
Eurographics Symposium on Parallel Graphics and Visualization (2006)
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Parallel particle rendering: a performance comparison
between Chromium and Aura

Tom van der Schaaf1, Michal Koutek1,2 and Henri Bal1

1Faculty of Sciences - Vrije Universiteit,
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

2Faculty of Information Technology and Systems - Delft University of Technology

Abstract
In the fields of high performance computing and distributed rendering, there is a great need for a flexible and
scalable architecture that supports coupling of parallel simulations to commodity visualization clusters. The most
popular architecture that allows such flexibility, called Chromium, is a parallel implementation of OpenGL. It has
sufficient performance on applications with static scenes, but in case of more dynamic content this approach often
fails. We have developed Aura, a distributed scene graph library, which allows optimized performance for both
static and more dynamic scenes.
In this paper we compare the performance of Chromium and Aura. For our performance tests, we have selected a
dynamic particle system application, which reveals several issues with the Chromium approach of implementing
the OpenGL API. Because our distributed scene graph architecture was designed with a different approach, the
test results will show that it performs better on this application.

1. Introduction

The areas of high-performance computing and scientific vi-
sualization are going through many technological changes.
In both areas, there is a trend from expensive high-end ma-
chines (supercomputers and high-speed graphics systems)
to more cost-effective solutions (e.g. cluster computers, PC
graphics cards, and tiled displays). Today, research projects
often use an infrastructure consisting of many different visu-
alization devices and parallel computers, all interconnected.
For example, the Dutch VL-e (Virtual Laboratory for e-
Science) project makes use of a CAVE, scalable tiled dis-
plays, a workbench, Personal Space Stations, several cluster
computers and graphics machines, as well as a large num-
ber of common Windows and Linux workstations (Figure 1).
Within the VL-e project, there is a need for distributed sim-
ulation as well as distributed visualization.

In the recent years we have been developing a scene graph
library called Aura, with the specific purpose of coupling
running parallel simulations to graphics clusters that ren-
der the simulation data. Chromium is a popular parallel
implementation of OpenGL, that focuses on similar infras-
tructures. In this paper, we will evaluate the performance of

Figure 1: The VL-e infrastructure

Aura and Chromium using a parallel application that ren-
ders a large set of particles. In this evaluation, Aura has a

c© The Eurographics Association 2006.



T. van der Schaaf & M. Koutek & H. Bal / Parallel particle rendering: a performance comparison between Chromium and Aura

significantly higher performance in applications with large
numbers of moving particles, even if the Chromium program
uses OpenGL display lists properly.

The contributions of this paper are:

• We will describe several problems that occur when
rendering large particle systems using Chromium: the
high CPU-load caused by handling the large amount of
OpenGL functions, the large amount of data sent per par-
ticle and the lack of server side culling.

• We show how our implementation of Aura differs from
the Chromium approach, to prevent these problems.

• We implemented the same particle system application for
both the Chromium API (OpenGL) and the Aura API.
Several test cases with different configurations for this
application show that Aura does not have the problems
Chromium has when rendering particles. As a result, the
Aura application performs better.

2. Related Work

Stanford University Computer Graphics Lab have per-
formed much research in the field of parallel graph-
ics [BHH00, HBEH00, HEB∗01]. They designed an im-
plementation of the OpenGL API that transparently dis-
tributes the rendering over multiple nodes. This library,
called Chromium [HHN∗02], replaces the normal OpenGL
dynamic link library (DLL) on the client by its own li-
brary. This new library, instead of executing the OpenGL
commands, can wrap the commands in packages and sends
them to the appropriate rendering servers. There, the com-
mands are executed as normal. Chromium can allow multi-
ple nodes to perform OpenGL rendering into the same dis-
play or window, provided the user properly synchronizes
the commands. Unfortunately, the low-level rendering com-
mands often require large amounts of bandwidth, as they are
all sent over the network. More specifically, unless a pro-
gram uses OpenGL display lists, it usually results in sub-
optimal performance for Chromium. To allow parallel pro-
grams to draw to rendering clusters, an open source scene
graph library called OpenRM was adapted to work with
Chromium [BHPB03]. OpenRM uses display lists when-
ever possible. However, tests with visualization of complex
molecules will show that even when programs use display
lists properly, the performance of Chromium can still be sub-
optimal (see Section 5).

Another similar project exists at Princeton University
[CCC∗01]. The project investigates several different ap-
proaches to parallel rendering. One such approach involves
DLL replacement similar to Chromium. Two other ap-
proaches focus on synchronizing copies of the same program
running in parallel. The last approach is a virtual display
driver, which can transparently distribute a single desktop
over multiple PCs but is not suited for hardware accelerated
3D rendering.

OpenSG [VBRR02] is a graphics API with a focus on pro-
viding a multi-thread safe scene graph that can be extended
to clusters. However, the focus of this project is parallel ren-
dering of single node applications and not parallel simula-
tions. Also, the burden placed on the programmer is high, as
the API is inherently multi-threaded, which can be difficult
to program. Another problem is the need for the programmer
to provide separate implementations for all processes taking
part in the rendering (for example, the application client and
the rendering server).

VR Juggler [BJH∗01] is an API developed at Iowa State
University, that can be used to create VR-applications in a
platform independent way. VR Juggler supports many plat-
forms, ranging from CAVEs running a SGI-Onyx cluster, to
common desktop workstations. Applications can also run on
clusters by using Net Juggler on top of Chromium. However,
there is no direct support for visualization of parallel simu-
lations.

3. Aura

The Vrije Universiteit developed an API called
Aura [GSRB01, dSRG∗02, dSSKB06] originally in-
tended for multi-platform Virtual Reality. The current
focus of this project is on interactive and collaborative
visualization of parallel simulations onto a multitude of
displays, such as tiled displays, CAVEs and regular desktop
workstations. Our approach differs from those at Stanford
and Princeton in that we do not attempt to allow arbitrary
existing programs to perform parallel rendering. Instead, we
focus on designing an API that can be used for writing new
high performance parallel graphics applications.

The goal of Aura is to support rendering on high-end plat-
forms (e.g. graphics supercomputers or clusters of PCs with
modern graphics cards) as well as low-end platforms (e.g.
desktop PCs). Furthermore, it should be possible to connect
the system to any number of computing nodes. This makes it
possible for complex simulations running on a parallel com-
puter to visualize their data on a (graphics dedicated) remote
computer or cluster.

A key issue in the performance of a system that couples
simulations to visualization clusters is communication. For
many applications, large amounts of data must be shipped
from one cluster to another. The system should try to re-
duce the amount of data sent and should take into account
different types of networks between and within the different
clusters.

In order to bring structure to the different systems that
Aura supports, we distinguish four stages of the visualization
pipeline, as shown in Figure 2. The first stage of the pipeline
is the source data that requires visualization. The data can
originate from a range of sources, such as files, simulations
or databases. The second step, filtering and mapping (which
we will refer to as mapping), filters the data and converts

c© The Eurographics Association 2006.



T. van der Schaaf & M. Koutek & H. Bal / Parallel particle rendering: a performance comparison between Chromium and Aura

it to a graphical representation, usually a scene graph. The
next stage interprets this graphical representation and per-
forms the actual rendering into an image. In the last stage,
the pixels of the image are transmitted to the actual display
device.

Figure 2: The visualization pipeline

Each stage in Figure 2 can be performed on a different
physical location and each stage can be performed by multi-
ple devices in parallel. For example:

• The data can be calculated by a parallel simulation.
• The data coming from this simulation can be distributed

over multiple mapping nodes.
• The graphical representation of the data can be rendered

on a rendering cluster.
• The image from the cluster can be drawn on a tiled display

consisting of multiple projectors or flatscreen panels.

A scientist who wants to visualize data is mostly inter-
ested in the mapping stage of the pipeline, i.e. defining what
the data should look like. Preferably, the mapping method
should work with any configuration of parallel or sequen-
tial rendering, display and simulation stages. The system we
present provides scientists with a scene graph API for writ-
ing this mapping stage, that hides all the details about the
nature of the next stages: rendering and display. At the same
time, it provides tools that make it easier to access the data
from the previous stage.

When implementing the mapping stage of a visualization,
the scientist first needs to access the (possibly distributed)
data source. In order to simplify this task, Aura provides
several tools such as file loaders and a parser to read sim-
ulation output. After the data has been loaded, the scientist
applies visualization tools (such as the Visualization Tool
Kit [SML99]) to convert the data to its graphical represen-
tation in the form of an Aura scene graph and submits it to
the system. Whenever the source data changes, the graph is
modified accordingly. How this scene graph is processed de-
pends on the specific configuration of the underlying system
and is not the scientist’s concern.

In the remainder of this paper, we will refer to the nodes
that perform the mapping stage of the pipeline as masters
and nodes that perform the rendering stage as slaves.

Due to the hybrid nature of the target platforms of Aura
and the many possible levels of parallelism, much flexibility
is required in the API. We use a modular approach to facil-
itate this flexibility. A detailed description of the design of
the API can be found in [dSSKB06].

4. Aura and Chromium

The largest bottleneck in performance of parallel rendering
is often network bandwidth. Therefore it is useful to make a
classification of graphics applications in terms of the amount
of data that changes each frame, as it is this data that must
be transmitted to the rendering nodes.

• Static applications have only a small amount of scene
data that changes each frame, typically only the camera
position changes. Examples of this category are: render-
ing a single pre-calculated iso-surface and visualization of
static objects like buildings.

• For dynamic applications most or all scene data is modi-
fied each frame. Examples of this category are: rendering
time-varying data sets using iso-surfaces or 3D textures.

• Finally, a large group of applications is hybrid, as it has
both static and dynamic content. Examples of this cat-
egory are: molecular dynamics visualization and games
like Quake.

OpenGL based approaches such as Chromium [HHN∗02]
often experience problems, because the API requires that the
complete scene is specified each frame, effectively making
all applications dynamic. For applications with static scene
data, many of these commands will contain redundant infor-
mation. An important concept in reducing redundancy for
Chromium applications is the OpenGL display list. A dis-
play list is a group of OpenGL commands and arguments
that has been stored for subsequent execution and is repre-
sented by a unique number. Chromium can make efficient
use of this construct by transmitting the command sequence
and associated number when the list is constructed. Later,
when the application requests for the display list to be ren-
dered, Chromium can send only the number rather than the
entire set of commands. Therefore, display lists are essential
in reducing the amount of data sent over the network.

Using display lists, Chromium can very efficiently render
static applications. Aura, with its scene graph approach, per-
forms equally well on static scenes. Dynamic applications
are very hard to parallelize, because of the large amounts of
data that must be transmitted. Both Aura and Chromium will
not perform well on such applications, although [dSSKB06]
gives an example of how Aura can be extended for a partic-
ular application to get good performance in that domain. In
this paper, we examine a test case of a hybrid nature: a large
particle system. This application consists of a large amount
of simple geometries (the static data), each moving in a sep-
arate direction (the dynamic data).

Even when the programmer of an OpenGL application is
properly using display lists, problems can arise when the ap-
plication is hybrid and has a large part of dynamic data. For
example, the program described in Section 5, which calls
over 300,000 display lists per frame, performs poorly using
Chromium. Each frame, every display list call must be han-
dled separately and a message must be transmitted to the

c© The Eurographics Association 2006.



T. van der Schaaf & M. Koutek & H. Bal / Parallel particle rendering: a performance comparison between Chromium and Aura

Figure 3: The configurations used for testing

nodes responsible for rendering it. Even though these in-
dividual messages are small, for a program that uses many
simple display lists the overhead is significant. The overhead
is caused by both network bandwidth and processing time
per function call. Since display list objects normally appear
for many frames in a row, it would be more efficient to send
messages only in those frames where they appear first or dis-
appear again. The latter cannot be implemented efficiently
within the OpenGL API.

In our approach, we choose to transmit scene graph data
instead of lower level graphics commands. This allows our
implementation to use information from the scene graph it-
self to reduce communication by completely removing re-
dundant messages. Aura only transmits the data in the graph
that actually changed. In case of the particle example, the
position data of the particles is stored in a single array. Aura
keeps track of which positions have been updated and sends
only the dirty positions. The application tested in Section 5
updates every position during each time-step, which means
only a single copy of the array is required to put the data on
the network. We used several configurations with different
numbers of master and slave nodes. Figure 3 shows several
of these configurations.

Figure 3A shows the application as it runs sequential on a
single node. Figure 3B is a case of remote rendering, where
a single master describes the scene, which is transmitted to
a single rendering slave. Figure 3C shows multiple slaves
rendering the scene data of a single master. Finally, Fig-
ure 3D describes the situation in which multiple masters de-
fine parts of the scene which is rendered by a group of ren-
dering slaves.

5. Test Cases and Measurements

We performed several case studies to validate Aura and
to analyze the performance of the system. This section
will describe one of these test cases. The other test cases
can be found in [dSSKB06]. All tests were performed on
the ICWall [Vri] cluster, consisting of 9 dual Athlon 1.33

Mhz PCs, each equipped with a Geforce 4 Ti4600 video-
card. The first set of tests is performed through a regular
100 Mbit Ethernet connection. The second set of tests uses
Myrinet [BCF∗95] with an effective throughput of over 70
Megabyte per second.

Visualization of an particle systems (e.g. N-body appli-
cations) is often a challenging problem. First of all, it usu-
ally involves displaying a large amount of graphical objects,
which is a heavy burden on the graphics hardware. Further-
more, these graphical objects are highly dynamic, as their
positions change with every time-step of the simulation. The
latter is challenging for remote or parallel rendering, as it
will result in high bandwidth consumption.

Figure 4: Bacteriophage Alpha3

As a case study, we implemented a simple molecu-
lar dynamics visualization, that loads a molecule in the

c© The Eurographics Association 2006.



T. van der Schaaf & M. Koutek & H. Bal / Parallel particle rendering: a performance comparison between Chromium and Aura

PDB [BWF∗00] format. The implementation uses a num-
ber of masters that all use the same source code, each load-
ing a different subset of atoms from the molecule. Since we
focus on the visualization of the molecule, our simulation
performs a random jittering of each atom during each time-
step, rather than calculating actual force, acceleration, veloc-
ity and position. In the future, we will couple our system to
real Molecular Dynamics (MD) simulation packages, such
as Gromacs [BvdSvD95], NAMD, or Amber. For this case
study we chose a large PDB description of a bacteriophage
consisting of over 300,000 atoms (Figure 4). Each atom is
represented by a sphere, built up using 60 vertices (all lit
with both specular and diffuse light), without any other level-
of-detail optimizations.

To compare the results with Chromium, we re-
implemented the application using the OpenGL API. The
program is optimized for use with Chromium by using dif-
ferent display lists for the different atom types present (7
in total). This display list contains the geometry, color and
proper scaling for a given atom. Listing 1 shows the main
loop of this program. Note that it is possible to optimize
this implementation for Chromium by writing dedicated ver-
tex and fragment shader programs. For example, using ver-
tex and fragment shaders to render atoms as point sprites,
would likely improve the performance of Chromium on the
tests presented in this paper. Unfortunately, these optimiza-
tion are not possible on our current hardware. In the near
future, we will repeat our experiments on more recent hard-
ware and also include shader implementations in our perfor-
mance comparison. In any case, such low level hand-tuning
is not required for Aura programs to have good performance
in parallel, reducing application developement time signifi-
cantly. The source code shown in Listing 2 shows the corre-
sponding loop for Aura.

Listing 1: Main loop of the OpenGL version of the MD pro-
gram

for (i = 0; i < nr_of_atoms; i++)
{

glPushMatrix();
glTranslatef(atom_position[i]);
glCallList(display_list[i]);

glPopMatrix();
}

Listing 2: Main loop of the Aura version of the MD program

for (i = 0; i < nr_of_atoms; i++)
{

molecule->
SetParticlePosition(i,

atom_position[i]);
}

We will present several test cases, using different net-
works. For the first test case, we will run the application

with 1 master and different numbers of slave nodes to ana-
lyze scalability and bandwidth requirements using Ethernet.
The second test case will use multiple masters and multiple
slaves, to investigate the effects of the reduced CPU load and
the better network utilization that can be achieved when the
application is distributed. The third test case will show the
results on the faster Myrinet network, to show that Aura is
network bound, while Chromium is CPU bound.

As a basis for comparison in all test cases, we measured
the sequential performance of the application for the Aura
application, the OpenGL application and the OpenGL ap-
plication running with Chromium on a single node. When
multiple slaves are used, the resulting image has a resolu-
tion that is higher than the sequential image, proportional
with the number of rendering nodes. The scene is rendered
such that the load of the rendering nodes is well balanced.
For Chromium, the tilesort Stream Processing Unit (SPU)
is used to distribute the data over the slave nodes. Because
Chromium SPUs have many configuration options, for every
test run we tried all relevant configurations (in case of tilesort
these are the bucket mode and various display list options)
and selected the test that gave the best performance.

5.1. Ethernet

In the first test case, we compare the speed of Aura and
Chromium when running the visualization part of the ap-
plication (master) on a single node. The rendering part of
the application (slave) is performed on the same node, 1, 2
and 4 remote nodes respectively. Table 1 shows the num-
ber of frames per second (fps) for the Aura program and the
OpenGL program running on Chromium in this test case.
The performance of the OpenGL program using the normal
OpenGL library is included to serve as reference.

Configuration Aura (fps) Chromium (fps) OpenGL

single node 1.69 0.9 1.7
1 master 1 slave 1.0 0.15 N/A
1 master 2 slaves 0.8 0.1 N/A
1 master 4 slaves 0.8 0.05 N/A

Table 1: Comparing framerates on the MD-simulation of
Aura and Chromium over ethernet

Configuration Aura (MB/s) Chromium (MB/s)
1 master 1 slave 3.4 3.1
1 master 2 slaves 6.1 3.8
1 master 4 slaves 11.5 4.4

Table 2: Comparing throughput on the MD-simulation for
Aura and Chromium over 100 Mbit Ethernet

The first row of Table 1 shows that the OpenGL program
using Chromium reaches only half the performance of the
OpenGL program using the native library. The main cause

c© The Eurographics Association 2006.



T. van der Schaaf & M. Koutek & H. Bal / Parallel particle rendering: a performance comparison between Chromium and Aura

of this slowdown is the overhead introduced by processing
the individual OpenGL calls and communicating them to the
server process (Chromium uses two processes even when
running on a single machine; these processes run without
interference on the dual-core test machine).

When not running on a single node, both Aura and
Chromium perform worse than the sequential program. For
Aura, the lower performance is caused by the fact that in
single threaded mode, slaves have to wait for the next set
of position updates. Since the amount of communication
increases with the number of slaves, the performance de-
creases. Chromium is significantly slower than Aura on all
runs.

Table 2 shows that Chromium does not come close to fill-
ing the available 12.5 MB/s (100 Mbit) bandwidth in any
of the runs. This is caused by the fact that for Chromium,
the performance this application is CPU bound. Chromium
needs to process each OpenGL function call individually:
extracting the relevant data, determining where to send it and
adding it to the transmission buffer. Because the overhead of
this processing is large compared to the work it creates for
the slave nodes, this has a negative impact on performance.
Listing 1 shows that each atom requires 4 OpenGL calls to
be packed and sent over the network. Aura on the other hand,
stores the data associated with the atoms in a single large
buffer, which is sent as a whole. This means that there is
only little overhead per atom while preparing the data for
transmission. As stated before, the overhead for Chromium
could be reduced by implementing an application specific
vertex and fragment shader pair.

Besides being CPU-bound, another problem is the amount
of data required to send the four OpenGL calls. For
Chromium we measured that it sends around 70 bytes per
atom. The only data that change between frames are the atom
positions, consisting of only 12 bytes (3 floats of 4 bytes
each). Therefore, Chromium sends 58 bytes of redundant in-
formation per atom, whereas Aura has no such overhead, as
it sends the minimum of 12 bytes per atom.

Configuration Aura (fps) Chromium (fps) OpenGL

single node 1.69 0.9 1.7
1 master 1 slave 1.0 0.15 N/A
2 masters 2 slaves 0.9 0.19 N/A
4 masters 4 slaves 1.0 0.21 N/A

Table 3: Comparing parallel MD-simulation of Aura and
Chromium over ethernet

To better utilize the network capacity and reduce CPU
load, we performed a second test case, in which the MD-
simulation is distributed over multiple nodes. Instead of us-
ing one master to run the application, we increase the num-
ber of masters at the same rate as the number of slaves.
Table 3 shows the results of this test case. Again we see a

significant difference between Aura and Chromium. In this
test case, the performance Chromium does improve, because
with the increasing number of masters, the CPU load is re-
duced.

5.2. Myrinet

From tests with a faster network (see Table 4) we can con-
clude that Aura is mainly bound by network bandwidth, as
it gains significantly from the higher throughput of Myrinet.
Chromium does not gain as much, since it suffers from the
overhead for handling OpenGL function calls and is mainly
processor bound. Unfortunately, a bug in the Chromium
code (responsible for communication over Myrinet) pre-
vented us from running tests with more than 3 nodes. How-
ever, the results from the few measurements that did succeed
confirm that Chromium does not benefit much from a faster
network.

Configuration Aura (fps) Chromium (fps) OpenGL

single node 1.69 0.90 1.7
1 master 1 slave 1.46 0.20 N/A
1 master 2 slaves 1.80 0.13 N/A
1 master 4 slaves 2.43 - N/A
4 masters 4 slaves 3.21 - N/A

Table 4: Comparing parallel MD-simulation of Aura and
Chromium over Myrinet

The performance of Aura over Myrinet shows a speedup
when compared to the sequential OpenGL program. Due to
the faster network, performance is not limited as much by
bandwidth and speedups can be gained. An important factor
for this speedup is culling on the render nodes. Particles that
aren’t visible need not be sent to the graphics card for ren-
dering. Therefore, performing culling on the molecule can
increase rendering performance significantly. Another ap-
proach to culling, would be to perform culling on the appli-
cation node. This method of calculating where on the screen
an atom will end up, has the advantage that we know which
slave will have to render the atom before sending its data up-
dates, as this information can be used to prevent unnecessary
communication.

All the Chromium test results we described for this ap-
plication, were performed with the bucketing mode ’broad-
cast’. Bucketing mode broadcast means that Chromium will
always transmit all data to all slaves and performs no culling
whatsoever. We tried all other configurations, but perfor-
mance was always worse than ’broadcast’. The most promis-
ing of these other configurations is the bucketing mode ’reg-
ular grid’, which assumes a simple grid alignment of the
slave tiles and sends the display list commands only to those
slaves that actually render it. However, in all our tests, the
cost of calculating which slave will render a particular atom
was more than the cost of simply broadcasting it to all slaves.

c© The Eurographics Association 2006.



T. van der Schaaf & M. Koutek & H. Bal / Parallel particle rendering: a performance comparison between Chromium and Aura

We expect that with higher numbers of slaves than tested
here, the performance of ’regular grid’ approach will over-
take the performance of ’broadcast’.

In Aura, it would be possible to improve the frame rate of
the dynamic PDB to up to a measured 6 frames per second by
running the rendering and the scene graph updating stages in
different threads. This way the frame rate can be close to that
of the static application while the atom movements will be
applied on a background copy of the scene graph. However,
our focus in these measurements is on the update rate of the
molecule and not on the interactivity of the application.

6. Conclusions and future work

We described a performance evaluation of Chromium and
Aura on an application with high amounts of independently
moving particles. Several test cases reveal problems within
the Chromium approach for this type of application:

• Overhead of handling OpenGL function calls becomes
a bottleneck for the application, making the application
strongly CPU-bound for Chromium . Aura has an entirely
different approach, dealing only with scene graph updates.
This approach has much less processing overhead, mak-
ing the application less CPU-bound. It would be possible
to reduce the overhead for Chromium by utilizing low-
level features of modern graphics cards. This does require
a significant amount of hand tuning, something that is not
necessary when writing Aura applications.

• Because of the redundancy within the OpenGL API, the
amount of data transmitted per atom is more than five
times larger than for Aura.

• If (display list) culling is enabled, Chromium performs
this on the master, which leads to extra processing over-
head per atom. For an application that is already CPU
bound, this mostly hampers performance. Aura performs
slave-side culling. This allows significant reduction of
particles being sent to the graphics hardware and can even
result in speed-ups when using faster networks.

We believe Chromium is a good solution for many appli-
cations (especially if they are static) and the only solution if
an existing OpenGL application must be parallelized. How-
ever, our measurements show that there exist applications
that do not fit the Chromium approach very well. For such
applications, an alternative approach, such as our approach
with Aura, can yield faster performance with less program-
ming work involved.

Our future work will include:

• A case study using a real parallel MD-simulation, which
will be more computation intensive than the simple test
case presented in this paper. For this case study we will
also use newer hardware with support for vertex and frag-
ment shader programs, to get fairer performance results
for Chromium.

• Perform experiments with different types of visualization
applications, such as: parallel volume rendering, parallel
terrain rendering and visualization of time varying iso-
surfaces.

7. Acknowledgements

This work was carried out in the context of the Virtual Lab-
oratory for e-Science project (www.vl-e.nl). This project is
supported by a BSIK grant from the Dutch Ministry of Ed-
ucation, Culture and Science (OC&;W) and is part of the
ICT innovation program of the Ministry of Economic Af-
fairs (EZ).

References

[BCF∗95] BODEN N. J., COHEN D., FELDERMAN R. E.,
KULAWIK A. E., SEITZ C. L., SEIZOVIC J. N., SU W.-
K.: Myrinet: A Gigabit-per-Second Local Area Network.
IEEE Micro 15, 1 (1995), 29–36.

[BHH00] BUCK I., HUMPHREYS G., HANRAHAN P.:
Tracking graphics state for networked rendering. In Pro-
ceedings of the 2000 Eurographics Workshop on Graphics
Hardware (Aug. 21–22 2000), Spencer S. N., (Ed.), ACM
Press, pp. 87–96.

[BHPB03] BETHEL E. W., HUMPHREYS G., PAUL B.,
BREDERSON J. D.: Sort-first distributed memory parallel
visualization and rendering. In IEEE Symposium on Par-
allel and Large-DataVisualization and Graphics (PVG)
(Oct. 20–21 2003), IEEE Computer Society Press.

[BJH∗01] BIERBAUM A., JUST C., HARTLING P.,
MEINERT K., BAKER A., CRUZ-NEIRA C.: VR Jug-
gler: A Virtual Platform for Virtual Reality Application
Development. In Proc. IEEE Virtual Reality ’01, (2001),
pp. 89–96.

[BvdSvD95] BERENDSEN H., VAN DER SPOEL D., VAN

DRUNEN R.: GROMACS: A message-passing paral-
lel molecular dynamics implementation. Comp. Phys.
Comm. 91 (1995), 43–56.

[BWF∗00] BERMAN H. M., WESTBROOK J., FENG

Z., GILLILAND G., BHAT T. N., WEISSIG H.,
SHINDYALOV I. N., BOURNE P. E.: The protein data
bank. Nucleic Acids Research 28, 1 (2000), 235–242.

[CCC∗01] CHEN Y., CHEN H., CLARK D., LIU Z.,
WALLACE G., LI K.: Software Environments for Cluster-
Based Display Systems. In Proceedings of the First
IEEE/ACM International Symposium on Cluster Comput-
ing and the Grid (CCGRID) (May 2001).

[GSRB01] GERMANS D., SPOELDER H. J., RENAMBOT

L., BAL H. E.: VIRPI: A High-Level Toolkit for Inter-
active Scientific Visualization in Virtual Reality. In 5th
Immersive Projection Technology Workshop (May 2001).

c© The Eurographics Association 2006.



T. van der Schaaf & M. Koutek & H. Bal / Parallel particle rendering: a performance comparison between Chromium and Aura

[HBEH00] HUMPHREYS G., BUCK I., ELDRIDGE M.,
HANRAHAN P.: Distributed rendering for scalable dis-
plays. In SC2000: High Performance Networking and
Computing. Dallas, TX, USA (2000), ACM Press and
IEEE Computer Society Press.

[HEB∗01] HUMPHREYS G., ELDRIDGE M., BUCK I.,
STOLL G., EVERETT M., HANRAHAN P.: WireGL:
A scalable graphics system for clusters. In SIGGRAPH
2001, Computer Graphics Proceedings (2001), Annual
Conference Series, ACM Press / ACM SIGGRAPH,
pp. 129–140.

[HHN∗02] HUMPHREYS G., HOUSTON M., NG R.,
FRANK R., AHERN S., KIRCHNER P. D., KLOSOWSKI

J. T.: Chromium: A stream processing framework for
interactive rendering on clusters. In SIGGRAPH 2002,
Computer Graphics Proceedings (2002), Annual Confer-
ence Series, ACM Press / ACM SIGGRAPH.

[dSRG∗02] VAN DER SCHAAF T., RENAMBOT L., GER-
MANS D., SPOELDER H., BAL H.: Retained mode paral-
lel rendering for scalable tiled displays. In 6th Immersive
Projection Technology Workshop (Mar. 2002).

[dSSKB06] VAN DER SCHAAF T., SMIT F., KOUTEK M.,
BAL H.: Aura: a flexible distributed scene graph API for
visualization of parallel simulations. under preparation
(2006).

[SML99] SCHROEDER W. J., MARTIN K. M.,
LORENSEN W. E.: The Visualization
Toolkit, 2nd ed. Prentice Hall PTR, 1999.
http://public.kitware.com/VTK.

[VBRR02] VOSS G., BEHR J., REINERS D., ROTH M.:
A Multi-thread Safe Foundation for Scene Graphs and
its Extension to Clusters. In Fourth Eurographics Work-
shop on Parallel Graphics and Visualization 2002 (2002),
ACM Press, pp. 33–37.

[Vri] VRIJE UNIVERSITEIT, AMSTERDAM: ICWall Tiled
Display.
http://www.nat.vu.nl/~tvdscha/icwall/.

c© The Eurographics Association 2006.

http://public.kitware.com/VTK
http://www.nat.vu.nl/~tvdscha/icwall/

