Technische Universiteit
e Eindhoven
University of Technology

Where innovation starts

DTI visualization with streamsurfaces and evenly-spaced

volume seeding
Vilanova Bartroli, A.; Berenschot, G.; van Pul, C.

Published in:
Proceedings of the Joint Eurographics - IEEE TCVG Symposium on Visualization (VisSymO04), 19-21 May 2004,
Konstanz, Germany

Published: 01/01/2004

Document Version
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

A submitted manuscript is the author’s version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher’s website.

« The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):

Vilanova, A., Berenschot, G., & Pul, van, C. (2004). DTI visualization with streamsurfaces and evenly-spaced
volume seeding. In O. Deussen, C. Hanssen, & D. A. Keim (Eds.), Proceedings of the Joint Eurographics - IEEE
TCVG Symposium on Visualization (VisSymO04), 19-21 May 2004, Konstanz, Germany. (pp. 173-182). Germany,
Konstanz: The Eurographics Association.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 18. Jan. 2017


https://pure.tue.nl/en/publications/dti-visualization-with-streamsurfaces-and-evenlyspaced-volume-seeding(ff87a300-98d0-4423-9e4a-11da665879a4).html

Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2004)

O. Deussen, C. Hansen, D.A. Keim, D. Saupe (Editors)

DTI Visualization with Streamsurfaces and Evenly-Spaced
Volume Seeding

A. Vilanoval™ , G. Berenschot! and C. van Pul?3

1 Department of Biomedical Engineering 2Department of Applied Physics
Technische Universiteit Eindhoven
8 Maxima Medical Center, Veldhoven

Abstract

Experimental evidence has shown that water diffusion is anisotropic in organized tissues such as white matter
or muscles. Diffusion Tensor Imaging is a non-invasive MR technique that measures water diffusion. DTI is used
to visualize linear structures such as fibers. In this paper, we present a visualization tool for DTI data. A new
algorithm to visualize linear structures in areas of crossing or converging fibers is presented. Usually the user
defines an area from where the fibers are generated. In this way, the user can miss part of the information, if
the area is not correctly defined. We present a method to visualize the structures in the whole volume with an
evenly-spaced distance between them. Some results obtained by our partners using the DTI tool will be presented.

Categories and Subject Descriptors (according to ACM CCS): J.3 [Comp. Appl.]: Medical information systems

1. Introduction

Magnetic Resonance (MR) Diffusion Tensor Imaging (DTI)
is a recent MR acquisition technique that measures the ran-
dom motion of water (i.e., diffusion) in tissue [BP96]. Ex-
perimental evidence has shown that the water diffusion is
anisotropic in organized tissues such as white matter or mus-
cles. In white matter, the anisotropy is caused by the paral-
lel organization of the axons and diffusion is restricted per-
pendicular to the fibers by membranes, and also by myelin.
The diffusion anisotropy gives an indication of the under-
lying structure of the tissue. DTI is used as a research tool
to study, for example, brain strokes, multiple sclerosis, the
muscle structure and the development of the brain.

The tool presented in this paper is used at the Maxima
Medical Center in Veldhoven (MMC) to study neonates that
suffer from hypoxic ischemic brain damage. These neonates
have brain injuries caused by a lack of oxygen and nutri-
ents, due to problems with the blood flow. DTI provides in-
formation about damaged regions, and the structure and the
development of the neonatal brain. In the developing brain,
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Figure 1. The components of the diffusion tensor of a
transversal brain slice from a healthy person.

the axons are in the process of becoming myelinated. There-
fore, the anisotropy depends on the development phase. The
BioMedical NMR group at Eindhoven University of Tech-
nology (TU/e) uses this tool for animal studies and studies of
the functional properties of muscles. It is proven that the spa-
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tial structure of muscle tissue strongly determines its func-
tional properties (e.g., the distribution of stresses and strains
largely depends on the orientation of muscle fibers).

Diffusion is represented by a second order tensor (i.e., a
3x3 symmetrical matrix). The visualization of tensor data is
a difficult task. Visualizing the elements of the tensors sep-
arately gives little useful information (see figure 1). Several
techniques have been presented in the last years to visualize
DTI data. Most of these techniques either require a simplifi-
cation of the tensor field to one scalar field or vector field, or
just the local information is extracted.

The most investigated technique is the so-called stream-
line tracing or fiber tracking. This technique simplifies the
DTI data to a vector field of the main anisotropy direction.
Then particle paths in this vector field are traced. The paths
are associated with the linear structures in the DTI data (e.g.,
fibers). However, in areas where the main diffusion direc-
tion is not defined, the streamline tracing fails. For example,
when two fiber bundles cross, the diffusion is restricted to the
plane defined by the two bundles. Any vector in the plane
is a main anisotropy direction. In this paper, we present a
new method that extends streamline tracing to surface trac-
ing when the diffusion is restricted to a plane.

Another problem is the initialization of the particle po-
sitions (i.e., seed points). Usually the seed points are de-
fined by the user. Therefore, some information can be missed
when abnormalities are present in the data. An extension of
the seeding technique presented by Jobard et al. [JL97] has
been done in order to show the information in the data with-
out the need of manual seeding.

This paper is organized as follows. In the next section,
a short explanation of DTI data acquisition is presented. In
section 3, the previous work in DTI visualization and their
current open problems are described. Section 4 presents the
surface tracing. In section 5, we present the extensions to
Jobard et al.’s algorithm [JL97] . In section 6, a short expla-
nation of the DTI tool is presented. Finally, we present ex-
perimental results with different data sets, and conclusions
and future work.

2. DTl data

Diffusion is the result of random motion of molecules that is
driven by internal thermal energy (i.e., Brownian motion).
The mobility of the molecules can be characterized by a
physical constant, the intrinsic diffusion coefficient, D, with
unit m?/s. The structure of living tissue poses physical barri-
ers (e.g., membranes) and restricts diffusion. Therefore, the
diffusion is a directional-dependent quantity. This diffusion
is usually represented by a second order tensor D.

D=| Dy Dy Dy

D is a real Hermitian positive definite matrix. This means
that the matrix is symmetric and its eigenvalues are real
and positive. Eigenanalysis is usually applied to the ten-
sor in order to find the principal diffusivity directions (i.e.,
eigenvectors §) and the corresponding diffusion coefficients
(i.e., eigenvalues ;). In the remainder of the paper, we as-
sume that the eigenvalues and eigenverctors are ordered as
M >Xh>A3>0.

Trilinear interpolation on each component of D is used
to reconstruct the continuous tensor field of the DTI data.
It is an open problem which interpolation technique in ten-
sor data is most adequate (e.g., componentwise or eigenvec-
tor and eigenvalues). Image processing techniques for noise
removal in DTI are also subject of current research (e.g.,
Zhukov et al. [ZB02]). These topics will not be addressed
in this paper. It is assumed that these techniques could be
applied as preprocessing step to our data. In the next sec-
tion, we will describe different methods that have been used
to visualize the information of DTI data.

3. Background and previouswork

Visualization of high dimensional data such as tensor data
is a challenging problem. Several techniques exist that have
been presented in the previous years to visualize second
order tensor data, and to visualize diffusion tensor imag-
ing data in particular. We have classified the techniques in
three categories: anisotropy index mapping, tensor glyphs
and vector field visualizations.

3.1. Anisotropy index mapping

This group of techniques consists of simplifying the six
dimensional data to scalar metrics that are usually called
anisotropy indices. These indices are invariant under rotation
and scaling and they give information about the anisotropy
of the diffusion tensor. The most commonly used indices
are the fractional anisotropy (FA) and the relative anisotropy
(RA) (see Bihan et al. [LBMP*01]).

Westin et al. [WMK*99] divide diffusion anisotropy into
three basic geometric shapes depending on the rank of the
tensor (see figure 2). In the linear case, diffusion is mainly
in the direction corresponding to the largest eigenvalue (i.e.,
A1 > Ao &~ Ag). In the planar case, diffusion is restricted to a
plane spanned by the two eigenvectors corresponding to the
two largest eigenvalues (i.e., A1 ~ Ap > A3). In the spherical
case, there is isotropic diffusion (i.e., A1 =~ Ay & A3). Accord-
ing to this, the linear C;, planar Cp and isotropic Cs indices
are defined by

Cl — 7\'1_?\'2 _ 2()\'2_7\'3) (1)
A +A2+ A3 P A +A2+ Az
33
= Ch+C =1
Cs 7\,1-}—7\,2-5-7\,3 Cs+ p+ d

These indices fall within the range [0,1] and form barycen-
tric coordinates.

(© The Eurographics Association 2004.
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Figure 2: Barycentric space defined by the anisotropy in-
dicesCj, Cp and Cs and the corresponding shapes.

3.2. Tensor glyphs

Simplifying the tensor to a scalar shows just part of the in-
formation contained in the tensor. A way to show the six
dimensional information of second order tensor field is by
using glyphs or icons. In the case of DTI, the use of an ellip-
soid as glyph is the most intuitive representation [PB96]. The
axes of the ellipsoid correspond to the eigenvectors and the
lengths of the axes correspond to the eigenvalues. Worth et
al. [WMWJ*98] used cuboids determined by the eigenvalues
and eigenvectors. The advantage of this method compared to
the ellipsoids is that it is easier to see the direction of the two
less significant eigenvectors.

These methods have the advantage that they visualize all
or most of the information of the tensor. However it is diffi-
cult to extract global information from them (e.g., fiber bun-
dles). Furthermore, if the glyphs are visualized in 3D, the
image becomes overloaded and cluttered.

3.3. Vector field visualization

The tensor field can also be simplified to a vector field
defined by the main eigenvector, &. This simplification
is based on the assumption that in the areas of linear
anisotropy, € defines the direction of linear structures. The
sign of & has no meaning.

One commonly used method to visualize DTI is to map
€ to color, e.g., directly using the & components for the
RGB channel. This color is weighted by an anisotropy index
to reduce the visualization of isotropic areas. Instead of &,
Kindlmann et al. [KW99] use a user-defined vector multi-
plied by the tensor. The difference between the user defined
and the resulting vector gives more information about the
anisotropy of the tensor.

Other methods have been proposed to visualize the global
information of 2D as well as 3D vector fields [PVH*02].
There are well established 2D vector-fields visualization
methods, see van Wijk [vVWO02]. Although 2D techniques

(© The Eurographics Association 2004.

have been extended to 3D, the visualization of 3D vector
fields is still an unsolved problem due to the extra challenge
of the cluttering and the computational costs.

DTI data is essentially 3D. The most commonly used
technique to visualize DTI data is streamline tracing, also
called fiber tracking [MvZ02]. Streamlines in 3D can be
easily visualized for regions which avoids the problems of
cluttering. Furthermore there is a direct analogy between the
streamlines and the fibers. The streamline tracing is based on
solving the following equation:

p(t) = [ w(sds @

where p(t) is the generated streamline and V corresponds to
the vector field generated from €&;.

The streamline techniques have three main steps: defini-
tion of initial tracking points (i.e., seed points), integration,
and the definition of stopping criteria.

Seed points are usually defined by the user who specifies
one or more regions of interest (ROI). The interior of the
ROl is sampled and the samples are used as seed points.

Numerical integration is used to solve equation 2. Several
numerical schemes can be used, such as Euler forward, and
second or fourth order Runge-Kutta. In this paper, second
order Runge-Kutta is used.

Stopping criteria avoid that the streamline is being traced
in areas where the vector field is not robustly defined. In ar-
eas of isotropic or planar diffusion, the value of & can be
considered random. Therefore, & has no meaning concern-
ing the underlying structure. The user usually can define a
threshold based on the anisotropy indices (i.e., FA, RA or
C) to define the areas where the vector field is defined. The
value of this threshold depends on the data acquisition proto-
col and the nature of the object that is being scanned. Other
criteria are also being used such as the curviness or length of
the streamline.

An extension to streamlines for second order tensor
fields are hyperstreamlines [DH93]. Hyperstreamlines use
all eigenvalues and eigenvectors. A streamline defines the
axis of a generalized cylinder whose cross-section perpen-
dicular to the axis is an ellipse defined by & and &, and A,
and A3 respectively.

Streamline tracing techniques for DTI have several prob-
lems. Linear structures are also present in areas with non-
linear diffusion (see figure 3). Most of the DTI tracing
algorithms just consider the areas where the vector field
is defined robustly. Several authors proposed methods to
trace within areas of isotropic or planar diffusion follow-
ing the most probable diffusion direction (e.g., Weinstein et
al. [WKL99]). These methods use the incoming direction of
the streamline together with the information of the tensor to
determine the next tracing point according to some heuris-
tics.
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Another problem of streamlines is seeding. The seed
points are usually defined by the user. In a healthy person
where the anatomy is known, the users can reasonably guess
where the interesting bundles are. However, in patients, there
is no real clue about the possible underlying structure and
the seeding by the user can miss important structures. On
the other hand, defining the seed points to cover the whole
volume can be computationally expensive if done carelessly.
Furthermore, the image gets cluttered and therefore it is dif-
ficult to extract useful information.

\/\\/
/\/\

Figure 3: Examples of regions where fibers are present
but the diffusion tensor is planar: (left) kissing fibers,
(middle) two fiber bundles crossing and (right) diver-
gence/convergence of fibers. Regions that are marked grey
will have a tensor with planar diffusion.

Z

4. Streamsurfacetracing

Linear structures can also be present in areas with non-
linear anisotropy, for example, due to crossing fibers. The
anisotropy will be mainly planar when two fiber bundles are
crossing and fibers converge or diverge (see figure 3). Fig-
ure 3 shows that the tensor information is not enough to solve
the underlying linear structure. Our approach is based on re-
constructing the structure defined by the tensor. It is left up
to the user to decide which would be the most probable un-
derlying linear structure.

Planar anisotropy indicates planar structure and therefore
a surface is traced. In our method, when a streamline en-
ters an area of planar anisotropy, a surface is traced until
an isotropic or linearly-anisotropic area is found. A method
for surface tracing similar to the one presented by Zhang et
al. [ZDLO03] is introduced in this section. The surfaces gener-
ated by the algorithm will be called streamsurfaces. Stream-
surfaces are used to visualize linear structures in areas such
as crossing fibers. The streamsurfaces will be topologically
equivalent to a disk with holes.

Streamsurface tracing consists of the same main steps as
streamline tracing: seeding, surface integration and stopping
criteria. The seeding can be done as described in section 3.3.

In order to define the areas of linear and planar anisotropy,
the barycentric-coordinates are used. Two thresholds will be
defined Tg, for G, and Tc, for Cp. If G > Tg,, then stream-
lines will be traced (see figure 2 where G > Tg, =0.2). Else
if Cp > Tc, then surfaces will be traced (see figure 2 where
Cp>Tc,=04 and G < Tg, =0.2). T, and Tc, are defined
by the user. In the rest of this section we will describe how
the surface generation is done.

Given a mesh in a plane, the algorithm will fit this mesh
to the surface structure defined by the DTI data. The mesh
will have the topology of a triangular mesh, and initially will
consist of equilateral triangles. This is chosen in order to
have a mesh as regular as possible. Each vertex p will have
six neighbors at equal distance of p. These neighbors will
form an hexagon around p (see figure 4c). The geometry of
the mesh is an array G with point coordinates. The topology
or connectivity of the mesh is stored in a table T. Each entry
in T corresponds to the point at the same index position in G.
Each entry has six table indices which correspond to the six
possible neighbors or edges of the point. The neighbors are
ordered in a clockwise order around the entry point. An edge
appears several times in T. These redundancies are used to
keep track of the already calculated points. A point can have
an entry in the topology table T although no geometry is
associated to it. The geometry, the indexing and the mesh
topology are generated on the fly.

The description of the algorithm will be divided in two
parts. First the algorithm for the indexing and the generation
of the topology of the mesh will be described. Secondly, we
present how the streamsurface points are calculated. In the
implementation these two steps are combined, but they are
separated here for clarity.

4.1. Topology generation

The indexing is chosen such that it forms a spiral around
the first point, see figure 4c. The indices are also the order in
which the points are being treated.

The first point that initiates the surface tracing gets index
number one. Its entry in the topology table T gets zeros in all
positions or neighbors. Zero indicates that the corresponding
neighbor point has not been treated (see figure 4a and 4b).
After the first initialization, the process is the same for all
points. The first position with value 0 is searched in table
T, sorted first by point index and then by neighbors. A new
entry in table T is created for the new point, and T is updated
to reflect the connectivity of this point. The redundancies in
table T can be defined by the following conditions. All the
additions and subtractions are done modulo 6. Variable i, k,
and pare point indices of table T, and j, m,and | € [0,5] are
the six neighbors of a point:

Tli,jj=k Ak#£0=3Im Tk m =i 3)

Tli,j] =kAT[i,j—1]=pAk#0A p#0 =
= A (T[p,l]=i A T[p,l =1 =k) A
AIM(Tkm =i A T[k,m+1] = p) (4)
Figure 4b and 4d show the status of table T with its
corresponding initial mesh 4a and 4c after the insertion of

the points 1,2,7 and 19. The updates of T to fulfill equa-
tions 3 and 4 are also illustrated. Notice that the topology of

(© The Eurographics Association 2004.
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Table update due to redundancy expressed in

B equation 3

|| equation 4 (left)

[ ] equation 4 (right)
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Figure 4: Table T and its corresponding meshes at different iterations, inserting point 1,2,7, and 19.

the mesh is independent of the geometry. It could be precal-
culated if the dimensions of the mesh would be known.

4.2. Geometry generation

In this section, we describe how the mesh is fitted to the
streamsurface. In a point p with planar anisotropy, the two
major eigenvectors define a plane. This means that Brown-
ian motion of molecules is mainly restricted to movements
within the plane. This plane can be seen as the tangent plane
at point p of a streamsurface S(u,v). This surface represents
all the equally possible paths that a molecule could follow. A
curve in this surface is defined by C(t) = S(f(t),g(t)), where
f(t) and g(t) can be any differentiable function. Extension
of equation 2 to surface curves can be done by:

c) = [ (s ©)

Ve(t) = ' (OK(f().9() +g OS(F(1),9(t))

§,and &, are the partial derivatives of S §, and S, are two
vectors in the tangent plane. Therefore (t) is also a vec-
tor in the tangent plane. This is valid for any differentiable
parametrization of the surface.

There is no need to find a parametrization of the surface
to find the surface itself. Therefore, V¢(t) can be defined im-
plicitly by ensuring that V(t) is on the tangent plane of the
surface at point C(t). In a plane, we have an infinite number
of vectors that can be chosen. A criterion has to be applied

(© The Eurographics Association 2004.

to choose one V(t). Using Ve (t), equation 5 is solved nu-
merically by using second order Runge-Kutta. The criterion
used to define (t) will be by minimizing the angle between
two consecutive vectors. This will be a local curvature min-
imization. Vc(t + At) is the projection of V¢(t) to the tangent
plane at C(t + At). In this way V(t + At) will be the vector
in the tangent plane at C(t + At) with the smallest angle with
Ve(t). The pseudocode of the geometry calculation would be
as follows assuming that T has already been generated:

proc CalculateGeometry (
in : Topology Table T,
in : Point seed,
in out: Queue seed points SeedPoints,
out: Geometry Table G )
integer i:= 1
Queue PointsToTreat
Vector Array \70
Point p
G[1l] := seed
Queue 1 in PointsToTreat
while PointsToTreat is not empty do
i:= Get and delete head PointsToTreat
\7c := vectors in the tangent plane at GIi]
for each je€(0,5 and TIi,j] not computed do
p := Integrate C(t) given GI[i] and \7c[j]
GITIi,jll:=p
ifp has planar anisotropy
Queue TI[i,j] in PointsToTreat
else if p has linear anisotropy
Queue p in SeedPoints
end
end
end
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a)

Figure5: Streamlines and streamsurfaces traced in a healthy adult brain data set with Tg, = 0.2 and T, = 0.4: @) streamsurface
with a hole generated at the end of a streamline given one seed point. b) One streamline traced given a seed point c) the same
seed point as b but tracing streamsurfaces and showing the possible prolongation of the fiber bundle d) streamlines using three
seed points €) the same seed points as d with tracing streamsurfaces and showing the possible prolongation of the fiber bundle.

The points with planar anisotropy, whose neighbors’ geom-
etry still has to be calculated, are in queue PointsToTreat.
Position 1 in table G gets the value of the seed point, p. In-
dex 1 is queued in PointsToTreat. The loop of the algorithm
will go on until no points are left in PointsToTreat. The first
element of PointsToTreat is assigned to i and deleted from
the queue.

Each point i has six possible neighbors or edges j € [0,5].
For each unknown neighbor a curve C[j](t) is integrated un-
til a defined edge length L is achieved. The value of C[j](L)
corresponds to the geometry, p, of point T[i, j]. The initial
position of each edge is C[j](0) = GJi]. The corresponding
initial direction of the edge V¢[j](0) needs to be calculated.
Six initial directions are defined, V¢[]], in the tangent plane at
Gli]. The angle between any two consecutive vectors inV[j]
is define as constant as possible. The points whose geome-
try is known will have at least one neighbor whose geome-
try is also known. The initial vectors, \7c[j], of the unknown
neighbors will be ordered following clockwise order from
the already known ones.

If p has planar anisotropy, then TJi, ] is queued in
PointsToTreat. If p has linear anisotropy, p is added to the
seed points to be treated. Notice that there are points which
will be in the topology but will not have geometry assigned,
so points which have not been computed. These points can
be inside the surface, and will appear as holes (see figure 5a).

In this way, we fit the initial mesh of equilateral triangles
to the surface. The mesh that is finally rendered, is generated
by going through the table T and just generating those trian-
gles between neighbors that have been computed and whose
indices are bigger than the current index of the table. In this
way the redundancies of T are ignored in the final mesh.

The presented algorithm will result in a surface which is
topologically equivalent to a disk with holes. In the algo-
rithm described by Zhang et al. [ZDL03] the generated sur-
face is topologically equivalent to a disk, and holes are not
taken into account although they can often be present in the
data. This leads to infinite cycles in Zhang et al.’s algorithm,
if no extra tests (e.g., distance to other surface points) and
processing is done. In our algorithm, V(t) is defined such
that the local curvature of C(t) is minimized, but not con-
strained to a planar curve.

4.3. Streamline and streamsurface tracing

Differently from Zhang et al. [ZDLO03], the streamsurfaces
are combined with streamlines and not calculated indepen-
dently. A queue with seed points, SeedPoints, is used. If
during streamsurface tracing new streamline seed points are
found, they are queued to SeedPoints. Such a seed point can
generate a new streamline that can end again in a planar
anisotropy point. This point with planar anisotropy will be
queued to SeedPoints, and will initialize a surface tracing in
another iteration. This procedure stops when SeedPoints is
empty.

Following the previous explanation, the same streamsur-
face can be traced more than once, producing an infinite
loop. In order to avoid this, a minimal distance ds between
streamsurfaces is defined. This distance indicates how close
two streamsurfaces must be to consider them to be equal. A
seed point for streamsurface tracing will not be valid if the
distance to any already generated surface point is smaller
than ds. A more detailed description of how this distance is
computed is given in section 5.

As said before, the sign of the eigenvectors of a tensor has

(© The Eurographics Association 2004.
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no meaning. We always define the sign such that it is coher-
ent with the incoming structure. Therefore, a streamline will
not turn more than 90 degrees. An angle o can be defined by
the user. If a surface is initialized by an incoming streamline,
the streamlines, that start at the streamsurface which have an
angle with the incoming streamline smaller or equal than o
will be traced.

Figure 5 shows several examples of tracing streamlines
with and without streamsurfaces. It shows that streamlines
without streamsurfaces can underestimate the length of the
fibers and miss part of the information of the fiber structure.

5. Evenly-spaced volume seeding

A user-defined seeding is a biased way to show the data.
If the user does not define a good ROI some interesting
structures might be missed. This becomes really a problem
in cases where the underlying structure is not well known.
Zhang et al. [ZDL03] propose to regularly sample the vol-
ume, and use each sample as seed point. Afterwards, a selec-
tion is made according to a distance criterion. The sampling
distance should be at least in the order of the voxel distance.
It is obvious that this can be extremely computationally ex-
pensive.

Our approach is based on the seeding method presented
by Jobard et al. [JL97]. Their paper concentrates on stream-
line placement for visualizing 2D steady flow. We extend
the method to 3D and to include streamsurfaces. Initially we
will introduce the algorithm for streamlines and afterwards
for streamsurfaces.

The goal of our method is to produce long and evenly-
spaced streamlines in a single pass. The user defines how
dense the visualization of the streamlines must be. This is
expressed by the minimal distance between streamlines d.

The algorithm is as follows. An initial streamline is traced.
Then a seed point at minimal distance d from all exist-
ing streamlines is chosen for the next streamline. Then this
streamline is integrated until it goes too close to another
streamline or it stops due to the stopping criteria. The pro-
cess is continued until no more seed points are found.

5.1. Distancetest

The density of the DTI visualization is defined by d. The
density is controlled by not allowing that any point is used
as seed point, if it is closer than d; to any other streamline.
The computations will be just approximated by not calculat-
ing the distance to the streamline itself, but to the sampled
points of the streamlines. This approximation is valid, if the
distance between neighboring sample points of the stream-
line is smaller than d

A distance volume is created to accelerate the distance
test. The DTI domain is divided in cells of dimensions d;.

(© The Eurographics Association 2004.

Each cell contains a list of the streamline points that are in-
side the cell. For each sample point it is checked whether it
is at a distance larger than d;. This is done by identifying the
cell of the sample point in the distance volume, and check-
ing the distance between itself and the points contained in its
own cell and neighboring cells.

Like Jobard et al., a distance d. smaller than d; is defined
by the minimal distance allowed between two streamlines,
while d; is used for the seed points. This produces longer
streamlines which gives a better visual effect. In figure 6a
and b the effect of using d. is shown with d. = %d|.

If the streamlines are shown as tubes, the thickness of
the tube can be made dependent on the distance to the
other streamlines. This attenuates that the distance between
streamlines is not constant due to using d.. The distance d is
the smallest distance of the streamline point with the other
streamlines, and the maximum radius of the tube is r. The
thickness of the tube at a position in the streamline is g—‘(’fr
This will be applied if d < d,. This is also useful to |dent|fy
streamlines which are stopped due to their distance to the
other streamlines. Comparing figure 6b and 6c, the effect of
using distance dependent tube thickness can be seen.

5.2. Seed selection

In order to fill the space correctly, it is necessary that the
seed points are chosen with care. The algorithm starts tracing
the streamline for the voxel with maximal linear anisotropy
value. Once the streamline has been created, its points are
added to the distance volume. The next seed point is calcu-
lated at distance d; from the streamline. For each streamline
point, six seed points are calculated. These points lie in the
orthogonal plane of the streamline curve. The points define
a regular hexagon of length d. The generated streamlines
are queued in order of generation. Once all the possible seed
points at distance d, have been treated, the same procedure
is done for the next streamline in the queue. Notice that a
seed point will not be used if it is at a distance smaller than
dy from any streamline. This procedure continues until no
streamline is left in the queue.

The vector field generated by & and the stopping criteria
does not fill the whole domain of the DT data set. Therefore,
the voxel positions will also need to be considered for seed-
ing. Once the queue of streamlines is empty, the next voxel
position will be considered for seeding. If their distance to
any existent streamline is larger than d, then a streamline
will be traced and the procedure will start again. The pro-
cess will end when no voxel position is left.

5.3. Evenly-spaced streamsurfaces

Streamsurfaces will be treated in a similar way. A distance
ds which indicates the minimum distance between surfaces
is defined. A surface distance volume is generated whose
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Figure 6: Evenly-spaced volume seeding in a pig optic nerve (64x64x128) DTI data set. The pig optic nerve has been extracted
and twisted before acquisition. a) d; isnot used, b) ad; = %d| , C) isas b but adding distance-dependent tube thickness.

cell dimensions are ds. The distance test will be done in
the same way as with streamlines. The seed generation for
streamsurfaces is also the same as with streamlines. The only
difference is that given a surface point, two seed points will
be generated, at +ds distance following the normal of the
streamsurface at that surface point.

If the linear anisotropic domain is filled with streamlines,
the use of surfaces is less useful to detect crossings or con-
vergence/divergence of fibers. The connections can be de-
duced by the empty space between the streamlines. How-
ever, showing the planar structures of the DTI shows struc-
tural information of the data that might give further insight.
Figure 9a (see color section) shows the evenly-spaced vol-
ume seeding in a healthy adult brain for streamlines and
streamsurfaces.

6. DTI tool

A visualization tool for DTI data, called DTI tool, has been
developed by us. This tool is implemented using C++, VTK
and fltk. This tool has implemented the visualization tech-
niques presented in this paper together with several of the
methods described in section 3.

Anisotropy index mapping: Anisotropy indices, FA, RA,
and the barycentric coordinates have been implemented.
A hue color map is used to visualize the values of the in-
dices.

Tensor glyphs A 2D ROI is defined by the user in a cutting
plane. The ROl is sampled uniformly. Glyphs for all sam-
pled points are shown. The shapes of the glyphs can be
chosen between ellipsoids or cuboids.

Vector field visualization: The mapping of & to a contin-
uous mapping from direction to color has been imple-
mented, see the streamlines in figure 9(a-d)(see color sec-
tion).

For global information, streamline tracing has been imple-
mented. The resulting streamlines can be shown as lines,

tubes or hyperstreamlines. The shape of the cross-section
of the hyperstreamlines can be an ellipsoid, a quad or a
cross. The last two allow to follow the rotation of & and
& more easily.

Interactive seeding can be applied in different ways: sin-
gle fiber, painting and ROI. Single fiber is based on a point
defined by the user in an orthogonal plane, and a stream-
line is immediately traced at this point. If the user points
to another position, the previous streamline is deleted and
a new one is created at the current position. The painting
interaction is the same as the single fiber case, but then
the streamlines are not deleted. A 2D ROI can be defined
in one of the cutting planes and then its interior is sam-
pled uniformly. Each sample is used as seed point. Single
fiber and painting interactions are meant for interactively
exploring the data and getting fast feed-back. The ROI is
used when the region to be inspected is already known.
In the DTI tool, the evenly-spaced volume seeding pre-
sented in section 5 is also implemented. This method is
used to get a global view of the distribution of the fibers.
Due to cluttering, it is difficult to use it for a local or
focussed study. Once an interesting region has been de-
tected, other seeding methods such as ROI are used to
avoid the cluttering.

Streamsurfaces are also an option for all types of seeding
in the DTI tool (see section 4).

A histogram of the lengths of the streamlines is calculated.
Itis not yet clear that this will be useful information for brain
studies. However for the muscle, there are expectations that
it can give an indication of the quality of the muscle. Figure
7 shows the tracing of muscle fibers in a mouse leg together
with its histogram.

7. Results

This project was a collaboration with the MMC and the
BioMedical NMR group at the TU/e. In this section, we will

(© The Eurographics Association 2004.
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Figure 7: a) Sreamlines traced in a data set of a mouse leg
64x64x128. b) Histogram of fibers of generated in a.

present several studies that have been done using the DTI
tool.

Figure 8 and figure 9 (see color section) show different vi-
sualizations of brain data sets. Data sets of adults have a res-
olution of 128x128x30 with a voxel size of 1.8x1.8x3 mm.
In the case of neonates the resolution is 128x128x20 and the
voxel size of 1.6x1.6x3 mm.

The evenly-spaced volume seeding has been used to gen-
erate the fibers in figure 9a to 9d. The fibers are color coded
by mapping & to color. Figure 9a corresponds to a data set
of a healthy adult. The main bundles of the fiber structure
can be recognized, such as, the corpus callosum in red go-
ing from left to right, which is the connection between the
hemispheres of the cerebrum, and the superior longitudinal
fibers in green. In this figure, the streamsurfaces are also
shown. Figure 9b shows the fibers that correspond to a data
set of a neonate that was prematurely born for 26 weeks and
scanned after 6 weeks. Neonates have a low anisotropic dif-
fusion since the myelination is in development. Due to the
smaller voxel size than used in adults, the neonatal DTI data
is more noisy. Several fiber structures are visible in figure 9b
(e.g., corona radiata in blue). However, the corpus callosum
is not visible. The arrow indicates where the fibers are miss-
ing. The corpus callosum is one of the fiber structures with
high anisotropy and it is missing in this patient. Further in-
vestigation of all MR images of this patient confirmed that
this patient does not have a corpus callosum. In figure 9c and
9d two adults with a tumor were scanned. The arrows indi-
cate where the tumors are. The fibers in figure 9¢c have been
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figure seconds figure seconds figure seconds

8a 0.51 8b 0.56 9a 55.73
9b 19.59 9c 88.8 ad 70.8

Table 1. Computation times for the figures of this paper cal-
culated in a 1.7 GHz Pentiuml 11 with 1Gb RAM.

pushed to the left due to the tumor. However, in figure 9d
it seems that the fibers have been destroyed, since the struc-
ture around the tumor is not moved, but in the tumor area no
fibers are present.

In figure 8a and 8b, a data set of a neonate who suffered
from hypoxic ischemic injury is visualized. In both images
the fibers that indicate the corpus callosum have been traced.
In figure 8b streamsurfaces are also traced. More structures
are visible due to the extension of the streamsurfaces. In a
first evaluation, no fiber damage can be observed.

The generation of streamlines and streamsurfaces using
interaction techniques such as single fiber or painting, result
in real-time frame rates. However, the computation times for
ROI and evenly-spaced volume seeding are higher and de-
pend on the data set and the parameters settings. In table 1,
these times are shown for figure 8 and 9. Although these
are not interactive times, the computation time is reasonable.
Once the fibers have been generated they can be inspected at
interactive frame rates.

8. Conclusions and futurework

In this paper, a visualization tool for DTI data has been in-
troduced. Streamsurfaces have been introduced to alleviate a
source of error of streamline tracing by showing areas with
planar anisotropy. A new algorithm has been presented to
generate streamsurfaces. We also have presented a technique
to fill the space regularly with streamlines and streamsur-
faces based on the algorithm of Jobard et al. [JL97]. This
method allows to obtain a general view of the data at dif-
ferent levels of streamlines density, defined by the minimum
distance between streamlines or streamsurfaces. All linear
and planar structures in the DTI volume are shown in one
visualization. A problem that should be addressed as future
work is how to avoid cluttering that usually appears in im-
ages where all space is sampled.

DTI data of the neonatal brain is noisy. Therefore, a fur-
ther study in noise removal and interpolation techniques is
necessary. We presented the histogram of fiber lengths as a
possible quantitative measures for studies. Other measures
need to be evaluated in the future.

The DTI tool proves to be useful for different examina-
tions of human brains, in neonates and adults, and different
animal studies.
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Figure 8: Sreamlines in the corpus callosum of a neonate that suffered hypoxic ischemic injury b) same seed points as a) but
streamsurfaces are traced.
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Figure 9: Sudies of fibers in the brain with different data sets. a) healthy adult with streamsurfaces, b) premature neonate
missing corpus callosum (see arrow), ¢) and d) Show behavior of fibers in two data sets with tumors (see arrows)
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