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Diffusion Tensor Imaging (DTI) allows to noninvasively measure the diffusion of water in fibrous tissue. By reconstructing the
fibers from DTI data using a fiber-tracking algorithm, we can deduce the structure of the tissue. In this paper, we outline an
approach to accelerating such a fiber-tracking algorithm using a Graphics Processing Unit (GPU). This algorithm, which is based
on the calculation of geodesics, has shown promising results for both synthetic and real data, but is limited in its applicability by
its high computational requirements. We present a solution which uses the parallelism offered by modern GPUs, in combination
with the CUDA platform by NVIDIA, to significantly reduce the execution time of the fiber-tracking algorithm. Compared to a
multithreaded CPU implementation of the same algorithm, our GPU mapping achieves a speedup factor of up to 40 times.

1. Introduction

Diffusion-Weighted Imaging (DWI) is a recent, noninvasive
Magnetic Resonance Imaging (MRI) technique that allows
the user to measure the diffusion of water molecules in
a given direction. Diffusion Tensor Imaging (DTI) [1]
describes the diffusion measured with DWI as a second-order
tensor. DWI works on the knowledge that the diffusion of
water molecules within biological tissue is influenced by the
microscopic structure of the tissue. The theory of Brownian
motion dictates that molecules within a uniform volume
of water will diffuse randomly in all directions, that is, the
diffusion is isotropic. However, in the presence of objects that
hinder the diffusion of water in some specific directions,
the diffusion will become anisotropic. In fibrous tissue, the
diffusion of water will be large in the direction parallel to
the fibers and small in perpendicular directions. Therefore,
DWI data is used to deduce and analyze the structure of
fibrous tissue, such as the white matter of the brain, and
muscular tissue in the heart. DWI data has been used during
the planning stages of neurosurgery [2], and in the diagnosis
and treatment of certain diseases, such as Alzheimer’s disease
[3], multiple sclerosis [4], and strokes [5]. Since the tissue
of the white matter is macroscopically homogeneous, other
imaging techniques, such as T2-weighted MRI, are unable to

detect the structure of the underlying fibers, making DWI
uniquely suitable for in vivo inspection of white matter.

The process of using the measured diffusion to recon-
struct the underlying fiber structure is called fiber tracking.
Many different fiber tracking algorithms have been devel-
oped since the introduction of DTI. This paper focuses
on an approach in which fibers are constructed by finding
geodesics on a Riemannian manifold defined by the DTI
data. This technique, called geodesic ray-tracing [6, 7], has
several advantages over other ones, such as its relatively low
sensitivity to measurement noise, and its ability to iden-
tify multiple solutions between two points, which makes it
suitable for analysis of complex structures.

One of the largest downsides of this algorithm is that it
is computationally expensive. Our goal is to overcome this
problem by mapping the geodesic ray-tracing algorithm onto
the highly parallel architecture of a Graphical Processing Unit
(GPU), using the CUDA programming language. Since fibers
can be computed independently of each other, the geodesic
ray-tracing algorithm can be meaningfully parallelized. As a
result, the running time can be reduced by a factor of up to
40, compared to a multithreaded CPU implementation. The
paper describes the structure of the CUDA implementation,
as well as the relevant design considerations.
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FiGure 1: 3D glyphs visualizing diffusion tensors. The orientation
and sharpness of the glyphs depend on the eigenvectors and
eigenvalues of the diffusion tensor, respectively. In this image, the
glyphs have been colored according to the orientation of the main
eigenvector (e.g., a main eigenvector of (1,0, 0) corresponds to a red
glyph, while a main eigenvector of (0,0,1) corresponds to a blue
glyph). This image was generated in the DTITool [11].

In the next section, we discuss the background theory
related to our method, including DTI and the geodesic
ray-tracing algorithm. Next, we give an overview of past
research related to the GPU-based acceleration of fiber
tracking algorithms. In Section 4, the implementation of
the geodesic ray-tracing algorithm on a GPU using CUDA
is discussed. Next, we show benchmarking results and
optimization strategies for the CUDA implementation in
Section 5, followed by a discussion of the results in Section 6,
and a conclusion in Section 7.

2. Background

2.1. Diffusion Tensor Imaging. DTI allows us to reconstruct
the connectivity of the white matter, thus giving us greater
insight into the structure of the brain. After performing
DWI for multiple different directions, we can model the
diffusion process using a second-order tensor D [1, 8]. D
is a 3 X 3 positive-definite tensor, which can be visualized
as an ellipsoid defined by its eigenvectors and eigenvalues,
as shown in Figure 1. Using the eigenvalues of a tensor, we
can quantify its level of anisotropy using anisotropy measures
[9, 10]. In areas with nearly isotropic diffusion, tensor
ellipsoids will be nearly spherical, and anisotropy measure
values will be low, while in areas with highly anisotropic
diffusion (due to the presence of fibers), ellipsoids will be
sharp and elongated, and anisotropy values will be high.
In anisotropic areas, the eigenvector corresponding to the
largest eigenvalue (the main eigenvector) will indicate the
direction of the fibrous structure.

2.2. Fiber Tracking Algorithms. DTI Fiber Tracking is the
process of digitally reconstructing the pathways of fibers in
fibrous tissue using the DTI tensor data, with the aim of
deducing the structure of the tissue. A common approach
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to fiber tracking is to track lines from one or more seed
points, using a set of differential equations. The most
straightforward fiber tracking algorithm (generally called
the streamline method) uses the direction of the main
eigenvector as the local orientation of the fibers [12]. Thus, a
fiber in biological tissue may be reconstructed by integration
of the main eigenvector, using an Ordinary Differential
Equation (ODE) solver such as Euler’s method. Figure 2
illustrates the relation between the diffusion tensors and the
resulting fiber trajectories. Fiber tracking algorithms based
on this approach have been shown to achieve acceptable
results [13, 14], but are limited in their accuracy by a
high sensitivity to noise and to the partial volume effect
[15, 16].

One possible solution to the limitations of classic stream-
line methods is to use a global minimization solution, for
example, a front-propagation method. In such a method, a
front is propagated from a seed point throughout the entire
volume [17-19]. The local propagation speed of the front
depends on the characteristics of the DTI image, and fibers
are constructed by back-tracing through the characteristics
of the front. A subset of these front-propagation methods use
the theory of geodesics to find potential fiber connections
[19-21]. These algorithms generally compute the geodesics
(defined as the shortest path through a tensor-warped space)
by solving the stationary Hamilton-Jacobi (HJ) equation.
Geodesic algorithms have been shown to produce good
results and are generally more robust to noise than simple
streamline methods. One disadvantage, however, is that they
generally only find a single possible connection between
target regions, which is often not the correct solution in very
complex areas. Furthermore, research has shown it is possible
to have multiple fiber connections between regions of the
white matter [22].

2.3. Geodesic Ray-Tracing. The focus of this paper is a
relatively new fiber tracking algorithm based on geodesics,
as proposed by Sepasian et al. [6, 7]. The main advantages of
this algorithm, compared to those discussed in the previous
section, are the fact that it provides a multivalued solution
(i.e., it allows us to find multiple geodesics between regions
in the brain), and the fact that it is able to detect fibers
in regions with low anisotropy (e.g., regions of the white
matter with crossing fiber bundles). In Figure 3, we show
that this algorithm is capable of detecting complex structural
features, such as the divergence of the corpus callosum,
which cannot be captured using streamline-based methods.
Detailed validation of this algorithm is considered beyond
the scope of this paper; for an in-depth discussion on the
validity and applicability of the algorithm, we refer the reader
to the works by Sepasian et al. [6, 7].

A geodesic is defined as the shortest path on a Rie-
mannian manifold. This is a real, differentiable manifold,
on which each tangent space is equipped with a so-
called Riemannian metric, which is a positive-definite tensor.
Roughly speaking, the elements of the metric tensor are an
indication of the cost of (or energy required for) moving
in a specific direction. For DTI data, an intuitive choice
for the metric is the inverse of the diffusion tensor. Large
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FIGURE 2: (a) Small group of fibers generated using a simple streamline method. The main eigenvectors of the diffusion tensors determine
the local orientation of the fibers. (b) Fibers showing part of the Cingulum and the corpus callosum. Both the glyphs in the left image and
the plane in the right image use coloring based on the direction of the main eigenvector, similar to Figure 1. Both images were generated in

the DTITool [11].

(a)

(b)

FIGURE 3: Fibers of part of the corpus callosum, computed using the streamlines method (a) and the geodesic ray-tracing method (b). Fibers
were computed from seed points located in the center of the corpus callosum and are colored according to their local orientation (similar to
the glyphs in Figure 1). Unlike the streamline method, which only captures the most dominant bundles of the corpus callosum, the geodesic
ray-tracing method is able to correctly detect the divergence of the fiber bundles. This image was generated in the DTITool [11].

values in the DTI tensor correspond to small values in its
inverse, indicating low diffusion costs, and vice versa. Locally,
a geodesic will tend to follow the direction with the lowest
metric value, which is analogous to the direction with the
highest diffusion. We define the Riemannian metric as G =
D71, where D is the diffusion tensor.

In the algorithm discussed in this paper, the trajectory of
a fiber is computed iteratively by numerically solving a set of
ODEs. The ODEs used to compute the trajectory of the fiber
are derived from the theory of geodesics in a Riemannian
manifold, as shown below.

Let x(7) be a smooth, differentiable curve through a
volume described by parameter 7 = [0, T], with derivative

vector X(7). We define the Riemannian length of x(7) as
follows:

T
L(x) = L JXTGxdr. (1)

The geodesic is the line that minimizes the geodesic length
of (1). We can use the Euler-Lagrange equations to translate
this function to a set of ODEs, as described in detail by Jost
[23].

Let x¥ and % be the first and second derivatives with
regard to 7, respectively, of the geodesic for dimension



(1, 2, 3). The ODEs that allow us to compute the
geodesics are given by the following equation:
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3
1 0 0 0

E _ yo N -

52 [g <ax 8o * ax,;g"“’ axgg“ﬁ>} (3)

Here, g;; represents element (i, j) of the inverse diffusion
tensor, while g/ represents an element of the original
diffusion tensor. We note that, in order to compute all
Christoffel symbols, we need to compute the derivatives of
the inverse DTI tensor in all three dimensions.

Given an initial position and an initial direction, we
can construct a path through the 3D DTI image, using the
second-order Runge-Kutta ODE solver. The initial position is
usually specified by the user, who is interested in a particular
area of the tissue (in our case, the white matter). For the
initial direction, we can use a large number of directions
per seed points (distributed either uniformly on a sphere, or
around the main eigenvector), and see which of the resulting
fibers intersect some user-specified target region. Doing
so increases our chances of finding all valid connections
between the seed point(s) and the target region(s).

This approach, which is referred to as the Region-to-
Region Connectivity approach, requires a suitable Con-
nectivity Measure [24], which quantifies the strength of
the connection between seed point and target region. In
other words, this measure symbolizes the probability that
a computed geodesic corresponds to an actual fibrous con-
nection in the white matter. While this paper does not discuss
the implementation of the Region-to-Region Connectivity
approach, we do note that in order to reliably find all
geodesics between the seed point(s) and the target region,
we need to compute a large amount of trajectories in
all directions. This need for a large amount of fibers, in
combination with the high computational complexity of the
algorithm itself, motivates our decision to parallelize the
geodesic ray-tracing algorithm.

3. Related Work

The possibility of using the GPU to accelerate fiber tracking
algorithms (using CUDA or other languages) has recently
been explored in other literature [25-28]. These implemen-
tations use either geometric shaders or fragment shaders
to accelerate the streamline tracking algorithm. With the
exception of Mittmann et al. [28], who introduce a stochastic
element, these papers all use the simple streamline method
for fiber tracking, in which the main eigenvector of the DTI
tensor is used as the direction vector for the integration step.
In addition to using algorithms with a lower computational
complexity than the geodesic ray-tracing algorithm discussed
in Section 2.3, these implementations differ from ours in the
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sense that they use GPU shaders to compute the fibers, while
we use CUDA, which offers higher flexibility and a more
gentle learning curve than programmable GPU shaders [29].

More recently, Mittmann et al. introduced a GPU imple-
mentation of a simple streamline algorithm using CUDA
[30]. Compared to a multithreaded CPU implementation,
this GPU implementation allows for a significantly higher
frame rate, enabling real-time, interactive exploration of
large groups of fibers. The speedup factor, based on the
number of frames per second, is between 10 and 20 times.
The paper’s main focus, however, is interactivity, and a
technical discussion of the advantages and limitations of
CUDA in the context of fiber tracking algorithms is omitted.

Jeong et al. [31] have developed a CUDA implementation
of a fiber tracking algorithm based on the Hamilton-
Jacobi equation, which computes the fiber pathways by
propagating a front throughout the entire volume. Their
solution parallelizes the propagation of the front by dividing
the DTI image into blocks of 43 voxels, after which the front
is propagated through a number of such blocks in parallel.
This approach has been shown to be 50 to 100 times faster
than sequential implementations of similar algorithms on
a CPU. However, as stated in Section 2.3, the HJ algorithm
on which they base their implementation is not able to find
multiple connections between target regions. Furthermore,
the front-propagation algorithm used by Jeong et al. requires
a fundamentally different parallelization approach from our
ray-tracing method.

We therefore conclude that our solution is the first
CUDA-aided acceleration of a fiber tracking algorithm of
this complexity. As will be shown in the next sections,
the complex nature of the algorithm introduces a number
of challenges to the parallelization process. Furthermore,
the advantages of the geodesic ray-tracing algorithm, as
discussed in Section 2.3, suggest that its implementation will
also have practical applications.

4. Geodesic Fiber Tracking on the
GPU Using CUDA

4.1. Algorithm Overview. In Section 2.3, we introduced a
system of ODEs which can be used to compute the trajectory
of a fiber, given an initial position and direction. The basis
of our algorithm is an ODE solver which numerically solves
(2) using a fixed integration step length. Specifically, let x! be
the coordinate of point i along the fiber for dimension y, and
let %/ be the local direction of the fiber in this point. Using
Euler as the ODE solver, we can compute x%,, and i/, (i.e.,
the position and direction at the next time step) as follows:

y Y e
Xip1 = X; +hij,

%l = %] —hz Zl"y xiP.

a=1p=1

(4)

Here, h is a fixed step size, and Fzﬂ is the Christoffel sym-
bol as defined in (3). In the implementation described below,
we use a second-order Runge-Kutta ODE solver instead of
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FiGURE 4: Flowchart for the geodesic fiber tracking algorithm. Using the four input tensor fields, we compute the trajectory of a fiber using

a numerical ODE solver.

the Euler solver, but the basic method of numerically solving
the system of ODEs remains the same. When computing
the Christoffel symbols, the four required tensors (inverse
DTI tensors and its three derivates) are interpolated using
trilinear interpolation.

To summarize, a single integration step of the ODE solver
consists of the following actions.

(1) Compute the inverse diffusion tensor and its deriva-
tive in all three dimensions for the eight voxels
surrounding the current fiber point (x?).

(2) Interpolate the four tensors at the current fiber point.

(3) Compute all Christoffel symbols. According to (2)
and (3), we require nine symbols per dimension, for
a total of 27 symbols. However, using the symmetric
qualities of the diffusion tensor (and therefore, of its
inverse and the derivates of its inverse), we can reduce
this to 18 unique symbols.

(4) Using the Christoffel symbols, compute the position
and direction of the next fiber point.

(5) Repeat steps 1 through 4 until some stopping condi-
tion is met. By default, the only stopping condition is
the fiber leaving the volume of the DTI image.

We note that the first step may be performed as a pre-
processing step. While this increases the amount of memory
required by the algorithm, it also significantly decreases the
number of required computations per integration step. This
pre-processing step has been implemented in CUDA, but due
to its trivial implementation and relatively low running time
(compared the that of steps 2 through 5), we do not discuss
it in detail, instead focusing on the actual tracking process.
Figure 4 summarizes the tracking process of steps 2 through
5, assuming the four input tensor fields have been computed
in a pre-processing step.

4.2. CUDA Overview. The Region-to-Region Connectivity
approach outlined in Section 2.3 presents us with one
significant problem: it requires the computation of a large

number of geodesics. In combination with the relatively
complex ODEs presented in (2) (compared to the ODEs used
for simpler fiber tracking methods), this makes this approach
computationally expensive. Our aim is to overcome this
hurdle by implementing the algorithm in CUDA, of which
we give a quick overview in this section.

NVIDIAs Compute Unified Device Architecture (CUDA)
[32] is a way to facilitate General-Purpose computing on
Graphics Processing Units (GPGPU). Modern GPUs contain
large number of generic processors in parallel, and CUDA
allows a programmer to utilize this large computational
power for nongraphical purposes. In CUDA, a kernel (usually
a small, simple function) is executed in parallel by a large
number of threads, each working on one part of the input
data. In a typical execution pattern, the host PC first uploads
the input data to the GPU, then launches a number of threads
that execute the kernel. The resulting data is then either
downloaded back to the host PC or drawn on the screen.

A CUDA-enabled GPU generally consists of the device
memory, which is between 512MB and 2GB on most
modern GPUs, and a number of multiprocessors [33]. Each
multiprocessor contains eight scalar processors (in most
current-generation GPUs; newer generations will have more
scalar processors per multiprocessor); a register file; a shared
memory block, which enables communication between the
scalar processors; and an instruction unit, which dispatches
instructions to the processors. The type of parallelism in
these multiprocessors is called Single Instruction, Multiple
Threads (SIMT), which differs from Single Instruction,
Multiple Data (SIMD) in the sense that the threads have
some level of independence. Ideally, all active threads in
a multiprocessor will execute the same instruction at the
same time; however, unlike SIMD, SIMT also allows for
branching threads using if-statements. While this does allow
the programmer to create more complex kernels, it also adds
an overhead in terms of execution time, since the different
branches must be executed sequentially. Therefore, it is best
to avoid branching behavior in kernels where possible.

One other important consideration when designing
CUDA algorithms is the memory hierarchy. The two
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memory blocks local to each multiprocessor—the register
file and the shared memory—both have low memory access
latencies. However, the available space in these two memory
blocks is limited, with typical values of 16 kB for the shared
memory, and 16 or 32kB for the register file. The device
memory has far more storage space, but accessing this mem-
ory adds a latency of between 400 and 900 clock cycles [34].
The device memory contains four different memory spaces:

(i) Constant Memory, a small, read-only block best used
for constant values;

(ii) Texture Memory, a read-only space optimized for
texture reads;

(iii) Global Memory, the main random-access memory
space;

(iv) Local Memory, a per-thread extension of the register
file.

Local memory is used when the register file of a
multiprocessor cannot contain all variables of a kernel. Since
access latencies to the device memory are very high, the
use of large kernels is generally best avoided. As a general
rule, communication between the device memory and the
multiprocessors should be kept as low as possible. A second
important guideline is that the size of the kernels, in terms of
the number of registers per thread and the amount of shared
memory used per thread block, should be kept small. Doing
so will allow the GPU to run more threads in parallel, thus
increasing the occupancy of the scalar processors (i.e., the
percentage of time that each scalar processor is active). The
structure of a CUDA-enabled GPU is illustrated in Figure 5.

4.3. CUDA Implementation. Keeping in mind the advantages
and limitations of CUDA as discussed in Section 4.2, we can
design a CUDA implementation for the algorithm intro-
duced in Section 2.3. As mentioned in step 3 of the algorithm
as outlined in Section 4.1, we require the derivatives of
the inverse of the DTI tensor in all three dimensions. We
intuitively see that computing these derivatives for each
point along the fiber would be far too costly in terms of
the number of instructions, as computing these derivates
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for all eight surrounding voxels (using two-sided numerical
derivation) would require the inversion of 32 diffusion
tensors. Therefore, we decide to precompute them instead.

This gives us four input tensors per voxel: the diffusion
tensor and the three derivatives of its inverse. With six unique
elements per tensor and four bytes per value, this gives us a
memory requirement of 4 * 6 * 4 = 96 Bytes per voxel. The
algorithm also has the seed points as input, which contain
the initial position and direction for each fiber. These seed
points are determined by the user, for example, by specifying
a region of interest in the image.

The output of the algorithm consists of a number
of fibers, each consisting of a list of 3D coordinates. In
postprocessing steps, these fibers can be filtered through the
target region(s) and sorted according to their Connectivity
Measure value, but these steps are not part of the CUDA
implementation discussed herein. Since CUDA does not
support dynamic memory allocation, we hard-coded a limit
in the number of iteration steps for each fiber, and statically
allocated an output array per fiber of corresponding size.
We note here that the choice of this limit may impact
performance: for high limits, more fibers will terminate
prematurely (due to leaving the volume), leading to lower
occupancy in later stages of the algorithm, while for lower
limits, the start-up overhead of the CUDA algorithm may
become relevant.

We intuitively recognize two different approaches for
parallelization of the geodesic ray-tracing algorithm: per-
region parallelization and per-fiber parallelization. The per-
region approach would entail loading a small region of the
image into the shared memory of a multiprocessor, tracking
a number of fibers through this region (using one thread per
fiber), and then loading the next region. While this approach
would guarantee low memory bandwidth requirements
between the multiprocessors and the device memory, it is
impractical due to two reasons. First, it is impossible to
guarantee that a region will contain a sufficient number of
fibers to enable meaningful parallelization. Second, due to
the limited size of the shared memory, these regions would
be very small (no more than approximately 160 voxels per
region), which would defeat the purpose of this approach. In
other words, this approach requires some degree of spatial
coherence between the fibers, and since we do not know their
trajectories beforehand, ensuring this spatial coherence is
highly impractical.

We therefore use the per-fiber parallelization approach,
in which each thread computes a single fiber. The main
advantage of this approach is that it does not require any
spatial coherence between the fibers to efficiently utilize
the parallelism offered by the GPU. As long as we have
a high number of seed points and initial directions, all
scalar processors of the GPU will be able to run their own
threads individual of the other threads, thus minimizing
the need for elaborate synchronization between threads, and
guaranteeing a stable computational throughput for all active
processors. The main disadvantage of this approach is that
it requires a higher memory throughput than the per-region
approach, as it does not allow us to avoid redundant memory
reads.
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The kernel that executes the fiber tracking process
executes the following steps, as summarized in Figure 4:

(1) Fetch the initial position and direction of the fiber.

(2) For the current fiber position, fetch the diffusion
tensor and the derivatives of its inverse, using trilinear
interpolation.

(3) Using these four tensors, compute the Christoffel
symbols, as defined in (3).

(4) Using the symbols and the current direction, com-
pute the next position and direction of the fiber, using
the ODEs of (2) with a second-order Runge-Kutta
step.

(5) Write the new position to the global memory.

(6) Stop if the fiber has left the volume or the maximum
number of steps has been reached. Otherwise, return
to Step 2.

4.4. Using Texture Memory. As noted in the previous sec-
tion, the main disadvantage of the per-fiber parallelization
approach is that it does not allow us to avoid redundant
reads. We can partially solve this problem by storing the
input images in texture memory, rather than in global
memory. Unlike global memory reads, texture memory
reads are cached through a number of small caches. These
caches can contain about 8 kB per multiprocessor, although
the actual amount varies per GPU. While we argue that
cached memory reads could reduce the required memory
throughput, we note that the lack of spatial coherence
between the fibers, coupled with the small cache sizes,
will largely negate the positive effects of cached memory
reads.

A second, more important advantage of the texture
memory is the built-in texture filtering functionality. When
reading texture data from a position located between grid
points, CUDA will apply either nearest-neighbor or linear
interpolation using dedicated texture filtering hardware.
When storing the input data in the global memory, all
interpolation must be done in-kernel, which increases both
the number of instructions per integration step, and the
amount of memory required by the kernels. By delegating the
interpolation process to this dedicated hardware, we are able
to reduce both the size and the computational complexity of
the kernels. The size is especially important in this case, as
smaller kernels allow for a higher degree of parallelism.

While we expect the use of texture-filtering interpolation
to be beneficial for the running time of our algorithm (which
we will demonstrate in the next Section), we do identify one
possible trade-off. One property of in-kernel interpolation is
that the values of the eight surrounding voxels can be stored
in either the local memory of the thread, or in the shared
memory of the multiprocessor. Doing so increases the size
of the threads, but also allows them to reuse some of this
data, thus reducing the memory throughput requirements.
Using texture-filtering interpolation, we cannot store the
surrounding voxel values, so we need to read them again
in every integration step. Thus, in-kernel interpolation

may require a significantly lower memory throughput than
texture-filtering interpolation, especially for small step sizes
(in which case it takes multiple steps for a fiber to cross a
cell). We analyze this trade-off through experimentation in
the next section.

5. Experiments and Results

For the experiments presented in this section, we used a
synthetic data set of 1024 X 64 X 64 voxels with 2048
predefined seed points. The seed points were distributed
randomly to mimic the low spatial coherence of the fibers,
and their initial directions were chosen in such a way that no
thread would terminate prematurely due to its fiber leaving
the volume (i.e., all fibers stay within the volume for the
predefined maximum number of integration steps, running
parallel to the long edge of the volume). While neither the
shape and content of the volume nor the fact that no fibers
leave the volume prematurely can be considered realistic, this
does allow us to benchmark the algorithm under maximum
load.

All experiments were conducted on an NVIDIA GTX
260, a mid-range model with 24 multiprocessors (for a total
of 192 scalar processors) and 1 GigaByte of device memory
[35].

It should be noted that we only consider the actual fiber
tracking process for our benchmarks. The data preparation
stage (which includes preprocessing and inverting the ten-
sors, and computing the derivatives of the inverse tensors)
has also been implemented in CUDA, but is considered
outside of the scope of this paper due to its low complexity,
trivial parallelization, and low running times compared to
the tracking stage. On the GTX 260, the data preparation
stage requires roughly 50 milliseconds per million voxels
[36], and only needs to be executed once per image. The
overhead resulting from the communication between the
CPU and GPU lies in the order of a few milliseconds.

5.1.  Texture Filtering versus In-Kernel Filtering. In
Section 4.4, we stated that using the dedicated texture
filtering hardware for the trilinear interpolation step of our
algorithm would significantly reduce the size and complexity
of our kernel, allowing for an increase in performance.
We also identified a possible trade-off: for small step sizes,
in-kernel interpolation might be faster than texture-filtering
interpolation, as the former allows for data reuse, while the
latter does not. We test this hypothesis by varying the step
size between 0.05 (i.e., twenty steps per cell on average)
and 0.5 (two steps). The measured running times for the
two proposed interpolation methods are shown in Figure 6.
From this, we can conclude that, while small step sizes do
indeed reduce the running times for in-kernel interpolation,
texture-filtering interpolation is still the faster option for
typical step size values (between 0.1 and 0.2).

5.2. Limiting Factor. The performance of CUDA programs is
usually limited either by the maximum memory throughput
between the device memory and the multiprocessors, or
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FIGURE 6: Running time for varying step size for in-kernel
interpolation (blue) and texture-filtering interpolation (red).

by the maximum computational throughput of the scalar
processors. To find out which of these two is the limiting
factor for our algorithm, we first compute its performance in
terms of memory throughput and computational through-
put.

(i) When computing 2048 fibers, each executing 4096
integration steps, the algorithm takes approximately
165 milliseconds to complete. For each integration
step, a single thread needs to read 8 voxels * 4
tensors * 6 unique tensor elements * 4 bytes = 768
bytes, and it writes 12 bytes (3D coordinates of the
new point). This gives us a total memory transfer
of 780 *x 2048 * 4096 =~ 6.54 GB. Dividing this
by the running time, we get an effective memory
throughput of approximately 3.97 GB/s, which is well
below the maximum 111.9 GB/s of the GTX 260.

(ii) To compute the computation throughput in FLOPS
(floating-point operations per second), we first
decompile the CUDA program using the decuda
software. By inspecting the resulting code, we learn
that each integration step uses 256 floating-point
instructions. Note that this does not include any
instructions needed for interpolation, since we are
using the dedicated texture filtering hardware for
this purpose. The algorithm performs a total of
256 * 2048 * 4096 = 2,147,483,648 floating-point
operations, giving us a computational throughput of
roughly 13 GFLOPS. Again, this is well below the
specified maximum of the GTX 260, which is 715
GFLOPS.

Since neither the memory throughput nor the computa-
tional throughput is close to the specified maximum, we need
to determine the limiting factor in a different way. We first
rule out the computational throughput as the limiting factor
by replacing the current second-order Runge-Kutta (RK2)
ODE solver by a simple Euler solver. This does not reduce
the amount of data transferred between device memory and
multiprocessors, but it does reduce the number of floating-
point operations per integration step from 256 to 195. This,
however, does not significantly impact the running time
(165.133 ms for RK2 versus 165.347 ms for Euler), indicating
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TaBLE 1: Effects on the running time and total memory throughput
of changing the amount of data read per voxel.

Data/Step (Byte) Time (ms) Bandwidth (GB/s)
768 165.133 38.8
640 134.124 40.0
512 103.143 41.6
384 90.554 35.6

that the computational throughput (i.e., processor load) is
not a limiting factor in our case.

To prove that the memory throughput is indeed the
limiting factor, we need to reduce the amount of data read
in each integration step, without changing the number of
instructions. We do so by using the knowledge that the four
input tensors of our synthetic data set share a number of
duplicate values. By removing some of the redundant reads,
we can reduce the memory requirements of each thread,
without compromising the mathematical correctness of the
algorithm. The results of this experiment are listed in Table 1.
From this, we can conclude that the performance of our
algorithm is limited by the memory throughput, despite
the actual throughput being significantly lower than the
theoretical maximum of the GTX 260. Possible explanations
for this discrepancy are listed in Section 6.

5.3. Speed-Up Factor

5.3.1. Setup. To evaluate the performance of our CUDA
implementation, we compare its running times to those of
a C++ implementation of the same algorithm running on a
modern CPU. In order to fully explore the performance gain,
we use four different CUDA-supported GPUs: the Quadro
FX 770M, the GeForce 8800 GT, the GeForce GTX 260,
and the GeForce GTX 470. The important specifications of
these GPUs are shown in Table 2. It should be noted that
our CUDA implementation was developed for the GTX 260
and was not modified for execution on the other GPUs. In
particular, this means that we did not optimize our algorithm
to make use of the improved CUDA features of the more
recent GTX 470 GPU.

The CPU running the C++ implementation is an Intel
Core i5 750, which has four cores, with a clock speed of
2.67 GHz. In terms of both date of release and price segment,
the 15 750 (released in fall 2009) is closest to the GTX 470
(spring 2010); at the time of writing, both are considered
mid- to high-range consumer products of the previous
generation.

For this benchmark, we use a brain DTI image with
dimensions of 128 x 128 x 30 voxels. Seed points are
placed in a small, two-dimensional region of 22 by 4 voxels,
located in a part of the corpus callosum. An approximation
of the seed region, as well as the resulting fibers, is shown
in Figure 8. Seed points are randomly placed within this
region, with a random initial direction. The number of
seed points varies from 1024 to 4096. This test thus closely
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TaBLE 2: Specifications of the GPUs in the benchmark test of Section 5.3. Source: http://www.nvidia.com/content/global/global.php.

Device memory (MB) Memory bandwidth (GB/s) Number of scalar processors
Quadro FX 770M 512 25.6 32
GeForce 880 GT 512 57.6 112
GeForce GTX 267 896 111.9 192
GeForce GTX 470 1280 133.9 448

TasLE 3: Benchmark results for GPU and CPU implementation of the geodesic ray-tracing algorithm. For each configuration, we show the
running time (T) in seconds, and the Speed-Up factor (SU) relative to the best CPU timing, see Figure 7.

CPU FX 770M 8800 GT GTX 260 GTX 470

Number of seeds T T SU T SU T SU T SU
1024 1.403 0.761 1.8 0.273 5.1 0.225 6.2 0.087 16.1
2048 2.788 1.388 2.0 0.448 6.2 0.244 11.4 0.093 30.0
3072 4.185 1.995 2.1 0.760 5.5 0.256 16.3 0.107 39.1
4096 5.571 2.772 2.0 0.900 6.2 0.301 18.5 0.139 40.0
mimics a real-life application of the ray-tracing algorithm, as 30
demonstrated in Figure 8.

25 4
5.3.2. CPU Implementation. Our C++ implementation of = 20 1
the algorithm features support for multiple threads of £
execution (multithreading), which allows it to utilize the Eo 15 |
parallelism offered by the CPU’s four cores. Let S be the '
number of seed points and N the number of threads. We 2 101
assign &/N seed points to each CPU thread, thus having each
thread compute S/N fibers. We have measured the running >
times of this CPU implementation for several different values
of N, and with S set to 4096 pOintS. The results of this 0- 1 2 4 8 16 32 64 128 256 512 1024
benchmark can be seen in Figure 7. From these results, we Number of threads

can conclude that parallelizing the CPU implementation
(using essentially the same fiber-level parallelism as for our
GPU implementation) can reduce the running times by a
factor of roughly 4.5. The fact that the performance increases
for N larger than the number of cores can be attributed to the
fact that a CPU core can switch to a different thread when the
active thread is waiting for data from the main memory of
the PC. From Figure 7, we can also conclude that 64 threads
is the best configuration for this algorithm and this CPU.

5.3.3. GPU Benchmark Results. We performed the same
benchmarking experiment on the four CUDA-enabled
GPUs, and we compared the running times to those of the
best CPU configuration. The results for this test are shown in
Table 3. From the results, we can conclude that our CUDA
implementation significantly reduces the running time of
the ray-tracing algorithm. Even on a mid-range GPU for
laptops like the FX 770M, the running time is reduced by a
factor of roughly two times. Using a high-end, recent GPU
like the GTX 470, we are even able to achieve a speed-up
factor of 40 times, which greatly increases the applicability of
the algorithm. The differences in speed-up factors between
the GPUs can be explained in part by the differences in
bandwidth—which was identified as the limiting factor in
Section 5.2—and by the number of processors.

FIGURE 7: Running times (in seconds) for the multithreaded CPU
implementation of our algorithm.

6. Discussion

In previous sections, we described a CUDA implementation
of a geodesic fiber tracking method. This CUDA program
uses the knowledge that fibers can be computed indepen-
dently of one another to parallelize these computations,
thus reducing running times by a factor of up to 40 times,
compared to multithreaded CPU implementations of the
same algorithm.

While the algorithm does allow for meaningful paral-
lelization, we do note two problems that make full exploita-
tion of the parallelism offered by the GPU challenging.

(i) The algorithm requires a large amount of inter-
nal storage; between the four input tensors, the
Christoffel symbol, and the position and direction
of the fiber, even the most efficient version of
our implementation still required 43 registers per
thread, while typical values for CUDA algorithms are
between 8 and 32.
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(a)

(b)

FiGgure 8: Fibers computed using the CUDA ray-tracing algorithm in real data. (a) All fibers computed from a seeding region in part of
the corpus callosum. (b) In order to properly analyze the computed fibers, a postprocessing step is needed. In this case, fibers were filtered
through two target regions of interest and ranked and colored according to their Connectivity Measure value (see Section 2.3). The yellow
polygon approximates the seeding region used for the benchmarks in Section 5.3. Both images were generated in the DTITool [11].

(ii) More importantly, the algorithm requires a large
amount of data transfer, and as a result, the memory
throughput becomes its limiting factor. This problem
is far from trivial to solve, and while some options do
exist, they all have their own downsides.

(1) Reducing the number of bits per input value
would lower the required memory throughput,
but comes at the cost of reduced accuracy.

(2) Allowing fibers to reuse the input data used for
interpolation greatly increases the size of the
kernel and does not work with texture-filtering
interpolation, the use of which has been shown
to be very beneficial in our case.

(3) Sharing the input data between threads in
one multiprocessor requires some sort of spa-
tial coherence between the fibers, which is
extremely difficult to guarantee.

As noted, the memory throughput between the device
memory and the multiprocessors is the limiting factor for
our performance. However, as noted in Section 5.2, the
actual throughput is well below the theoretical maximum
of the device. Below, we list some possible causes for this
difference.

(iii) Most Random-Access Memory (RAM) configura-
tions experience a certain overhead when subsequent
reads access different parts of a data range. Since a
low spatial locality of the seed points will lead to such
scattered access pattern, this overhead may explain
our relatively low memory throughput.

(iv) According to CUDA documentation [32], texture
reads have been optimized for 2D spatial locality, pre-
sumably using a space-filling curve. The absence of
spatial locality prevents our algorithm from utilizing
these optimizations.

(v) The throughput of the texture fetching and filtering
units may become a limiting factor when large
numbers of voxels are involved. The documentation
of the GTX 260 states that it should be able to
process 36.9 billion texels per second [33], while
our implementation only loads 39 billion bytes (of
multibyte texels) per second. However, this figure is
based on 2D bilinear interpolation, while we use 3D
trilinear interpolation.

We expect the first point to be the main contributing
factor, though we have not conducted experiments to either
prove or disprove this hypothesis.

The GPU-based acceleration of the geodesic ray-tracing
algorithm for DTI is a useful technique, but its imple-
mentation poses several challenges. Part of the problem in
accelerating numerical integration algorithms such as the
one under discussion in the paper is that it almost inevitably
introduces unpredictable memory access patterns, while
existing CUDA algorithms generally use access patterns that
are more regular and predictable, and thus easier to optimize.
This is a fundamental problem without an easy solution,
and one that is not restricted to CUDA-enabled GPUs,
but applies to other parallel platforms as well. Still, despite
our implementation achieving suboptimal performance, we
do believe that its significant speed-up factor of up to 40
times, coupled with the low cost and high availability of
CUDA-enabled hardware, makes it a practical solution to
the computational complexity of the geodesic ray-tracing
algorithm for fiber tracking, and a good starting point for
future acceleration of similar algorithms.

7. Conclusion and Future Work

In this paper, we discussed the GPU-based acceleration of
a geodesic ray-tracing algorithm for fiber tracking for DTI.



International Journal of Biomedical Imaging

One of the advantages of this algorithm is its ability to find
multivalued solutions, that is, multiple possible connections
between regions of the white matter. However, the high
computational complexity of the algorithm, combined with
the fact that we need to compute a large amount of
trajectories if we want to find the right connection, makes
it slow compared to similar algorithms. To overcome this
problem, we accelerated the algorithm by implementing a
highly parallel version on a GPU, using NVIDIAs CUDA
platform. We showed that despite the large kernel size and
high memory requirements of this GPU implementation, we
were able to speed up the algorithm by a factor of up to 40.
This significant reduction in running time using cheap and
widely available hardware greatly increases the applicability
of the algorithm.

Aside from further optimization of our current GPU
implementation, with the aim of further reducing its running
time, we identify two possible extensions of the work pre-
sented in this paper.

(i) At the moment, the computed fibers are downloaded
back to the CPU, where they are postprocessed and
subsequently visualized. A more direct approach
would be to directly visualize the fibers computed by
our algorithm, using the available rendering features
of the GPU. If we can also implement the necessary
postprocessing steps in CUDA, we can significantly
reduce the amount of memory that needs to be
transferred between the CPU and the GPU, thus
accelerating the complete fiber tracking pipeline.

(ii) The Region-to-Region Connectivity method is a
valuable application of the geodesic ray-tracing algo-
rithm. This method introduces three extra steps: (1)
computing a suitable Connectivity Measure, either
while tracking the fibers or during a post-processing
step, (2) filtering the computed fibers through a
target region, and (3) sorting the remaining fibers
according to their Connectivity Measure, showing
only those fibers with high CM values. These three
steps have currently been implemented on a CPU,
but implementing them on a GPU can reduce the
overall processing time of the fiber tracking pipeline,
as noted above.

(iii) The DTI model is limited in its accuracy by its inabil-
ity to model crossing fibers. High Angular Resolution
Diffusion Imaging (HARDI) aims to overcome this
limitation by measuring and modeling the diffusion
in more directions [37]. An extension of the algo-
rithm presented in Section 2.3 which uses HARDI
data rather than DTI data would theoretically be
more accurate, particularly in complex areas of the
white matter. Such an extension may, for example,
be realized by using the Finsler metric tensor (which
depends both on the position and local orientation of
the fiber), rather than the Riemannian metric tensor
[38, 39]. While the extended algorithm for HARDI
would likely be more complex in terms of both
number of computations and amount of required
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memory, a CUDA-based acceleration using the par-
allelization principles presented in this paper will still
be significantly faster than any CPU implementation.

We note that, while these extensions would be valuable
additions, the current CUDA implementation already pro-
vides a practical and scalable solution for the acceleration of
geodesic ray-tracing.
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