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Abstract
The evaluation of visualization methods or designs often relies on user studies. Apart from the difficulties involved in the design
of the study itself, the existing mechanisms to obtain sound conclusions are often unclear. In this work, we review and summarize
some of the common statistical techniques that can be used to validate a claim in the scenarios that are commonly present in
user studies in visualization, i.e., hypothesis testing. Usually, the number of participants is small and the mean and variance of
the distribution are not known. Therefore, we will focus on the techniques that are adequate within these limitations. Our aim
for this paper is to clarify the goals and limitations of hypothesis testing from a user study perspective, that can be interesting
for the visualization community. We provide an overview of the most common mistakes made when testing a hypothesis that can
lead to erroneous claims. We also present strategies to avoid those.

Categories and Subject Descriptors (according to ACM CCS): G.3 [Mathematics of Computing]: Probability and Statistics—
Experimental Design

1. Introduction

In visualization, we typically work with user-based measures of
quality. We often have to ask users or measure users performance
to evaluate how efficient or effective the visualization method is
to achieve its expected goal. Objective measurements of efficiency
and effectiveness are often not possible. The users have their own
opinion and certainty on the questions asked, and as such we will
have multiple measurements of the underlying true answer. More-
over, often the acquisition of the experimental data is not ideal, e.g.,
the users have various backgrounds, measurements contain noise
and are a discretization of the underlying continuous variable, or
they are simply incomplete. This is because a user study is merely
a sample of the full population, e.g., we cannot involve every po-
tential user, and often users in a specific domain are scarce. As
such, the true value for the population (ground truth) is uncertain.
Therefore, when we develop user studies we typically want to test a
hypothesis, i.e., we want to show that a claim we make has validity.

In this paper, we revise common literature on hypothesis testing,
and we provide a summary of the basics for such scenarios. Often,
we can assume the distribution is normal, however, the mean and
variance of this distribution are unknown and the number of sam-
ples is often small. Therefore, the t-distribution is discussed, as it
can be used in this case to provide an estimate of the mean of the
underlying normal distribution of the population. Once we have an
estimate of the underlying distribution, one can derive a confidence
interval, for example, for the mean, which provides us with some
confidence that the true value lies in a certain interval. With these

concepts in place, hypothesis testing and the pitfalls of hypothe-
sis testing are then explored. In this paper, we present knowledge
that is available in books and other sources, however, our goal is to
summarize it, such that is more easily accessible.

2. Related work

The amount of evaluations based on experiments with users is
increasing in the visualization field [TM04, IIC∗13]. Munzer et
al. [Mun09] describe the various validation options for visualiza-
tions based on the characteristics of the visualization and under-
lying data. Furthermore, the work by Smit et al. [SL16] provides
guidelines on the different contribution types and visualization sce-
narios and when to apply the different evaluation types. Naturally,
not every validation is as valuable or suitable for every task. How-
ever, often user studies are useful to determine the usability for the
target users of the visualization. How to conduct a good user study
is demonstrated with an example by Glaβer et al. [GSB∗16]. In
their work, they provide a practical example and describe the user
evaluation process in detail. Moreover, they provide a decision tree,
that can help to determine which statistical tools should be used per
situation. More general guidelines on conducting a good user study
are given by Carpendale [Car08].

In this work instead of focusing on conducting a user study, we
mainly focus on the statistics that help to validate claims made
based on user studies. While some of the statistical methods are
covered, only the techniques most common in our field are dis-
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cussed in this paper. For a more in-depth, yet accessible explanation
of statistical evaluation, among others the book by Montgomery
and Runger [MR06] provides a good reference.

3. t-Distribution

While crowd sourcing could be used to gather many participants,
often domain experts are required for our user studies. Usually the
tasks are not easily generalizable such that layman participants can
be used. Therefore, the number of participants is usually small and
both the mean and the variance of the distribution are not known,
and as such an assumption must be made on the underlying distri-
bution. In many cases, a reasonable assumption would be that the
distribution is normal. This can be tested using a normality test,
e.g. the Shapiro-Wilk test. The t-distribution can be used under
such assumptions to estimate the mean of the underlying normal
distribution of the full population. Since the t-distribution is devel-
oped to describe the samples drawn from a full population with a
normal distribution the number of samples is taken into account.
A t-distribution represents the probability of estimating a value as
mean given a number of samples. The more samples are included,
the more the t-distribution represents a normal distribution. If we
have N participants that provide us with N independent samples
X1,X2, ...,XN with mean X̄ of the underlying normal distribution
N(µ,σ2) the t-distribution of the random variable T with N−1 de-
grees of freedom is defined as:

T =
X̄−µ
S/
√

N
, (1)

where µ is unknown and the sample variance, S, is given by:

S2 =
1

N−1

N

∑
i=1

(Xi− X̄)
2 (2)

Figure 1 shows a comparison between the normal distribution
and the t-distribution for different sample sizes. By increasing the
number of samples, the t-distribution approximates a normal distri-
bution. On the other hand, for lower number of samples the proba-
bilities are lower and the spread is wider.

Note, that when no assumptions on the normality of the distri-
bution can be made a so-called non-parametric or distribution-free
test should be applied. An example with real world data is provided
by Glaβer et al. [GSB∗16].

4. Confidence intervals

Given the distribution of the data it is often useful to estimate an
interval in which an interesting population parameter lies, for ex-
ample, the mean, µ, of an underlying normal distribution. Although
we cannot be sure the true (unknown) parameter actually lies within
this interval, we can have a certain confidence. For example, we
would like to compute the probability that with 95% confidence,
the expected µ is situated within an interval of the t-distribution.
That means we would like to compute the interval such that the
probability that the true µ falls in this interval equals 0.95. For the
t-distribution T we would compute this as follows:

P
(
−tα/2,N−1 ≤ T ≤+tα/2,N−1

)
= 1−α, (3)

Figure 1: A comparison between the normal distribution (black)
and the t-distribution for different sample sizes.

where tα/2,N−1 is value for which the integral over t-distribution
with N−1 degrees of freedom covers 100(α/2)% of the total prob-
ability, so for a 95% confidence interval, α = 0.05. Note that, the
t-distribution is symmetric. Now if we fill in the definition of T
from Equation 1 and rewrite Equation 3 a bit we get the following
two-sided confidence interval for µ:

P
(

X̄− tα/2,N−1S/
√

N ≤ µ≤ X̄ + tα/2,N−1S/
√

N
)
= 1−α (4)

To compute a one-sided confidence interval, one of the bound-
aries can be dropped and tα,N−1 should be used instead to obtain the
same confidence. An example of the three possible 95% confidence
intervals is given by Figure 2, here N = 5, N = 3 and α = 0.05.

Note that, when we have to use the t-distribution the confidence
interval will be bigger when less samples are available. This due to
the tails being wider and longer compared to the normal distribu-
tion, as is illustrated by Figure 1.

5. Hypothesis testing

Once we have an idea of the distribution of our data, most often
we want to show that our data supports a claim, i.e., test a hypoth-
esis on our data. To do so, a null hypothesis H0 is to be defined,
typically an equality, as well as an alternative hypothesis H1 which
represents our claim. Examples of null hypotheses could be "the
model yields results equal to the measurements", or "the users think
system A performs as good as system B". The corresponding alter-
native hypotheses could be "the model yields results worse than the
measurements", or "the users think system A performs better than
system B". Note that, in these examples, we have a one-sided alter-
native hypothesis, that is, here we want to show system A performs
better, not just different from system B. The goal of hypothesis test-
ing is to determine the likeliness of the null hypothesis to be true;
the less likely the null hypothesis is true, the more likely it is our
alternative hypothesis is a good representation. The alternative hy-
pothesis is shown to be valid by showing the unlikeliness of the
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Figure 2: The 95% confidence interval highlighted in green for the t-distribution with 4 degrees of freedom (N = 5, N = 3 and α = 0.05).
The left most image shows the two-sided confidence interval, while the middle and right image show the one-sided confidence intervals. The
areas highlighted in red fall outside the interval.

consequence of assuming the null hypothesis to be true. More pre-
cisely, we expect the alternative hypothesis to be true if the null
hypothesis is false. This implies that the alternative hypothesis is
much more plausible than the null hypothesis given the data. Hence
for the examples above, rejecting the null hypothesis would mean
respectively that it is likely that that system B performs better than
system A (according to the users).

Again, we assume the variance and mean to be unknown but the
population distribution to be approximately normal. We can write
for the null hypothesis H0 : µ = µ0, that is, the real µ is represented
properly by our estimate µ0. The alternative hypotheses H1 can be

µ 6= µ0,

µ < µ0 or (5)

µ > µ0.

Rejecting the null hypothesis would mean for the examples in Fig-
ure 2 that the observed value falls in the highlighted areas, the so-
called critical regions. If this is the case it means that the probabil-
ity that the true mean is estimated by µ0 is actually equal or below
0.05, i.e. the probability that the null hypothesis is correct is only
5%. This is where the p-value is used. The p-value is the probabil-
ity of finding a value in an independently obtained data set, that is at
least as extreme as what was measured, under the assumption that
null hypothesis is true. That is the p-value gives us the probability
that the true mean is estimated by µ0. Note that, in order to ob-
tain the strongest conclusion we want to reject the null hypothesis.
Furthermore, we typically want to fix a low value for the probabil-
ity of rejecting the null hypothesis when in fact this hypothesis is
true. Hence, we want to reduce the probability of a false positive.
A false positive occurs when the null hypothesis is true, but will be
rejected based on the data, i.e., your p-value is below 0.05, due to
the specific samples that were tested.

In the following we will focus on the alternative hypothesis
H1 : µ 6= µ0. Since we consider the t-distribution, our test statistic
is given by:

T0 =
X̄−µ0

S/
√

N
. (6)

If the null hypothesis is assumed to be true, we cannot reject that

T0 is indeed a t-distribution with N − 1 degrees of freedom with
µ = µ0. We would reject the null hypothesis if our observed value
t0 of T0 falls in the critical region, that is for our two-sided interval
t0 <−tα/2,N−1 or t0 > tα/2,N−1.

When we cannot reject the null hypothesis, this does not neces-
sarily mean that the null hypothesis is true. It just means that there is
a high probability that the results are obtained chance, so no conclu-
sion can be drawn. Hence instead of accepting the null hypothesis,
we say to fail to reject the hypothesis. This does not mean the null
hypothesis is true, this simply means there is a lack of evidence to
reject it. This conclusion is weak, failing to reject the null hypothe-
sis is not the same as saying that it was proven, since it was only not
disproved. This is also demonstrated by the justice system, a sus-
pect is assumed to be innocent until proven otherwise, i.e. the null
hypothesis is that the suspect is innocent. The verdict "not guilty"
does not necessarily mean the suspect is innocent, the evidence is
simply not sufficient to reject null hypothesis and thus the suspects
innocence. Therefore, the interpretation of non-significant results
should be done with care [AB95].

Another quantity that is useful to report is the power, the proba-
bility of correctly rejecting the null hypothesis when the alternative
hypothesis is true. Hence, the power of a statistical test is defined
as:

Power = 1−P(fail to reject H0 when H0 is false) (7)

Naturally, one wants the power to be as close to 1 as possible. Note
that, since the power depends the probability of failing to reject the
null hypothesis when it is false, the power is based on the variance
in the data, the sample size, and the magnitude of the effect, how
well does the alternative hypothesis describe the system. A good
practice is to compute the power before the experiment is devel-
oped, but this requires knowledge that it is often not available.

6. Hypothesis testing pitfalls

While hypothesis testing may seem easy, one should be aware of
the mistakes that are commonly made. Often, hypothesis testing is
applied incorrectly and as such the resulting conclusion is wrong,
providing a false sense of validity. In this section, some of the more
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common pitfalls of hypotheses testing are outlined, as well as how
to avoid them.

While it may seem trivial, one must define their hypotheses be-
fore conducting the user study. This makes it possible to link ev-
ery question to a single hypothesis, making the analysis easier and
thus, the resulting conclusion clearer. Furthermore, by doing this,
one can state the expected result, that is set a threshold beforehand
for when the hypothesis should be rejected. Doing so also makes
you more aware of the possible impact of the questions asked on
the outcome of the experiment. Formulating the hypothesis after
looking at the results and tuning your values after the experiment is
bad practice. In this case one would have to redo the experiments
with the hypothesis to be able to claim its validity.

Know your data; measuring performance provides a different
type of data compared to user studies, and as such the resulting
conclusion will be different. For example, a measurement of the
performance can provide an idea of which component is working
well, and which does not. On the other hand, a user study provides
a more high level overview, and thus conclusions on the underlying
details can be hard to derive.

Make sure the hypothesis is clear and testable. That means that
the hypothesis should be based on something that can be measured,
such as the task completion. Hypotheses like "our tool encourages
user to explore the data in more depth" will be difficult to mea-
sure and therefore, difficult to test. A better hypothesis would be
"our tool increases the productivity", as this can be evaluated using
specific questions.

The hypothesis should be backed up by reasoning, that is, why
you would expect to find a certain result. By having knowledge on
why a result is expected, the probability of the result being a false
positive is reduced. Numerous examples of trends that are statisti-
cally significant exist yet are, quite obviously, not actually corre-
lated [Vig17].

On a similar note, testing too many hypotheses increases the pos-
sibility of finding a false positive by chance. This can be avoided
by having a reasoning as to why the hypothesis makes sense to test
and by defining the hypothesis beforehand.

Another crucial point is using the right participants for the user
study, the opinion or experience of a layman does not state any use-
fulness regarding a highly specialized tool for domain experts. This
seems obvious but is often difficult to fulfill. On the other hand, the
full user population should be sampled. The more users that can be
included the more the actual population is being sampled.

However, one should not keep including users until the results
are significant. This is an obvious way to end up in false positives,
i.e. the more tests one does, the higher the probability one finds
a false positive. Ideally a power study determines beforehand the
amount of users required sense to get sensible results, however, as
mentioned before, a power study is often not possible without as-
sumptions.

7. Conclusion

Visualizations are often evaluated with the aid of user studies. Such
evaluations can be utilized to support a claim and provide a sense of

validity. In this work, the common statistical techniques that can be
used to validate such a claim, thus to test a certain hypothesis, are
discussed. For this purpose, we focus on the techniques that work
under the assumption that the number of participants is small and
the mean and variance of the underlying Gaussian distribution are
not known. This work is meant to clarify the goals and limitations
of hypothesis testing from the perspective of a user study. Further-
more, an overview of the most common mistakes made when hy-
pothesis testing is provided. For each of these mistakes recommen-
dations are presented on how to avoid them. Our goal is to make
this knowledge more easily accessible to newcomers.
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