

We derived an analytical expression for the relation of
th-order derivative as a function of data value: the arch func-

tion. It is applied to approximate the underlying noise-free
material fractions or derivatives at an image position. Pro-
jecting of noisy data value and derivatives onto the arch model
yields noise-free estimates of the data value and derivatives. It
yields a robust alternative to the standard computed Gaussian
derivatives. The arch function is rotation invariant even for
anisotropic PSF. It is parameterized through the expected ma-
terial data values ( and ) at opposite sides of the transition.
The neighborhood of a sample is modeled by an arch trajectory,
and not merely a single point. This makes the technique robust
against erroneous classification due to noise. Previous work
[6] did neither model the noise nor the anisotropy of the data.
Including higher order arch models one can obtain estimates of
all derivatives up to this order. Both the accuracy and precision
are superior to the results obtained by Gaussian derivatives. The
main difference with existing methods for noise suppression
such as high-order normalized convolution is [22] that an
explicit edge model is used.

The histogram was shown to be a useful description of
the data. Overlaps occurring in the scatter plots were
resolved in the histogram. In addition, we demonstrated
how to identify samples not adhering to the model’s assump-
tions, e.g., three material crossings and thin layers. The “fil-
tered” histogram constructed from masked and im-
ages was used to identify significant material transitions. The
arch closest to a measurement was used to map it onto material
fractions.

Most applications deal with two-material transitions. Voxels
at multiple transition regions (more than two materials) are pro-
cessed using the best two material transition. Incomplete pro-
cessing is reported to leave artifacts at multiple transition re-
gions [24]. The size of the artifact is related to the footprint of the
PSF. Our current work focuses on improved image processing
at these multiple transition regions.

We have demonstrated two visualization examples in which
user interaction was merely required to decide which material
to visualize. Objects of interest were rendered at the 50% mate-
rial threshold. Thus, no complicated widgets were needed for
transfer function selection. Previously described methods as-
sume isotropic resolution. Clearly, anisotropic input data may
be subject to additional blurring to meet such a requirement. It
should be noted that our method does not sacrifice resolution
because spurious blurring is avoided to retain the integrity of
the data.

APPENDIX I

Evaluating requires calculation of
, which can only be computed indirectly after solving

for . A closed-form expression is given by the
inverse function such that .
The substitution of (6)

(34)

yields the inverse arch function

for

(35)
Using the differentiation rule for inverse functions

, we find ,
the derivative of

for

(36)
in which is proposed by a geometrical argument

for
(37)

Inserting (37) in (36), we get

for

(38)
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APPENDIX II

The derivative of in (37) can also be derived using
the differentiation rule for inverse functions with

and as in (38)

for (39)

This may be rewritten using (5) and (6) to give the integral of
the inverse error-function as an alternative to using the method
of Parker [25]

(40)

The substitution of by yields

(41)

Hence, the derivative of the arch function is the inverse cu-
mulative Gaussian: scaled such
that the intrinsic scale is normalized to as opposed to the
intrinsic scale of the erf that is .
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