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Figure 1: (a)Cluttered image showing the fibers in a healthy brain by seeding in the whole volume. The color coding shows main eigenvalue.
(b)(c)(d) Clustering results. The color coding represents the clusters.(b) Hierarchical clustering with single-link and mean distance between
fibers. (c) The same as (b) but with closest point distance between fibers. (d) Shared nearest neighbor with mean distance between fibers.

ABSTRACT

Fiber tracking is a standard approach for the visualization of the re-
sults of Diffusion Tensor Imaging (DTI). If fibers are reconstructed
and visualized individually through the complete white matter, the
display gets easily cluttered making it difficult to get insight in the
data. Various clustering techniques have been proposed to automat-
ically obtain bundles that should represent anatomical structures,
but it is unclear which clustering methods and parameter settings
give the best results.

We propose a framework to validate clustering methods for
white-matter fibers. Clusters are compared with a manual classi-
fication which is used as a gold standard. For the quantitative eval-
uation of the methods, we developed a new measure to assess the
difference between the gold standard and the clusterings. The mea-
sure was validated and calibrated by presenting different clusterings
to physicians and asking them for their judgement. We found that
the values of our new measure for different clusterings match well
with the opinions of physicians.

Using this framework, we have evaluated different clustering al-
gorithms, including shared nearest neighbor clustering, which has
not been used before for this purpose. We found that the use of hier-
archical clustering using single-link and a fiber similarity measure
based on the mean distance between fibers gave the best results.
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1 INTRODUCTION

Diffusion Tensor Imaging (DTI) is a Magnetic Resonance (MR)
acquisition technique that measures the directional dependence of
motion of water molecules in tissue. During diffusion, molecules
probe tissue structure at microscopic scale, well beyond the usual
image resolution. Experimental evidence has shown that water dif-
fusion is anisotropic in organized tissue, such as white matter or
muscle. DTI is the only non-invasive technique that can show in
vivo the internal structure of white matter. Therefore, it is mostly
used for brain imaging research in a variety of fields including brain
development, brain tumor, focal epilepsy, and multiple sclerosis
among others.

Several techniques to visualize DTI data exist [12]. The most
popular technique is to reconstruct the individual fibers from the
tensor information, e.g., by tracing streamlines. Usually fibers are
defined by manually setting seed points. In this case, the result is bi-
ased by the user who can miss important structures. Some methods
propose to seed through the whole volume to avoid manual seed-
ing [14, 11]. However, white matter is a complex structure and the
image gets easily cluttered (see figure 1a). Therefore, it is difficult
to get insight in the data using these visualizations.

Fibers form anatomically meaningful entities called bundles that
define the connection of different grey-matter areas. Several au-
thors have proposed to cluster the streamlines to obtain bundles
[2, 3, 4]. The enormous amount of individual fibers is reduced to
a limited number of logical fiber clusters that are more manageable
and understandable. Once a clustering is obtained, the DTI data can
be viewed at different levels of detail; a global view which shows
the fiber clusters and a local view which shows the individual fibers
of a specific cluster.

Different clustering algorithms and different options within a
clustering algorithm (e.g., distance measure between fibers) can be
chosen. Furthermore, clustering algorithms have parameters to tune



such as the amount of clusters to obtain. Many combinations exist,
therefore physicians are not able to evaluate all possible combina-
tions. In figure 1b, 1c, and 1d, three different clustering results
are shown. Section 4 describes the methods that have been used to
create these clusterings.

What we need is more insight in which combinations of algo-
rithms and parameter settings give good results. But this requires
that we can assess the quality of a clustering. In section 3, we
present an automatic evaluation process in which a quantitative
evaluation of clustering results is done using clustering quality mea-
sures. These measures indicate the agreement between two parti-
tions of a set of items; a partition produced by a clustering method
and a gold standard (i.e., the ideal clustering defined by physicians).
Several clustering quality measures exist in literature [7]. However,
the question that arises is which measure meets the criteria of the
physicians. To answer this question, the existing clustering qual-
ity measures are evaluated in section 5, and improvements are pro-
posed to better match the physician’s quality criteria.

In section 6, we evaluate different clustering algorithms using the
new clustering quality measures and a limited data test. We imple-
mented the hierarchical clustering algorithm and several fiber sim-
ilarity measures. A shared nearest neighbor clustering algorithm
that has not been used before in this context has also been imple-
mented. We chose this algorithm because it can find clusters of
different sizes and shapes in data that contains noise and outliers.

Finally, in section 7 conclusions are drawn and suggestions for
future work are done.

2 RELATED WORK

In this section, we present fiber tracking and currently used algo-
rithms for clustering of white-matter fibers.

Diffusion is represented by a positive symmetric tensor of sec-
ond order. Several techniques have been presented in the last years
to visualize tensor fields [12]. The most common approach to vi-
sualize this data, called fiber tracking, is by reconstructing the lin-
ear structures represented by the diffusion tensors. Fiber tracking
can be divided into streamline tracing and probabilistic methods. In
streamline methods, the tensor is simplified to a vector field defined
by the main eigenvector. A streamline is the result of the integra-
tion of the vector field given an initial position. Therefore, initial
positions or seed points need to be defined. Probabilistic methods
propose to simulate the diffusion process given a starting point and
find all possible paths with a measure of connectivity. The draw-
back of this approach is the computational cost and the fact that
any pair of points in space is connected. Therefore, it is necessary
to define not just a starting point but also end points, or establish
criteria for which points are considered to be connected.

In both methods, the user normally defines seed points by speci-
fying a Region Of Interest (ROI). A disadvantage of ROI fiber track-
ing is that the result is user biased, not reproducible and often fails
to show all information. If there is knowledge of the expected result
(e.g., in a healthy person) the users can reasonably guess where the
bundles of interest should be. However, when there is no real clue
about the possible underlying structure (e.g., in pathological cases),
the manual seeding can miss important structures. Some methods
propose to seed through the whole volume [14, 11]. However, in
this case the image gets easily cluttered (see figure 1a). In this arti-
cle, we used the DTITool and the whole volume seeding method of
Vilanova et al. [11].

A number of research groups have proposed algorithms for clus-
tering fibers. Corouge et al. [3] use a clustering method that propa-
gates cluster labels from fiber to neighboring fiber. It assigns each
unlabeled fiber to the cluster of its closest neighbor, if the closest
neighbor is below a threshold. A partition of the data with a spe-
cific number of clusters can be acquired by setting a threshold on

the maximal accepted distance. This is similar to the algorithm em-
ployed by Ding et al. [4].

Brun et al. [2] use a spectral embedding technique called Lapla-
cian eigenmaps in which the high dimensional fibers are reduced
to points in a low dimensional Euclidean space. Next, these posi-
tions are mapped to a continuous RGB color space, such that similar
fibers are assigned similar colors. In another paper by Brun et al.
[1], a clustering method based on normalized cuts is used to group
fibers.

Shimony et al. [10] employ a fuzzy c-means algorithm in which
each fiber is associated with a cluster by a membership function that
indicates the confidence that a fiber belongs to a cluster.

Finally, Zhang and Laidlaw [15] use a hierarchical clustering al-
gorithm for fiber clustering. An agglomerative hierarchical clus-
tering method starts by putting each data point into an individual
cluster, next at each stage of the algorithm the two most similar
clusters are joined. By varying the definition of similarity between
clusters, several variations of the agglomerative hierarchical clus-
tering method can be devised.

Apart from a clustering algorithm, a fiber similarity measure is
also needed to cluster fibers. A fiber similarity measure is a function
that computes the (dis)similarity between pairs of fibers. Most fiber
similarity measures are based on the Euclidean distance between
certain parts of the fibers.

Corouge et al. [3] form point pairs by mapping each point of
one fiber to the closest point on the other fiber. The resulting point
pairs are then used to define the distance between fiber pairs. Three
distances are defined. The closest point distance is the minimum
distance between a pair of points. The mean of closest point dis-
tances or mean distance is the average of the point pair distances.
The Hausdorff distance is the maximum distance between a pair of
points.

Brun et al. [2] find fibers similar if they start and end in the same
area, and define a measure that uses the distance between the end
points. Zhang and Laidlaw [15] define the distance between two
fibers as the average distance from any point on the shorter fiber
to the closest point on the longer fiber, and only distances above
a certain threshold contribute to this average. Ding et al. [4] first
establish a corresponding segment, which are the parts of a pair of
fibers that ”overlap”. Their fiber similarity measure is then defined
as the mean distance between the corresponding segments. Finally,
Brun et al. [1] map the fibers to a Euclidean feature space and use
a Gaussian kernel to compare the fibers in this new space.

These methods generate different partitions of the fibers. It is
unclear which clustering methods and parameter settings give the
best results. To the best of our knowledge, there is no literature that
deals with the evaluation of fiber clustering methods.

3 CLUSTERING AND VALIDATION FRAMEWORK

Figure 2 shows the steps that we used in the validation process. The
set of fibers created with the fiber tracking algorithm is clustered us-
ing a fiber similarity measure and a clustering algorithm. Two clus-
tering algorithms are used: hierarchical clustering and shared near-
est neighbor clustering. Using a particular fiber similarity measure,
each clustering method produces different clusterings. The basic
question here is what clustering method and what fiber similarity
measure produce the result that is closest to the optimal clustering.

The first step of the validation process involves the creation of a
gold standard, which is considered our optimal clustering. This is
done by manually classifying the fibers into a number of bundles
that correspond to actual anatomical structures.

Once a gold standard is established, a clustering quality measure
is chosen to determine the agreement between the manually de-
fined bundles and the automatically generated clusters. There are a
number of clustering quality measures available in literature. In the
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Figure 3: Gold standard and different partitions of the same set of fibers for the cc, cgl and cgr.
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Figure 2: Overview of the validation process.

context of fiber clustering, the goal is to find a measure that meets
the criteria of physicians. Therefore, the various clustering quality
measures are validated. This is done by letting physicians create a
ranking of a number of clusterings. This ranking is then used as a
gold standard to which the rankings created by the clustering qual-
ity measures are compared. We propose several adjustments to the
measures available in literature such that they match the physicians
criteria better. The measure that produces the ranking that has the
highest correlation with the ranking of the physicians is considered
the best measure, and is used to evaluate the cluster results.

4 CLUSTERING ALGORITHMS

4.1 Gold Standard

The first step of the validation process is to establish a gold stan-
dard to which the cluster results can be compared. For our pur-
poses, the gold standard is a manually defined classification of a

set of fibers. The fibers are classified into a number of anatomi-
cal structures, called bundles, for which is known that they can be
reliably identified using the fiber tracking technique. Ideally, the
classification is done by physicians. However, for this study we did
the classification ourselves, and it was verified by physicians from
the Máxima Medical Center (MMC) in Eindhoven.

Our gold standard includes the following bundles: the corpus
callosum (cc), the fornix (fx), the cingulum (cgl, cgr) (both hemi-
spheres) and the corona radiata (crl, crr) (both hemispheres) (see
figure 3a and 3b). These anatomical structures are identified in a
number of studies (e.g., [13]) and can be reconstructed with the
fiber tracking technique.

Manually specifying for each individual fiber to which bundle it
belongs is a tedious and time-consuming task. Therefore, classi-
fication was done using regions of interest (ROIs). Each bundle is
defined by a number of manually defined ROIs. Fibers are classified
as belonging to a particular bundle if they pass through a specific
number of the ROIs.

Fibers that cannot be assigned to a bundle are labelled ”Unclas-
sified” and are not part of the gold standard. The complete set of
fibers is clustered, but only the classified fibers are used for valida-
tion.

4.2 Clustering methods

The first method that we have used for fiber clustering is the well-
known hierarchical clustering algorithm, used for fiber clustering
by Zhang and Laidlaw [15].

An agglomerative hierarchical clustering method starts by
putting each data point into an individual cluster. Then at each stage
of the algorithm the two most similar clusters are joined.

Based on the way similarity between clusters is defined, sev-
eral variations of the agglomerative hierarchical clustering method
can be devised. The two most basic cluster similarity measures are
single-link and complete-link [8].

With the single-link measure, the distance between two clusters
is the distance between the closest pair of items (one item from the
first cluster, the other item from the second cluster). The single-link
method works well for elongated and well separated clusters and it
allows to find clusters of different sizes and complex shapes. It
performs poorly on data containing noise, because noise may act as
a bridge between two otherwise separated clusters. This is known
as the chaining effect.

With the complete-link measure, the distance between clusters
is the maximum distance between a pair of items (one item from
either cluster). This tends to produce compact, more tightly bound



clusters. The complete-link measure is less versatile than the single-
link algorithm because it is unable to find clusters of varying sizes
or complex shapes.

The weighted-average cluster similarity measure is the average
of the minimum and maximum distance between pairs of items
from the different clusters.

Shared Nearest Neighbor (SNN) clustering [5] is a clustering
algorithm that has not yet been used for fiber clustering. We want
to use the SNN algorithm because it has a number of beneficial
characteristics in the context of fiber clustering. In particular, it can
find clusters of different sizes and shapes in data that contains noise
and outliers.

The SNN algorithm is based on the notion that two data points
that share a lot of neighbors probably belong to the same cluster.
In other words, ”the similarity between two points is confirmed by
their common (shared) neighbors” [5].

In the SNN algorithm, a k-nearest neighbor graph is constructed
in which each data point corresponds to a node which is connected
to the nodes of the k-nearest neighbors of that data point. From the
k-nearest neighbor graph a shared nearest neighbor graph is con-
structed, in which edges exist only between data points that have
each other in their nearest-neighbor lists. A weight is assigned to
each edge based on the number and ordering of shared neighbors.
Clusters are obtained by removing all edges from the shared nearest
neighbor graph that have a weight below a certain threshold τ .

5 VALIDATION OF CLUSTERINGS

Clustering validation is done because we want to be able to mea-
sure to which extent clustering methods and fiber similarity mea-
sures produce clusters that match the bundles of the gold standard,
according to the preferences of physicians.

There are two important aspects, which we call correctness and
completeness, that must be considered when comparing two parti-
tions of fibers. Correctness implies that fibers of different anatom-
ical structures are not clustered together; completeness means that
fibers of the same anatomical structures are clustered together.

In practice there is a tradeoff between these two aspects. Achiev-
ing 100% correctness is not difficult: put every fiber into a singleton
cluster, but this results in a completeness of 0%. On the other hand,
achieving 100% completeness is also not difficult: put every fiber
into the same cluster, but this results in a correctness of 0%. The
comparison methods discussed in this section are all based on the
notion that a good clustering must be both correct and complete
with respect to the gold standard.

Figure 3 shows three different partitions of the same set of fibers:
the gold standard and two clusterings. The clustering in figure 3c
is incorrect, because several bundles from the gold standard are to-
gether in the same cluster. The clustering in figure 3d is incomplete
because a bundle from the gold standard is subdivided into several
clusters. Only classified fibers are shown in these figures.

5.1 Clustering Quality Measures

An external index is a statistical measure that indicates the agree-
ment between two partitions of a set of items [7]. External indices
can be seen as clustering quality measures. In our case the items
are fibers, and the segmentations to be compared are the gold stan-
dard, which is thought of as being external to the clustering process,
and a segmentation produced by a clustering algorithm. The level
of agreement between these two partitions is expressed in a score
between 0 (total disagreement) and 1 (perfect agreement).

The manual classification B = {b1,b2, . . . ,bR} and the clustering
result C = {c1,c2, . . . ,cS} are both partitions of n items. The gold
standard consists of R bundles and the clustering result consists of
S clusters.

Bundle/Cluster c1 c2 . . . cS Sums

b1 n11 n12 . . . n1S u1

b2 n21 n22 . . . n2S u2

...
...

...
...

...

bR nR1 nR2 . . . nRS uR

Sums v1 v2 . . . vS n

Table 1: Contingency table [7].

Table 1 shows a contingency table, which is defined as follows:
Let cell ni j be the number of fibers that are both in bundle bi as well
as in cluster c j. The row sum ui is the number of fibers in bundle bi
and the column sum v j is the number of fibers in cluster c j .

Same Cluster Different Cluster Sums

Same
Bundle

a =
R

∑
i=1

S

∑
j=1

(
ni j

2

)
b =

R

∑
i=1

(
ui

2

)
−a m1

Different
Bundle

c =
S

∑
j=1

(
v j

2

)
−a d =

(
n
2

)
−a−b− c M−m1

Sums m2 M−m2 M

Table 2: Categories of pairs of fibers.

The number of pairs of fibers that can be generated given n fibers
is M =

(n
2

)
. In table 2, the pairs of fibers are categorized in four

groups: a, b, c, and d, according to whether pairs of fibers are in
the same bundle and/or cluster or not.

The number of pairs that are in the same bundle is m1 = a + b,
and the number of pairs that are in the same cluster is m2 = a+ c.

Notice that the number of pairs on which the manual classifica-
tion and the automatic clustering agree is a+d. Consequently, b+c
is the number of pairs on which the gold standard and the clustering
result disagree.

The Rand index [7] is defined as the number of ”agreement”
pairs divided by the total number of pairs, Rand = (a+d)/M.

If the two partitions agree completely then the Rand index re-
turns a value of 1.00. Although the lower-limit of this index is 0.0,
this value is rarely returned with real data [9]. This is because the
Rand index is not corrected for agreement by chance.

The Adjusted Rand index [6] is the Rand index corrected for
chance agreement. The general form of a statistic S that is corrected
for chance is:

S′ =
S−E(S)

Max(S)−E(S)
.

In this equation, Max(S) is the upper-limit of S, and E(S) is the
expected value of S. In the case of the Rand E(S), a hypergeometric
distribution [6] is assumed. If S returns its expected value then S′ is
0.0, and if S returns a value of 1.0 then S′ also returns 1.0.

The Adjusted Rand index is defined as:

AR =
((a+d)/M)−E ((a+d)/M)

1−E ((a+d)/M)

=
a− (m1m2)/M

(m1 +m2)/2− (m1m2)/M
.



Clustering Correctness Completeness Overall AR

cc cr cg fx cc cr cg fx

A ++ ++ ++ ++ ++ ++ ++ ++ good 0,96
B ++ ++ ++ ++ + + + ++ good 0,85
C ++ ++ ++ ++ 0 0 + ++ average 0,09
D ++ ++ ++ ++ 0 0 + ++ average 0,36
E + ++ + ++ 0 0 + ++ average 0,31
F ++ ++ ++ ++ + + − ++ average 0,77
G − ++ − − ++ ++ ++ ++ bad 0,90
H ++ − ++ − ++ ++ ++ ++ bad 0,93
I − − − + − − − + very bad 0,01

Table 3: Ranking of the physicians compared with the Adjusted Rand (AR) index. In this table, cc stands for corpus callosum, cr for corona
radiata (both hemispheres), cg for cingula (both hemispheres) and fx for fornix. The linear correlation of the rankings is 0.25.

Milligan and Cooper [9] compared the Rand, Adjusted Rand and
a number of other external indices and concluded that the Adjusted
Rand index is the measure of choice for cluster validation.

5.2 Validation of Clustering Quality Measures

The goal is to identify the best measure for determining the agree-
ment between the cluster results and the gold standard. Our ap-
proach is based on the notion that the optimal cluster quality mea-
sure assigns scores to clusterings that are similar to the scores as-
signed by a physician. For this purpose, two physicians from the
Máxima Medical Center were asked to rank a number of cluster-
ings. These clusterings were also ranked according to the various
cluster quality measures discussed in the last section. The rank-
ing of the physicians was then compared to the rankings from the
cluster quality measures.

The ranking of the physicians and the scores assigned by the var-
ious cluster quality measures are given in table 3. A ”++” means
that the physicians found that particular aspect very good, a single
”+” means that they found that aspect good, a ”0” means that they
found it average (depending on the context), and a ”−” means they
found this aspect bad in every situation. Notice that no aspect has
been labelled ”very bad”. This is because it is very difficult for
physicians to distinguish between a ”bad” and a ”very bad” aspect;
a ”bad” aspect is already something they cannot relate to.

The clusterings can be categorized based on the overall quality:

Good. Clusterings A and B were considered good by the physi-
cians. The Adjusted Rand index agrees with the physicians
and returns fairly high values. The Adjusted Rand index does
not return a 1.0 for these clusterings because there were some
fibers from the smaller bundles that were in different clusters.
The physicians did not mind that these outliers were clustered
apart, because they were visually different.

Average. The physicians found the clusterings C, D, E and F aver-
age. All four clusterings suffered from the same defect: some
bundles were subdivided. Although this might be desirable in
some situations, the subdivision was not part of the manual
classification. The physicians did not mind the subdivision in
some cases, because large bundles like the corpus callosum
and corona radiata can be further subdivided. The physicians
found it less desirable that a small bundle like the cingula was
subdivided. The Adjusted Rand index returns very low scores
for clusterings in which the corpus callosum was subdivided
into a number of smaller clusters (clustering C, D and E).

Bad. The clusterings G and H were considered bad by the physi-
cians, because several bundles from the manual classification

were clustered together. The Adjusted Rand index returns
very high scores for these clusterings because the largest bun-
dle (the corpus callosum) is complete.

Very bad. Clustering I was considered very bad because it was
both incorrect as well as incomplete. Here the Adjusted Rand
index agrees with the opinion of the physicians and returns
very low values.

The linear correlation between the index and the AR results is
0.25. Notice that just the ranking or order has been used to calculate
the correlation.

In summary, the Adjusted Rand index does not reflect the pref-
erences of the physicians very well.

Bundle/Cluster c1 c2 . . . cS Sums

b1 n11
k
u1

n12
k
u1

. . . n1S
k
u1

k

b2 n21
k
u2

n22
k
u2

. . . n2S
k
u2

k
...

...
...

...
...

bR nR1
k

uR
nR2

k
uR

. . . nRS
k

uR
k

Sums v′1 v′2 . . . v′S Rk

Table 4: Normalized contingency table.

5.3 Weighted Normalized Adjusted Rand (WNAR)

In this section, we use the criteria that the physicians have used for
their evaluation to improve the AR index.

A problem with the Adjusted Rand index is that it does not ac-
count for bundles that are of widely varying sizes. That is, the Ad-
justed Rand index measures agreement on the level of fibers, not on
the level of bundles. As a result, a bundle with a large number of
fibers is weighted more than a bundle with a small number of fibers.
In table 3, it can be noticed that whenever the corpus callosum is
complete, the Adjusted Rand index returns a high value whatever
the situation of the other bundles is.

Another problem is that, as table 3 shows, the physicians found
an incorrect clustering worse than an incomplete clustering. In an
incorrect clustering, fibers belonging to different anatomical bun-
dles are clustered together, which makes it difficult to distinguish
between bundles. This makes a correct clustering visually more
appealing than a complete clustering.



To take into account the requirement that bundles should be
weighted equally, we define a Normalized Adjusted Rand (NAR)
index. The idea is to modify the contingency table such that each
bundle has the same weight. A way to achieve this is by setting
the row sum ui of each bundle bi in the contingency table to some
nonnegative value k and to multiply each entry ni j by a factor k/ui
(see table 4).

The column sum v′j is computed by taking the sum of the new

cell values, v′j = k ∑R
i=1(ni j/ui). With this contingency table we can

calculate new values for a, b, c, d, m1, m2, M (see table 5).

Same Cluster Different Cluster Sums

Same
Bundle

a′ =
R

∑
i=1

S

∑
j=1

(
k

ni j
ui
2

)
b′ = R

(
k
2

)
−a′ m′

1

Different
Bundle

c′ =
S

∑
j=1

(
v′j
2

)
−a′ d′ =

(
Rk
2

)
−a′ −b′ − c′ M′ −m′

1

Sums m′
2 M′ −m′

2 M′

Table 5: Categories of pairs of fibers.

A remaining question is which value to use for k. We chose
k →∞, thereby pretending that we have an infinite amount of fibers,
which gives more stable results. The definition of the Normalized
Adjusted Rand becomes:

NAR = lim
k→∞

a′ − (m′
1m′

2)/
(Rk

2

)
(m′

1 +m′
2)/2− (m′

1m′
2)/
(Rk

2

) =
2 f −2Rg

2 f −R f −R2

with

f =
S

∑
j=1

(
R

∑
i=1

ni j

ui

)2

, g =
R

∑
i=1

S

∑
j=1

n2
i j

u2
i

.

We propose a final modification to the Adjusted Rand index that
enables us to weigh correctness and completeness differently. The
indices that are based on the Rand index assume that the correct-
ness and completeness of a clustering are equally important, but
we found that physicians assign different weights to the aspects of
correctness and completeness.

Let us first define the Rand index in terms of the normalized
contingency table:

NR =
a′ +d′

a′ +b′ + c′ +d′ = 1− b′

M′ −
c′

M′ .

In this equation the fraction b′/M′ indicates the incompleteness
of the clustering. The fraction c′/M′ indicates the incorrectness of
the clustering. We propose the following definition for a Weighted
Normalized Rand index WNR:

WNR = 1−2(1−α)
b′

M′ −2α
c′

M′ .

If α = 0.5 then correctness and completeness are weighted
equally, for higher values correctness is weighted more, for lower
values completeness is weighted more.

The expected value of WNR becomes

E(WNR) = 1−2(1−α)E
(

b′

M′

)
−2αE

(
c′

M′

)

= 1−2(1−α)
m′

1(M
′ −m′

2)
M′2 −2α

m′
2(M

′ −m′
1)

M′2
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Figure 4: Relation between α and the rank correlation.

Overall AR WNAR

0.00 0.25 0.50 0.75 1.00

good 0.91 0.77 0.80 0.85 0.90 0.96
average 0.38 0.58 0.64 0.71 0.82 0.95
bad 0.92 0.89 0.81 0.74 0.68 0.64
very bad 0.01 0.34 0.33 0.32 0.30 0.29

Table 6: Ranking of the physicians compared with the WNAR index.

since the expected value of b′ is m′
1(M

′ −m′
2)/M′ and the expected

value of c′ is m′
2(M

′ − m′
1)/M′. Now the Weighted Normalized

Adjusted Rand index (WNAR) is defined as

WNAR = lim
k→∞

WNR−E(WNR)
1−E(WNR)

=
f −Rg

f −αR f −R2 −αR2

Figure 4 shows the relation between α and the rank correlation
of the physicians and WNAR ordering of the clusters. It shows that
the optimal value for α is around 0.75 for validating the cluster-
ing that were used in this experiment. Table 6 shows the values of
the WNAR index for the clusterings that were ranked by the physi-
cians. The WNAR index with α = 0.5 does not distinguish between
average and bad clustering, while setting α = 0.75 does make a dif-
ference.

This experiment was too small to be statistically significant, and
a larger experiment with a more complete gold standard is neces-
sary to confirm this results. Nevertheless, based on this experiment,
the ranking created with WNAR index with α = 0.75 has the most
correspondence with the criteria of the physicians and will be used
in the next section.

6 EVALUATION OF CLUSTERING METHODS

For the experiments, three different DTI data sets from healthy
adults were used. Each data set has a resolution of 128 × 128 ×
30 with a voxel size of 1.8 × 1.8 × 3.0mm. For each data set, we
defined a gold standard which consisted of the structures described
in section 4.1. The data sets were selected at random: the only se-
lection criterium was that the structures of the gold standard could
be found using fiber tracking.



Fiber similarity measure HSL HWA HCL SNN

D1 D2 D3 D1 D2 D3 D1 D2 D3 D1 D2 D3

Mean of closest points 0.92 0.99 0.95 0.81 0.90 0.86 0.82 0.87 0.77 0.93 1.00 0.91
Closest point 0.46 0.50 0.50 0.79 0.82 0.76 0.77 0.79 0.69 0.82 0.83 0.86
Hausdorff 0.84 0.85 0.91 0.77 0.82 0.77 0.78 0.85 0.66 0.87 0.99 0.89
End points 0.87 0.88 0.93 0.87 0.82 0.72 0.67 0.77 0.74 0.92 0.97 0.92

Table 7: Highest WNAR values for each combination of clustering method and fiber similarity measure.

Fiber tracking with seeding throughout the whole volume [11]
gives us a set of 3500-5000 fibers, which can be clustered in ap-
proximately 15-20 minutes on a Pentium 4 with a 2.5 GHz proces-
sor, depending on the chosen fiber similarity measure and cluster-
ing method. Furthermore, each bundle of the manual classification
contains at least 10 fibers.

As a starting point, we implemented the fiber similarity measures
based on Corouge et al. [3]: closest-point distance, mean distance
and Hausdorff distance. We also included the end point distance
presented by Brun et al. [2].

Hierarchical clustering has been used for fiber clustering by
Zhang and Laidlaw [15]. Hierarchical clustering gives different
results by varying the cluster similarity measure. Three hierarchi-
cal variations were implemented: single-link (HSL), complete-link
(HCL) and weighted-average (HWA) (see section 4.2).

Hierarchical clustering methods have a single parameter that
controls the output of the algorithm: the level at which the den-
drogram is cut. We compare the clustering at each level of the den-
drogram to the manual classification using the WNAR index with
α = 0.75 (see figure 5a). This comparison is done for each of the
algorithm combinations. The arrow shows the optimal clustering
for this method, shown in figure 1b.

The second method that we have used for fiber clustering is the
shared nearest neighbor (SNN) algorithm described in section 4.2.
The SNN algorithm has two parameters: the number of neighbors k
and the edge threshold τ . In general, an increased edge threshold re-
sults in an increased number of clusters. Figure 5b shows a density
plot of the WNAR for the mean distance between fibers combined
with the SNN algorithm. The axes are the number of neighbors
versus the number of clusters. The value of the WNAR index is
represented by a grey value: black corresponds to 0 and white to
1. The arrow indicates the optimal clustering which is shown in
figure 1d.

If the number of neighbors is fixed the plot of the number of clus-
ters versus WNAR is similar to the ones obtained by hierarchical
clustering (see figure 5a and 5c). Table 7 gives the maximum val-
ues obtained from the WNAR index for each combination of fiber
similarity measure and clustering method for the three data sets D1,
D2, and D3. These values were obtained by varying the parameters
of each clustering method, and comparing each resulting clustering
to the gold standard. For the hierarchical clustering variations, the
single-link method combined with the mean of closest points mea-
sure produces a clustering that has the best correspondence with the
gold standard. This clustering is obtained by cutting the dendro-
gram at the level of 141 clusters (see figure 1b). The worst optimal
clustering (WNAR = 0.46) has 933 clusters and is also created with
the single-link method, but now combined with the closest point
measure (see figure 1c).

For three of four fiber similarity measures, the single-link per-
forms better than the weighted-average and complete-link. These
higher values can be explained by the fact that the single-link
method manages to keep the fibers from the larger bundles together.
This is largely due to the chaining effect of the single-link [8].

Fiber similarity HSL HWA HCL SNN

n n n k τ

Mean 141 110 125 23 2,667
Closest 933 120 77 54 42,065
Hausdorff 178 107 107 18 863
End points 175 44 95 15 329

Table 8: Optimal parameter settings for the first data set.

Figure 1d shows the optimal SNN clustering for the first data set,
which is also obtained with the mean of closest point measure. The
SNN algorithm seems to be able to find both the small and the large
bundles of the manual classification. Indeed, a visual inspection re-
veals that the clusterings produced by the SNN algorithm are very
similar to the hierarchical single-link clusterings. This is reflected
in the scores of the WNAR index which are also similar (see ta-
ble 7). For the second data set, the SNN algorithm combined with
the mean of closest points measure obtains an optimal value of 1.0:
this means that the clustering is perfect for the fibers that have been
manually classified.

However, the difficulty with the SNN algorithm is choosing ap-
propriate values for the parameters k and τ . Table 8 gives the op-
timal parameter settings for the first data set (D1). Noticeable is
the apparent lack of a relation between the number of neighbors,
edge threshold and the optimal value for the WNAR index. When a
manual classification is available, an exhaustive search can find the
optimal value for τ for a particular k. Without such an aid however,
the number of possible values for τ is very large.

Concerning the fiber similarity measures, the mean distance be-
tween fibers achieves the highest values for the WNAR index. The
results are similar to the end-points distance and the Hausdorff dis-
tance. The closest-point distance performs poorly with single-link,
but performs reasonably well with complete-link and weighted-
average. This is probably because the conservative nature of these
methods counterbalances the overly optimistic nature of the closest-
point measure.

In summary, the difference in clustering quality between the hier-
archical single-link method and SNN method is minimal. A larger
experiment with more data sets is necessary to confirm these re-
sults. However, if we look from a practical point of view then the
hierarchical clustering algorithm is better for our purposes. In SNN,
the number of neighbors and the edge threshold need to be set. The
values of these parameters did not show any relation with the op-
timal clusterings. Specifying the number of clusters is also more
intuitive than the number of neighbors and edge threshold.
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Figure 5: Graphs showing the evaluation of the clustering methods using mean distance between fibers measure for one data set.

7 CONCLUSION AND FUTURE WORK

Fiber clustering can overcome the visual cluttering that occurs
when doing fiber tracking with seeding throughout the whole vol-
ume. In this paper, the shared nearest neighbor clustering algorithm
has been applied in the context of fiber clustering. A framework to
evaluate fiber clustering methods has been presented. Our approach
is based on the manual classification of the fibers in a number of
bundles that correspond to anatomical structures. By comparing
the manually defined bundles to the automatically created clusters
we can get an estimation of the cluster quality.

We presented a new measure to validate the fiber clusters based
on the preferences of physicians. We created the WNAR cluster-
ing quality measure after we found that the available measures in
literature were not suited to the task of fiber clustering. Finally, we
compared different clustering methods using the new measure. We
demonstrated how the validation and clustering techniques can be
used on DTI data sets of human brains. We concluded that from the
tested methods, hierarchical clustering using single-link and mean
distance between fibers gives the best results.

The results of the experiments presented in this paper can be seen
as a demonstration of the described techniques. We had to restrict
ourselves to a limited number of data sets, physicians, fiber simi-
larity measures and clustering methods. Therefore, we cannot give
definitive answers. As future work, a larger experiment with more
data sets and more physicians involved needs to be done. The cur-
rent manual classification only contains six anatomical structures.
A more complete manual classification will enable a more accurate
assessment of the cluster results.

The presented techniques are not constrained to white-matter
fibers. It would be interesting to examine how these methods per-
form on non-brain fibers.
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