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Abstract High angular resolution diffusion imaging (HARDI) captures the angular
diffusion pattern of water molecules more accurately than diffusion tensor imaging
(DTI). This is of importance mainly in areas of complex intra-voxel fiber configu-
rations. However, the extra complexity of HARDI models has many disadvantages
that make it unattractive for clinical applications. One of the main drawbacks is
the long post-processing time for calculating the diffusion models. Also intuitive
and fast visualization is not possible, and the memory requirements are far from
modest. Separating the data into anisotropic-Gaussian (i.e., modeled by DTI) and
non-Gaussian areas can alleviate some of the above mentioned issues, by using
complex HARDI models only when necessary. This work presents a study of DTI
and HARDI anisotropy measures applied as classification criteria for detecting non-
Gaussian diffusion profiles. We quantify the classification power of these measures
using a statistical test of receiver operation characteristic (ROC) curves applied
on ex-vivo ground truth crossing phantoms. We show that some of the existing
DTI and HARDI measures in the literature can be successfully applied for data
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classification to the diffusion tensor or different HARDI models respectively. The
chosen measures provide fast data classification that can enable data simplification.
We also show that increasing the b-value and number of diffusion measurements
above clinically accepted settings does not significantly improve the classification
power of the measures. Moreover, we show that a denoising pre-processing step
improves the classification. This denoising enables better quality classifications even
with low b-values and low sampling schemes. Finally, the findings of this study are
qualitatively illustrated on real diffusion data under different acquisition schemes.

1 Introduction

Diffusion tensor imaging (DTI) is a recent magnetic resonance imaging (MRI)
technique that can map the orientation architecture of neural tissues in a completely
non-invasive way by measuring the directional specificity (anisotropy) of local water
diffusion [1]. The diffusion tensor model, however, has well known limitations in
areas of complex intra-voxel heterogeneity with crossing fibers, where the diffusion
process cannot be modeled as Gaussian. Nonetheless, DTI is still very popular
and has many advantages such as fast and clinically feasible acquisition schemes
(typically, number of gradients (NG) from 7 to 60, b-value of 1,000 s/mm2 and
total acquisition time of 3–5 min), fast post-processing of the data that allows
interactivity in the data exploration, simple visualization techniques and modeling
using well-developed tensor mathematics. To overcome the limitations of DTI,
more sophisticated models were introduced using high angular resolution diffusion
imaging (HARDI). For HARDI, significantly more diffusion gradients are acquired
(from sixty to a several hundred) in order to reconstruct a spherical probability
function (SPF) that either recovers the underlying fiber populations or depicts
certain diffusion properties. Popular HARDI reconstruction techniques include
apparent diffusion coefficient (ADC) modeling [2,3], Q-Ball imaging [4], diffusion
orientation transform (DOT) [5], spherical deconvolution (SD) [6, 7], and several
other model-based methods. The output produced by the above techniques is always
given in the form of a spherical function  .�; �/ that characterizes the local intra-
voxel fiber structure. This function can be represented using a truncated spherical
harmonics (SH) expansion

 .�; �/ D
lmaxX

lD0

lX

mD�l
almYlm.�; �/ ; (1)

where Y ml represent the spherical harmonics of order l and phasem, and lmax is the
truncation order of the SH series.

HARDI has obvious advantages over DTI in more composite fiber configura-
tions, but has several drawbacks that accompany this complex modeling: longer
processing time of the data (that can typically take a few hours up to a few
days), inability to interactively explore the data because of over-cluttered and
computationally heavy visualization as well as longer data acquisitions. Hence, one
wonders if a complex high-order modeling of the data is always needed (i.e., at every
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Fig. 1 Schematic diagram of the pipeline for DTI and HARDI combination. The blue stacked
rectangles represent data volumes. The pink round rectangles represent data transformations. The
main contribution of this chapter is focused in the classification part colored as green. The arrows
capture the flow of the process, whereas dashed arrows depict optional scenarios

voxel) or merits its drawbacks? In crossing areas, it is certainly justified, but for a
large part of the white matter, there is a significant number of single fiber voxels
where high-order modeling might be redundant. Thus, it is important to be able
to classify regions of single fiber (anisotropic-Gaussian) and crossing fibers (non-
Gaussian) in white matter in a fast and reliable way. This can lead to reducing the
modeling complexity in areas where it is not needed and enabling possibilities for
data simplification. The advantages would be significant for further post-processing
and visualization of the data, especially with respect to reducing computer memory
requirements. This will undoubtedly make HARDI data easier to manipulate and
interact with, making it more attractive for clinical applications.

One possibility for fast classification of the DW-MRI data is by identifying
the type of anisotropy in each voxel by some of the anisotropy measures for DTI
and HARDI. These measures are fast to calculate since they are scalar measures
calculated on the eigenvalues of the diffusion tensor, D, in the first case or the SH
coefficients in the latter.

Classification of the data by these measures in three compartments will allow
masking of the data in the isotropic areas where the gray matter and the ventricles
belong, using simple diffusion tensor model in the anisotropic-Gaussian regions and
applying more sophisticated high order modelings in the non-Gaussian regions in
a fast manner. There are two ways in which we can look at this problem for data
combination and thus, simplification (see Fig. 1).

In the first scenario, from the DW-MRI data (that can be additionally denoised)
we can calculate the DT model and apply scalar anisotropy measures that label
the data into three compartments. Afterwards, in the compartment labeled as
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Fig. 2 Example of hybrid visualization of CSD [6] and 2nd order ODFs

non-Gaussian, more complex HARDI modeling techniques that provide more
accurate local intra-voxel information can be applied. This allows reducing of the
postprocessing time in comparison with full data volume modeled by HARDI
techniques and better memory management: one value in the area labeled as
isotropic, a diffusion tensor for the anisotropic Gaussian areas and the rest modeled
with high-order SPFs. However, this would require reliable classification by the DTI
measures especially with respect to small number of false positives in the labeling,
since this would underestimate the data.

In the second scenario, we model the data by a HARDI modeling technique
(preferably by linear models like ADC or Q-Ball that are relatively fast to calculate)
and then apply HARDI anisotropy measures. These measures also label the data into
three compartments, and similarly the data can be modeled by DT or HARDI SPFs.
In this scenario, to get better angular resolution, we can additionally choose to apply
a non-linear (more time demanding) technique as constrained spherical deconvolu-
tion (CSD) [6, 7] for the non-Gaussian regions. Presenting the data by combining
both of the data representation models would benefit in faster visualizations with
better context especially since the data in the anisotropic Gaussian regions would be
significantly simplified.

As an example, in Fig. 2 we show a hybrid visualization of the simplified data
(labeling provided by generalized anisotropy (GA) classification) from an in-vivo
dataset represented by 8th order CSD [6] in the non-Gaussian classified regions,
and 2nd order ODFs in the anisotropic-Gaussian regions. The combining process
follows the second scenario described previously. The difference in running time
from the most naive implementation of CSD, is as follows. Computing CSD of order
8 for the whole brain in white matter mask: 540 min (36,601 voxels). Computing
CSD of order 8 in labeled crossing : 120 min (8,164 voxels). Computing 2nd order
ODFs in labeled linear : 19 s.1 With hybrid data modeling, there is a gain of almost

1These times were calculated on a 1.66 GHz processor dual core Intel machine with 2 GB of RAM.
CSD is a non-linear method that takes several iteration to perform the constrained regularization,
which goes back and forth between at least 300 points on the sphere and the order 8 SH
representation. This can be greedy and in our implementation takes approximately 0.5–1 s per
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factor 5 in time for computation compared to modeling full brain data with the same
high order model. Also interaction in the visualization pipeline becomes possible,
even for a full brain slice.

In this work we examine and compare the classification power of different DTI
and HARDI anisotropy measures. Additionally, we try to answer whether there is
a significant gain from the measures calculated from the more complex HARDI
models. We use pattern recognition schemes for investigating the classification
potentials of these measures on a ground truth ex-vivo phantom under different
b-values. Furthermore we show some qualitative real data results that corroborate
some of the conclusions from the phantom data. To improve the quality of the real
data scanned under clinically acceptable schemes, we use a denoising scheme [8]
that recommends improvement of the coherence of the classified regions. We thus
come to several conclusions suggesting that HARDI processing and data interaction
are possible in a clinical setting.

2 Related Work

The work of Alexander et al. [3], is among the first that classifies the data in
three compartments: isotropic, anisotropic-Gaussian, and non-Gaussian. This work
uses ANOVA F-test based on the SH representation of the apparent diffusion
coefficient (ADC) profile for several truncation orders lmax. Comparison of the
measured ADC with the estimated one is required in each step, and therefore this
process is slow and memory consuming. Furthermore it is necessary to calculate
a critical value for the F-test to achieve stopping criteria, and this threshold is
difficult to find given that the whole process is not interactive. Behrens et al. [9] use
automatic relevance determination integrated in a Bayesian modeling framework
to simplify the problem of tracking in a multi-orientation field. Hosey et al. [10]
use an extension of a Markov chain method that infers the probability density
function of up to two intra-voxel fiber orientations. However, both of the mentioned
techniques are computationally intensive to implement. This is mainly due to the
Bayesian estimation of the parameters making these methods iterative, with lack
of simple user interaction. Interactive data classification can be of great importance
for simplification of the HARDI data, especially in the case of clinical applications.
It is also valuable for immediate identification of uncertainty regions in the DTI-
based fiber tracking that has already been used widely. The speed in accurate
identification of anisotropic-Gaussian and non-Gaussian regions in the data can
accelerate the whole postprocessing pipeline for the complex HARDI data. Wide
range of anisotropy measures has been proposed in literature [2, 4, 11–15]. Several
authors [3, 12, 13] have attempted to use some of these measures to classify non-
Gaussian profiles, but all these attempts have been made on the apparent diffusion

voxel. This time can obviously be improved by parallelizing the code and changing the parameters
of CSD regularization (less iteration and faster stopping criteria).
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Fig. 3 (a) Fast spin-echo map and a region of interest for the crossing voxels of the 45ı ex-vivo
phantom and (b) Picture of the 90ı ex-vivo phantom

coefficient (ADC) profiles and without convincing real data results. In our previous
work [16], we applied these HARDI anisotropy measures not only to ADC profiles
but to different spherical probability functions like Q-Ball and the DOT. In this
chapter, however, we extend the previous ad-hoc analysis by thorough examination
of the classification power of the measures by ROC curves, histograms and scatter
plots. We additionally extend the analysis to DTI anisotropy measures and compare
their classification power with the measures derived from HARDI data.

3 Diffusion Data Acquisition

The details of the ex-vivo phantom data and in-vivo human data used in this study
are explained below.

Ex-vivo phantom: To test our classification measures, we use two ex-vivo
phantoms with fibre bundles crossing at 45ı and 90ı [17] (Fig. 3). These datasets
serve as ground truth, where the number of crossing voxels is known. The
phantom data was acquired on a 1.5T Signa MR system (GE Healthcare),
TE/TR D 130 ms/4.5 s,12.0 s (45ı and 90ı phantom, respectively), BW D
200 KHz. We analyze the data acquired at two b-values of b D 2; 000 and
b D 8; 000 s/mm2, along 200 uniform directions.

Human: Diffusion acquisitions were performed using a twice focused spin-echo
echo-planar imaging sequence on a Siemens Allegra 3T scanner, with FOV
208 � 208mm, isotropic voxels of 2 mm. Ten horizontal slices were positioned
through the body of the corpus callosum and centrum semiovale. Uniform
gradient direction schemes with 49 and 121 directions were generated with the
electrostatic repulsion algorithm [18] and the diffusion-weighted volumes were
interleaved with b0 volumes every 12th scanned gradient direction. Datasets
were acquired at b-values of 1,000, 1,500, 2,000, 3,000, 4,000 s/mm2 and in
the same session, two anatomical data sets (192 slices, isotropic 1 mm voxels)
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were acquired using the ADNI sequence for registration. Finally, before HARDI
reconstruction of the ADC, Q-Ball and DOT, we applied a denoising pre-
processing step [8], available online,2 to correct for the Rician noise bias in the
datasets.

4 Methods

4.1 HARDI Measures

We implemented several HARDI anisotropy measures from the literature: gen-
eralized anisotropy (GA) [14], generalized fractional anisotropy (GFA) [4], the
cumulative residual entropy (CRE) [11, 12], as well as fractional multifiber index
(FMI) [2], and R0, R2, Ri [13] (see Table 1). Most of the measures are calculated
directly from the SH coefficients of the corresponding spherical probability func-
tions and therefore are extremely fast to calculate.

These measures were applied on the ADC profiles [2, 3], analytical Q-ball [19]
and the DOT [5]. Since the DOT was originally proposed in complex SH basis, we
adapted it to real SH, and solve the spherical harmonic transform in the parametric
DOT by least-square fit. This way we obtain a probability density function (PDF)
represented in real spherical harmonic coefficients, and all the anisotropy measures
can be applied to it. The DOT generally produces much sharper glyph profiles for
high radiusRad0, at the cost of more noisy profiles with spurious peaks. Finding the
bestRad0 in real data is difficult and often done by visual observation [5]. Hence, to
avoid this Rad0 selection problem and inspired by definitions of the ODF from Q-
ball imaging [4] and the marginal ODF (mODF) from diffusion spectrum imaging
(DSI) [20], we propose similar ODFs computed from the DOT as:

 DOT-ODF.�; �/ D
Z Rad0max

0

P.r; �; �/dr;

 DOT-mODF.�; �/ D
Z Rad0max

0

P.r; �; �/r2dr;

(2)

where P.r; �; �/ is the PDF computed from DOT [5], and Rad0 is set to a
conservatively high value.

As a discrete binary measure for the classification, we propose the number of
maxima (NM). NM uses the number of local maxima of the min-max normalized
SPFs profiles, where the discrete spherical function surpasses a certain threshold
(here, we use 0.6) from points on a fine discrete mesh (5th order of tessellation
of icosahedron), using a finite difference search on the mesh points. Moreover, for

2http://www.irisa.fr/visages/benchmarks/

http://www.irisa.fr/visages/benchmarks/
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Table 1 Scalar measures for HARDI. alm are spherical harmonics coefficients of order l and
phase m

Name Abbrev. equation

Generalized anisotropy [14] GA D 1� 1

1C .250V/e.V /

where e.V / D 1C 1

1C 5,000 V
;

V D 1

9a200

lmaxX

lD2

lX

mD�l

jalmj

Generalized fractional anisotropy [4] GFA D
vuuuut
1� a200

lmaxX

lD0

lX

mD�l

jalmj

Cumulative residual entropy [11, 12] CRE D �
MX

iD2

P. n > �i / logP. n > �i /��i ,

where �1 < : : : < �M ;  nD norm.�; �/

Fractional multi-fiber index [2] FMI D

lmaxX

lD4

lX

mD�l

jalmj2

X

lD2

lX

mD�l

jalmj2

Isotropic ratio [13] R0 D ja00j
lmaxX

lD0

lX

mD�l

jalmj

Linear ratio [13] R2 D

lmaxX

lD2

lX

mD�l

jalmj
lmaxX

lD0

lX

mD�l

jalmj

Multi-fiber ratio [13] Ri D

lmaxX

lD4

lX

mD�l

jalmj
lmaxX

lD0

lX

mD�l

jalmj

better visual perception, in our figures we generate min-max normalized RGB color
coded glyphs, although one must keep in mind that this normalization enhances
angular contrast of glyphs in the white matter but also deforms isotropic glyphs
considerably.
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Table 2 Scalar measures for DTI. �1 > �2 > �3 are the corresponding
eigenvalues of the diffusion tensor D

Name Abbrev. equation

Mean diffusivity [22] MD D tr.D/=3 D .�1 C �2 C �3/=3

Fractional anisotropy [22] FAD
p
.�1��2/2C.�2��3/2C.�1��3/2p

2.�21C�22C�23/

Relative anisotropy [22] RAD
p
.�1��2/2C.�2��3/2C.�1��3/2

p

2.�1C�2C�3/

Linear anisotropy [21] Cl D .�1 � �2/=.�1 C �2 C �3/

Planar anisotropy [21] Cp D 2.�2 � �3/=.�1 C �2 C �3/

Isotropy [21] Cs D 3�3=.�1 C �2 C �3/

4.2 DTI Measures

We implemented DTI anisotropy measures: linear anisotropy Cl , planar anisotropy
Cp and isotropy Cs [21] as well as the well-known fractional anisotropy (FA) and
mean diffusivity (MD) [22] (see Table 2).

These measures were applied on the diffusion tensors estimated from the same
DW-MRI data as used for the HARDI modeling.

4.3 Analysis of Measures

To quantify the classification power of the DTI and HARDI measures, we use
the statistical test of receiver operation characteristic (ROC) curves [23] for the
hardware phantom data. The ROC curves describe the classification power of each
of the measures for separation of the data into three distinct compartments: isotropic,
non-Gaussian and anisotropic-Gaussian by using two thresholds. We apply this
analysis only to the phantom data, since only there we know the ground truth
for crossing voxels. Furthermore, we explore the distributions of the values from
each measure in different phantom data configurations by histograms. At the end
we suggest some interesting combinations of different measures for improving
the classification power of the individual measures. In addition, we discuss the
differences between DTI and HARDI measures. We describe each of these analysis
in details below.
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Fig. 4 Classification results from the phantom data

4.3.1 Different Phantom Configurations

Before explaining the data analysis we would like to review the ex-vivo phantom
data and its configurations. We will derive our conclusions based on three different
phantom crossing datasets varying either in configuration or b-value (see Fig. 4).
We have the 45ı of crossing phantom data, with exactly 12 voxels of ground truth
crossings. The rest of the 16 � 16 D 256 voxels belong to single fiber voxels
(estimated to 64 voxels) and isotropic voxels considerably deformed by the MRI
noise. The 45ı angle of crossing is a challenging angle where most of the HARDI
techniques fail to recover multiple fiber populations, especially at low b-values.
Therefore we investigate this configuration under two different b-values of 2,000
and 8,000 s/mm2. In addition we analyze the phantom data of 90ı only at b-value of
2,000 s/mm2 (b-value of 8,000 s/mm2 is not interesting to analyze for this angular
configuration). Here, we have exactly nine voxels of ground truth crossings and the
rest belong to single fiber population and noise. There are a few points that we need
to keep in mind. Due to partial volume effect, some of the linear voxels might exhibit
non-Gaussian diffusion properties. Since this is to be expected in real data as well,
we simply need to keep it in mind when analyzing the data. Due to the high SNR
value of the ex-vivo phantom data, we do not need a denoising phase.

4.3.2 ROC and Histogram Analysis of the Phantom Data

For the DTI and HARDI anisotropy measures we can quantitatively describe their
classification power using binary classification statistical test. First, the measures
must be thresholded to obtain the classification, and this process is sensitive. Two
thresholds are needed to separate the interval of anisotropy values into three distinct
compartments: isotropic, non-Gaussian and anisotropic-Gaussian. Afterwards we
can calculate the ROC curves that graphically represent the relationship between
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specificity and sensitivity of the voxels classified as: isotropic (from the noise),
crossing (non-Gaussian) and linear (anisotropic-Gaussian) [23]. The sensitivity
measures the proportion of actual positives which are correctly identified as
such, and the specificity measures the proportion of negatives which are correctly
identified.

sensitivity D number of True Positives
number of True PositivesCnumber of False Negatives

specificity D number of True Negatives
number of True NegativesCnumber of False Positives

(3)

Since separation into three distinct compartments is desirable, we need to
calculate two ROC curves per measure, one of which represents the classification
power between isotropic and non-Gaussian profiles (Fig. 5a), and the other between
non-Gaussian and anisotropic Gaussian (Fig. 5b). Calculating two ROC curves is
possible due to the distribution of the anisotropy as low in the isotropic parts,
medium in the non-Gaussian regions and high for anisotropic Gaussian. To quantify
the accuracy of the measures we calculate and report the area under the ROC curves
(see appendix). The larger the area under the curve, the better the separation of the
profiles by the examined measure.

For illustrating the distribution of anisotropy values, we use histograms (Fig. 5c).
However, as expected many DTI measures do not have this smooth transition,
whereas most of the HARDI measures exhibit more desirable properties.

4.3.3 Scatter Plot Analysis for Combination of Measures

To investigate the possibilities of combining and thus increasing the classification
power of the measures we do some preliminary experiments with scatter plots,
where we combine different DTI and HARDI measures together and look at the
distribution of the combined measure values (see Fig. 8).
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4.4 Real Data Analysis

As we do not know the ground truth in real data, we cannot perform quantitative
analysis. Therefore we limit our analysis to qualitative observations on the results
from the classification of the data done by the same measures that were applied to
the phantom data. Since the SNR of our clinically obtained DW-MRI data is very
low (especially at high b-values), experiments were done by comparing the results
with pre-denoised data.

4.4.1 Denoising of the Real Data

We use a non-local mean filter with Rician noise correction to denoise the DW data
before HARDI reconstruction. This method was shown [8] to have the desired effect
of correcting for the noise bias without blurring-out figure crossing information.
Hence, it improves scalar measures extracted from DTI and HARDI and does not
reduce the angular profiles of HARDI glyphs. The computation time of this filter
depends on spatial resolution and the number of maxima. For example, on our real
dataset of 104 � 104 � 10 � 121, the denoising takes 16 min when computed over
four processors 3 GHz and 8 GB RAM.

5 Results

In this section, we present the quantitative analysis of the ex-vivo phantoms and
qualitative results from the real data.

5.1 Phantom Results

The 45ı is a challenging angle where most of the HARDI techniques struggle to
detect multiple maxima, especially at low b-values. We will first analyze the results
from the maxima detection. As pointed out in the work of PrMckovska et al. [24], DOT
has the potential of recovering small angles regardless of the b-value, which we
show in the table of Fig. 6. Only the DOT (and its derivations) manages to recover
two fiber populations in the crossing regions at low combination of crossing angle
and b-value (in this case 45ı and 2,000 s/mm2). In the table we report the success
at recovering two maxima in the crossing voxels by all of the examined SPFs for
SH orders 4, 6 and 8. We additionally report the first Rad0 for the DOT and its
derivations in which the success is greater than 50 %. Even more interesting, we
observe that the derivations of the DOT discussed in Sect. 4, with its ODFs (DOT-
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Fig. 6 Classification results from the 45ı phantom data. The noise voxels were masked out by
FA, since NM classification gives multiple maxima in these areas

ODF and DOT-mODF) manifest similar behavior to the DOT itself, which show a
better angular resolution than Q-Ball and suggest a better choice of reconstruction
algorithm for fiber tracking purpose. The results from the NM classification on the
90ı phantom are omitted, due to the 100 % success in the classification of the non-
Gaussian voxels demonstrated in all reconstruction methods. Increasing the b-value
to 8,000 s/mm2 improves the angular resolution of Q-Ball as expected, and crossings
are starting to be observed in the 45ı dataset. We presented the classification results
from the real data to an anatomist who evaluated the accuracy of the classification,
and suggested preferences over some of the results. In the following paragraphs, as
we discuss the real data results we include the feedback from the anatomist.

For the DTI and HARDI anisotropy measures, we can quantitatively describe
the classification power of the 45ı and 90ı phantoms by examining the shape of
the corresponding ROC curves, and calculating the area under the ROC curves.
Additionally we observe the distribution of the measure values in the histograms as
described in Sect. 4.3.2. In the appendix, the area under all of the examined DTI and
HARDI ROC curves is reported. From the observation of the ROC curves and the
values of the area under the ROC curves, we draw several conclusions. Increasing
the order of SH representation does not significantly improve the classification
power of the measures. Therefore, for simplicity, in our phantom data results we
report only an SH order of 4. For the DOT derivations (DOT-mODF and DOT
ODF) the results become worse at high SH order, due to the very high and densely
distributed anisotropy values. The DOT in every configuration and SH order gives
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Fig. 7 ROC and histogram examples from the phantom data. The coloring in the histograms
indicates: blue—isotropic, green—crossings, red—linear

bad results due to the reasons mentioned above, even though it produces sharper
angular profiles. Also the measures applied to DOT derivations in general produce
worse results than those applied to the rest of the HARDI models. This can be
observed in the appendix Fig. A.1a colored with red stating bad classifier. Most
of the measures (DTI and HARDI), are significantly better in separating the data
between isotropic and crossing voxels (see Fig. 7d, g; Fig. A.1a, b) . The DTI
measures even outperform the HARDI measures in many cases (see Fig. 7a, d);
however, note that the presented results are for different angular configurations).
For the separation of the crossing and linear areas, on the other hand, the situation
is more complex. In general, many HARDI measures like CRE , GA, GFA and
R2 on ADC and Q-Balls have medium classification power and are comparable to
the DTI measures like Cl , FA and MD. Notably bad in many scenarios appear
to be Cp . A measure that stands out for good classification, especially of the
challenging 45ı angle between crossing and linear combinations, is Ri applied on
Q-Balls. This is to be expected, given the definition of the measure (see Fig. 7b).

From our ex-vivo phantom study we can conclude that the classification power
between anisotropic Gaussian and non-Gaussian areas of the HARDI measures
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Fig. 8 Scatter plots from combination of different measures. Blue color stands for isotropic voxels,
green crossing voxels and red single fiber voxels

in general is slightly better than that of the DTI measures. This difference is
more prominent at smaller angles of crossings. For distinguishing isotropic from
non-Gaussian regions, the DTI measures outperform HARDI measures. The dis-
tribution of the anisotropy values from low to high following the isotropic/non-
Gaussian/anisotropic-Gaussian pattern, is more noticeable in the HARDI measures
likeGA, GFA and CRE (e.g., Fig. 7f, i).Ri on Q-Balls is a good classifier between
non-Gaussian and anisotropic-Gaussian regions.

There is potential in combining measures to increase the separation between
classes. Some measures show a better separation between isotropic and non-
Gaussian, and others between non-Gaussian and anisotropic Gaussian. Furthermore,
some measures perform better when applied to different SPFs. Preliminary results
suggest that combination of CRE and GFA on Fig. 8 left and Ri and R2 on Fig. 8
right can improve the classification power of the measures.

5.1.1 Human Data Results

The centrum semiovale was used to illustrate the qualitative analysis of the
classification results. It is an interesting region for analysis, since fibers of the corpus
callosum (CC), corticospinal tract (CST), and superior longitudinal fasciculus
(SLF) form different two-fiber and three-fiber crossing configurations in that area.
The region-of-interest (ROI) was defined on a coronal slice (see Fig. 9a). It is
important to mention that all the real data results are from similar regions, since they
are different DW-MRI scans from the same subject, and have not been registered.
We presented the classification results to an anatomist who evaluated the accuracy
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Fig. 9 The effect of denoising demonstrated on original versus denoised data in different
acquisition schemes

of the classification, and suggested preferences over some of the results. In the
following paragraphs, as we discuss the real data results we include the feedback
from the anatomist. We applied the same classification measures as for the phantom
study on the original and denoised data from our datasets. Denoising significantly
improves the glyph profiles and the coherence of the non-Gaussian regions, as seen
in Fig. 9. We also observe a decrease in the irregularities in the crossing profiles. Our
results suggest that even at low b-value, low NG and low estimation SH order, there
is success in recovering crossing diffusion patterns and identifying linear regions
(see Fig. 10). The feedback from the anatomist followed the same rule. In general
most of the classification done under b-value of 1,000 s/mm2 and low sample of the
gradients were found to be the best. For instance in Fig. 10 the classification from
CRE applied to DOT-mODF at bD 1,000 s/mm2 and NG D 49 was found to be the
best due to the well spread crossing region.
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Fig. 10 Some examples from different classifications applied to in-vivo human data from the
region of centrum semiovale

In contrast, going to very high b-values (i.e. �3,000 s/mm2) and modeling the
data with high SH order (�6) results in polluted glyphs regardless of whether
denoising is performed. Comparing the results of the classification from different
measures, we observe that increasing the b-value sharpens the HARDI profiles
and benefits only for maxima extraction purposes. However, there is no significant
gain in classification of non-Gaussian profiles, as observed in the phantom study.
This is seen in Fig. 10, where we see sharper glyphs for DOT-mODF but similar
classification power regardless of the measure or acquisition scheme. We also note
that increasing the model order (l > 4) does not increase the classification power,
which coincides with the conclusions from our phantom study. This leads to the
conclusion that 49 directions is sufficient for recovering most of the crossings and
non-Gaussian voxels, which means that the acquisition time can be significantly
reduced (compared to a 121 NG acquisition).

Figure 11 demonstrates a comparison between FA and Ri . We observe that FA
exhibits similar classification properties to the ones observed in 90ı phantom, thus
giving a nice contrast in the centrum semiovale. Ri on the other hand, has a bigger
problem separating isotropic areas from non-Gaussian ones, which reference the
poor performance in the isotropic/crossing ROC curve (Fig. 7a).
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Fig. 11 Comparison DTI versus HARDI classification

The anatomist similarly found the classification from FA at b D 1; 000 s/mm2

and NG D 49 to outperform the one from the higher b-value and denser gradient
sampling. The classifications from Ri were found to have over-classified crossing
area.

6 Discussion and Conclusions

Finding the correct threshold for classification in real data is important for accurate
classification, and often depends on the b-value from the acquisition protocol and
the angular configuration. In our study, the thresholds found in the 90ı phantom
configuration were very similar to the thresholds used to classify the real data at
the same b-value. The thresholding process for the in-vivo data can be significantly
improved by a semi-automatic algorithm for detection of the thresholds. The user
can additionally give feedback by identifying regions with positive and negative
examples.

There are a few important messages from this work. Denoising as a pre-
processing step improves the coherence of the classification areas and enhances the
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HARDI profiles, as reported by Descoteaux et al. [8]. ADC and Q-Ball demonstrate
significant classification information, even though they sometimes lack sufficient
angular resolution for small crossing-angle discrimination. The sharper and slightly
more noisy profiles produced by DOT and its derivation (and we believe this would
be the case for SD techniques [7] as well) find more accurate numbers of maxima
and are better suited for fiber tracking applications. Increasing the acquisition
parameters (b-value> 2,000 s/mm2 and NG> 80) as well as the model order do not
significantly improve the classification power. In contrary, high b-value acquisitions
produce low SNR datasets that are worse for classification, and result in polluted
HARDI profiles. This corroborates the observations from the anatomist, who found
the classifications applied on data with bD 1,000 s/mm2 and NG D 49 to be the
best. It is even doubtful if, in practice, these higher b-value datasets improve fiber
tracking. Further studies would be needed to be able to estimate the exact optimal
acquisition parameters for classification. For example, it would be interesting to
acquire ex-vivo ground truth crossing phantoms with a higher variety of acquisition
parameters. The results of the study presented in this chapter indicate that the
optimal acquisition will be possible in a clinical environment, since relatively low
acquisition time will be needed for the preferred acquisition parameter setting. DTI
anisotropy measures are comparable with the HARDI measures like GA, GFA and
CRE and in classifying isotropic from crossing regions often outperform.

In this work, we investigated a broad range of different DTI and HARDI
anisotropy measures proposed in the literature and applied them as classification
criteria for discriminating different fiber configurations within the white matter. All
the measures were applied on the HARDI reconstructions and all, except for CRE
and NM , are measures directly implemented on SH representation of the model or
DT that can be calculated and thresholded in real time. Some of the measures such
as GA, GFA and CRE applied on Q-balls and ADC behave in a similar fashion
and are relatively good classification criteria. However, their power is comparable
to DTI measures such as FA and MD. Ri exhibits strong classification power
for separating crossings from linear areas even at low angle. However, due to the
poor isotropic/crossing performance, it is recommended combining it with other
measures. The NM measure belongs to a different category of measures because it
does not need a thresholding process for classification. However, it is dependent
on the HARDI profiles and can produce many false positives in the presence
of noise.

A strong message that comes out of this work, is that the measures can be applied
on different SPFs and still have the same classification power (especially in the
case of ADC and Q-Ball). This means that the users can use any existing HARDI
modeling technique and apply classification measures to distinguish between
anisotropic-Gaussian and non-Gaussian profiles. If the non-Gaussian voxels are
correctly classified in a first step, one can ignore all the other single fiber voxels
and properly focus on the modeling and more accurate reconstruction of these
voxels. Hence, as a second step, one can use a complex modeling approach, such
as CSD and PAS-MRI [25] that take long computation time. In clinical setting,
the simplification of the data into anisotropic-Gaussian and non-Gaussian areas can
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be useful and presents a new contrast as such, even though complex structures are
oversimplified as non-Gaussian. It can lead to new ways to study the white matter,
especially by enabling the possibility for interactive visualization and inspection of
the data.

Future work will address combination of different measures for better reliability
of the classified regions. Comparison of our simple and fast classification with
some of the existing classification schemes (as in the work of Schnell et al. [26])
is addressed as future work. These methods use support vector machines or learning
approach such as boosting on the entire set of measures to statistically determine
the discriminative strength of each feature and therefore cannot be calculated at
interactive speed. Thus, the comparison should be done for validation purposes of
the methods only.

In this chapter, we are not dealing with the behavior of the classification in
partial volume effect regions. If there is partial volume effect between different
classes, it is expected that the selected model will correspond to the one that can
represent the most complex configuration. For example, in the case of partial volume
effect between isotropic and anisotropic-Gaussian, the voxel will be classified as
anisotropic-Gaussian. Further studies would be necessary to determine the validity
of this assumption.

Nonetheless, in this work we have shown that possible classification of
anisotropic-Gaussian and non-Gaussian profiles can be done with some of the
existing measures including scalar indices calculated from DTI data. For the DTI
indices, however, we need to be careful as the distribution of the anisotropy values
does not always follow the isotropic/non-Gaussian/anisotropic-Gaussian pattern.
The data can therefore be simplified into linear, crossing and isotropic voxels. This
means that more sophisticated hybrid methods, which are more time consuming
can be applied only in the non-Gaussian areas, whereas in the anisotropic-Gaussian
the profiles can be modeled with a simple 2nd order ODFs (see Fig. 2) and the
isotropic profiles masked out. This gives considerable potential for the employment
of the HARDI techniques in a clinical setting due to the moderate post-processing
time. Another application of the classification information can be in visualizing
uncertainties in fiber tracking algorithms by, for example, attributing transparency
to the unreliable fiber tracts.
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Appendix

a

b

Fig. A.1 Areas under the ROC curves for (a) HARDI and (b) DTI models. The higher the value
the better the measure is for classification of the data. The color stand for green—good classifier;
red—bad classifier
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