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Abstract

High angular resolution diffusion imaging (HARDI) is a MRI imaging technique that is able to better capture
the intra-voxel diffusion pattern compared to its simpler predecessor diffusion tensor imaging (DTI). However,
HARDI in general produces very noisy diffusion patterns due to the low SNR from the scanners at high b-values.
Furthermore, it still exhibits limitations in areas where the diffusion pattern is asymmetrical (bifurcations, splaying
fibers, etc.). To overcome these limitations, enhancement and denoising of the data based on context information
is a crucial step. In order to achieve it, convolutions are performed in the coupled spatial and angular domain.
Therefore the kernels applied become also HARDI data. However, these approaches have high computational
complexity of an already complex HARDI data processing. In this work, we present a framework for HARDI data
enhancement and completion. The convolution operators are optimized by: pre-calculating the kernels, analysing
kernels shape and utilizing look-up-tables concept. We provide an increase of speed, compared to previous brute
force approaches of simpler kernels. These methods can be used as a preprocessing for tractography and lead to
new ways for investigation of brain white matter.

Categories and Subject Descriptors (according to ACM CCS): Image Processing and Computer Vision [I.4.3]: En-
hancement/Smoothing

1. Introduction

Diffusion Weighted imaging is a fairly new MRI acquisition
Technique, first introduced by [BML94]. By measuring the
directional pattern of local water diffusion, it has the capabil-
ity to non-invasively allow the inspection of biological tissue
such as the brain.

In Diffusion Tensor Imaging (DTI), the prominent local
orientation of the fiber bundles can be estimated. In DTI the
local diffusivity pattern is approximated by a 2nd-order dif-
fusion tensor (DT). Although simple and with established
mathematical frameworks, these DTs fail to capture more
complex fiber structures such as crossings, bifurcations and
splaying configurations.

Approaches based on High Angular Resolution Diffu-
sion Imaging (HARDI) were pioneered by Tuch [Tuc02]. In
HARDI more sophisticated models are employed to recon-
struct more complex fiber structures and to better capture the

intra-voxel diffusion pattern. Some of the proposed models
include high-order tensors [OM03], mixture of Gaussians
[Tuc02, JV07], spherical harmonic (SH) transformations
[Fra02], diffusion orientation transform (DOT) [OSV∗06],
orientation distribution function (ODF) [DAFD07] using the
Q-ball imaging [Tuc04], and the spherical deconvolution ap-
proach [TCGC04].

It is important to note that all of the diffusion weighted
MRI modelling techniques model functions that reside on
a sphere. For simplicity we will refer them as spherical
distribution function (SDF). Whereas the physical mean-
ing of these SDFs can be different (a probability density
function (PDF), iso-surface of a PDF, ODF, FOD, etc.), in
all cases they characterize the intra-voxel diffusion process,
i.e. the underlying fiber distribution within a voxel. Due
to the limitations in acquisition, the SDF is always antipo-
dally symmetric and therefore can only model singer fiber
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tracts or symmetric fiber crossing configurations. Further-
more, HARDI produces, in general, noisy diffusion patterns
due to the low SNR from the scanners at high b-values. To
overcome these limitations, postprocessing of the data is cru-
cial. As commonly done in image processing, the noise can
be reduced and the data enhanced by taking into account the
information in a close neighborhood (i.e. the context).

Previous research has been done on diffusion (or sim-
ilar regularization) of DTI/HARDI images [FB, Flo08,
HMH∗06], however they do so considering the spatial and
orientational domains separately. In these approaches diffu-
sion is only performed over the spherical function per voxel
(i.e. the angular part). Furthermore, by not considering the
coherence in the neighborhood, these methods often fail at
interesting locations where fibers cross or diverge.

In recent promising work the diffusion process is done
considering the full domain, i.e. considering both spatial and
orientational neighborhood information. In [ABF08] the es-
timated asymmetric spherical functions, called tractosemas,
are able to model local complex fiber structures using inter-
voxel information. Duits and Franken [DF09] proposed a
framework for the cross-preserving smoothing of HARDI
images by closely modelling the stochastic processes of
water molecules in oriented fibrous structures. These ap-
proaches, however, increase the complexity of already com-
plex and computationally heavy HARDI data.

In the presented work, we establish a faster framework for
noise removal and enhancement of HARDI datasets. We op-
timize the convolution operators by: pre-calculating the ker-
nels, analysing kernel’s shape; and accelerating convolution
using look-up-tables concept. Compared to previous brute
force approaches, we provide a significant increase of speed,
enabling a contextual processing framework of HARDI data.
Thus, a basis for more accurate tractography is established,
leading to new ways for the investigation of brain’s white
matter.

In Section 2 we start by establishing the mathematical ba-
sis on which the convolution method lives. The accelerated
convolution framework is presented in Section 3. Follow-
ing, in Section 4, we present experimental results, both in
artificial and real HARDI data, supporting the validity and
improvements of the method.

2. Background

In this section we will provide a self-contained introduction
to convolution of HARDI data over the joined domain of
positions and orientations (so-called R3 o S2-convolutions).
The several options concerning the kernels for these convo-
lutions will also be addressed.

2.1. Theory

Diffusion weighted MRI modelling techniques estimate
functions that reside on a sphere, the spherical distribution

functions (SDF). Therefore, a HARDI image is a function
not only on positions but also on orientations:

U : R3×S2→ R+ : U(y, ñ(β̃, γ̃)) (1)

This means that on every position y ∈ R3, the probability of
finding a water particle in a certain direction

ñ(β̃, γ̃) = (sin β̃,−sin γ̃ cos β̃,cos γ̃cos β̃)T ∈ S2, (2)

i.e. a point on the sphere parameterized by β̃ ∈ [−π,π) and
γ̃ ∈ [− π

2 , π

2 ), is given as a scalar. For visualization and pro-
cessing purposes, these functions are usually discretized by
nearly uniform sampling the sphere using a method such as
tessellation of an icosahedron (see Figure 1).In[167]:= GraphicsRow��g1, g2, g3�, ImageSize � 500�
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Use ListHardiPlot to  draw  a  complete  HARDI  data  set.  The  parameter  Μ is  a  scale  parameter  and
can  be  given  as  an  option  to  scale  the  size  of  the  individual  glyphs,  and  NormalizeData  is  an  option
that  specifies  wether  the  data  should  be  normalized  before  display.

Options�ListHardiPlot� � �Μ � 1, NormalizeData � True,
ViewPoint � �1.3, �2.4, 2.�, PlotLabel � "HARDI Visualization"�;

ListHardiPlot�U_, OptionsPattern��� :�
Graphics3D�MapIndexed��EdgeForm�None�, FaceForm��Lighting � "Neutral"��, Translate�

Glyph3D��1, OptionValue�Μ, If�OptionValue�NormalizeData, Max�U, 1��, �2�� &,
U, �3��, Axes � True, Ticks � None, PlotLabel � OptionValue�PlotLabel,

AxesLabel � �"x", "y", "z"�, LabelStyle � �FontFamily � "Palatino", Bold, 16�,
ViewPoint � OptionValue�ViewPoint�;

� Convolution Algorithm with Kernel Lookup Table

This  routine  can  be  used  to  convolve  a  HARDI  data  set  U  with  some  ('inverse')  kernel  p.  Use  Λ to
set  a  threshold,  which  means  that  indices  in  the  kernel  with  a  kernel  value  lower  than  Λ are  not
considered,  speeding  up  the  algorithm.

LutConvolve�U_, pcheck_, pchecksort_, Λ_� :� Module��Unew, positions, kernelsort, neededKernel,
indicesNeededKernel, indicesNeededU, kernelValues, oriId, posId�,

Unew � Array�0 &, �Dimensions�U � Append��Dimensions�pcheck��2 ;; 4� � 1, 0���;
positions � Tuples�Range��Dimensions�Unew��1 ;; 3�;
kernelsort�dumori_, Τ_� :� ��2 ;; 6� & �� Extract�pchecksort, Position�

pchecksort�Range�Position�pchecksort�All, 6�, _?�� � Τ &�, �1�, 1��1, 1� � 1���
All, 1�, _?�� � dumori &���;

Print�ProgressIndicator�Dynamic�oriId, �1, Length�orientations��;
For�oriId � 1, oriId � Length�orientations, oriId��,
neededKernel � kernelsort�oriId, Λ�;�indicesNeededKernel, kernelValues� ��neededKernel�All, 1 ;; 4�, neededKernel�All, 5��;
For�posId � 1, posId � Length�positions, posId��,
indicesNeededU � Append�positions�posId� � 1, 0� � � & �� indicesNeededKernel;
Unew�Sequence �� positions�posId�, oriId� �
Total�Extract�U, indicesNeededU� � kernelValues�;�;�;

Return�Unew;�;
A much  faster  way  for  the  colvolution  is  using  the  built-in  Mathem at ica  function.  Because  we  do
not  want  Mathem at ica  to  mirror  in  the  spatial  domain,  we  use   ListCorrelation  instead  of
ListConvolution.

4   HARDI Visualization and Convolution in Mathematica.nb

Figure 1: Discrete samplings of the sphere corresponding to
order 1, 2 and order 3 of tessellation of an icosahedron, with
correspondent 12, 42 and 162 points.

To stress the coupling between orientation and positions
we write R3 o S2 rather than R3× S2. Intuitively, it is the
space of fiber fragments on which the rigid motion group of
3D-rotations and translations acts by means of

g−1(y,n) = (R−1(y−x),R−1n) , (3)

where x ∈ R3 is the spatial translation vector and R is the
3D-rotation and where g = (x,R) is the concatenation of the
translation and the rotation. For a formal mathematical defi-
nition of R3 o S2 see [DF, DF09].

2.2. Convolutions

Obviously, an operator U 7→Φ(U) on an SDF should be Eu-
clidean invariant (independent on a choice of orthonormal
coordinate system), which means that the operator should
commute with (3). In other words rotating and translating
HARDI input U : R3 o S2→ R corresponds to rotating and
translating the output Φ(U) : R3 oS2→R. If such operators,
designed for smoothing and enhancement of HARDI data,
are linear then these operators can be written as a HARDI-
convolution:

(Φ(U))(y,n) =
∫

R3

∫
S2

k(y,n; y′,n′)U(y′,n′)dy′ dσ(n′)

=
∫

R3

∫
S2

p(RT
n′(y−y′),RT

n′(n))U(y′,n′)dy′ dσ(n′)
(4)

where

• U denotes the input HARDI dataset.
• (Φ(U)) denotes the output HARDI data set (obtained

from the input by convolution with p)
• k(y,n; y′,n′) is the full kernel in the kernel operator.
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• p(y,n) is the convolution kernel related to k(y,n; y′,n′)
by means of

p(y,n) = k(y,n; 0,ez), with ez = (0,0,1)T

From this moment, kernels will be noted as p(y,n), i.e. the
a priori probability density of finding a fiber fragment at
(y,n) given that there is a fiber fragment at (0,ez).
• Rn is any rotation such that Rnez = n. The choice of Rn

does not matter as long as p has a symmetry w.r.t. rotations
around ez (acting from the right), see [DF09, Corr.1].
• σ denotes the usual surface measure on the sphere.

As mentioned previously, convolutions can operate over
different domains, obviously, with different outcomes. Con-
sider the special cases of Equation 4:

Spatial domain Filtering can be applied for each of the di-
rections without relating the directions between each other:

(Φ(U))(y,n) =
∫

R3
q(y−y′)U(y′,n)dy′ (5)

This corresponds to (4) if one sets p(y,n) = q(y)δez(n).

Orientational domain Filtering can be applied to each
voxel independently, i.e. considering each SDF indepen-
dently from each other. This way, each voxel is smoothed
locally:

(Φ(U))(y,n) =
∫

S2
r(RT

n′n)U(y,n′)dσ(n′) (6)

This corresponds to (4) if one sets p(y,n) = δ0(y)r(n).

However, appropriate treatment of crossings and bifurca-
tions requires regularization along oriented fibers (where po-
sition and orientation are coupled) and consequently our a
priori fiber extension probabilities p : R3 oS2→R+ should
not consist of a delta-spike in position space nor in orienta-
tion space. This means we should not restrict ourselves to (5)
and (6). Next we explain how to discretize full convolutions
(4) on positions and orientations.

Having a discrete lattice of SDFs (the hardi image U), the
integral over R3 in Equation 4 becomes a summation over
the lattice. Since, typically, a kernel is stronger around its
center (at position x), a set N(x) can be defined contain-
ing the lattice indices neighbour of x. Additionally, since the
SDFs are discretized over the sphere (see Figure 1), the in-
tegral over S2 becomes a summation over tessellation’s vec-
tors, the set S. Using these discretizations, Equation 4 be-
comes:

(Φ(U))(y,n) = ∑
y′∈N(y)

∑
n′∈S

qy,n(y′,n′)U(y′,n′) dy′ dn′

(7)
where dy′ is the discrete volume measure and dn′ the dis-
crete surface measure, which in case of (nearly) uniform

sampling of the sphere, such as tessellations of icosahedrons,
can reasonably be approximated by 4π

S . For a slightly more
accurate approach see [DF09, ch 8.2, eq. 86]. Kernel qy,n,
which is the rotated and translated correlation kernel (such
that it is aligned with (y,n)) associated to p as we will ex-
plain later in Section 3.

conveys the diffusion over the coupled space of positions
and orientations - very much like a HARDI image. There-
fore, one should note the complexity involved in these oper-
ations. Consider:

• Q: number of points in kernel’s lattice
• S: number of vectors in kernel’s tessellation (and SDFs of

the input HARDI data)

The discretized convolution expressed in Equation 7, has the
complexity of Q× S×Q iterations, per voxel of the input
HARDI. For instance, consider the convolution with a kernel
discretized in a 3×3×3 lattice, for 2nd order of tessellation
(42 directions). The discrete convolution in Equation 7, per
voxel in the lattice of the input HARDI image, involves 42×
27×42 = 47628 iterations.

2.3. Tractosemas

In the work of Barmpoutis et al. [ABF08], a field of assy-
metric spherical functions, called tractosemas, is extracted
from a field of SDFs. The kernel that governs the smoothing
process is defined as a function over space and orientation,
i.e. over the full domain R3×S2. The proposed kernel intu-
itively describes when a structure should be enhanced. It is
constructed as a direct product of three parts involving von
Mises and Gaussian probability distributions :

k(y,n; y′,n′) = kdist(‖y−y′‖) · korient(n ·n′)·
kfiber

(
n

‖y−y′‖ · (−(y−y′))
)

,
(8)

where the different factors are given by

kdist(‖y−y′‖) = 1

(2πσ)
3
2

e−
‖y−y′‖2

2σ3 ,

korient(cosφ) = kfiber(cosφ) = κeκ cos(φ)

4π sinh(κ) ,

with φ ∈ (−π,π] being the angle, respectively, between the
vectors n and n′ and the angle between the vectors n and
(y− y′). The two scale parameters σ and κ control kernel’s
sharpness. Figure 2 shows an example of the tractosemas
kernel p(σ,κ) : R3 o S2→ R+ given by

p(σ,κ)(y,n) =
1

4π
kdist(‖y‖)korient(ez ·n)kfiber(−‖y‖−1n ·y). (9)

2.4. Diffusion Kernels

Duits [DF09, DF] proposed a kernel based on solving the
diffusion equation for HARDI images. The full derivation
is out of the scope of this manuscript. This kernel, dubbed
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Figure 2: TODO: The tractosemas kernel (9) for σ = and
κ =. proposed in [ABF08] - convolve with delta peak, to
have it oriented nicely.

from now on as the Brownian motion kernel (on the coupled
space R3 oS2 of positions and orientations), satisfies the two
important requirements for a diffusion kernel:

1. left-invariant The kernel satisfies the right symmetry
constraints, [DF09, Corr.1]. Thereby rotation and transla-
tion of the input U corresponds to rotation and translation
of the output Φ(U).

2. fulfill the semigroup property When the operator is ap-
plied iteratively, the scales can be added.

3. diffusion equation It closely approximates the Green’s
function for the diffusion equation on the coupled space
R3 o S2 of positions and orientations describing Brown-
ian motion on positions and orientations (where the an-
gular part of a random walk prescribes the tangent vector
to the trajectory), [DF09, ch 4.2, Def.5].

In this kernel, the probability function is a product of two
2D kernels on the coupled space SE(2) ≡ R2 o S1 of 2D-
positions and orientations:

pD33,D44 ; R3oS2

t (x,y,z, ñ(β̃, γ̃))≈

N(D33,D44, t) · pD33,D44 ; (SE(2))
t (z/2,x, β̃) ·

pD33,D44 ; (SE(2))
t (z/2,−y, γ̃) ,

(10)

where we recall (2) and where N(D33,D44, t) ≈
8√
2

√
πt
√

tD33
√

D33D44 takes care of L1(R3 o S2)-
normalization. The SE(2) kernel is given by:

pD33,D44;SE(2)
t (x,y,θ)≡ 1

32πt2c4D44D33
e−
√

EN(x,y,θ)
4c2t (11)

where we use short notation for the numerator of an expo-
nent

EN(x,y,θ) =

(
θ

2

D44
+

(
θy
2 + θ/2

tan(θ/2) x
)2

D33

)2

+ 1
D44D33

(
−xθ

2 + θ/2
tan(θ/2) y

)2

where one can use the estimate θ/2
tan(θ/2) ≈

cos(θ/2)
1−(θ2/24) for

|θ|< π

10 to avoid numerical errors.

The diffusion parameters D33 and D44 and stopping time
t allow the adaptation of the kernels to different purposes:

1. t > 0 determines the overall size of the kernel, i.e. how
relevant is the neighbourhood;

2. D33 > 0, the diffusion along principal axis, determines
how wide is the kernel;

3. D44 > 0 determines the angular diffusion, so the quotient
D44/D33, models the bending of the fibers along which
diffusion takes place.

Figure 3: Brownian motion kernel proposed in [DF09].

3. Accelerated Convolution

The probability function given by Equation 8 and Equation
10, should be sampled on the sphere using the same scheme
as the HARDI image: tessellation of the icosahedron, i.e. it
can be seen as another HARDI image (positions and orien-
tations). The discrete convolution of this complex data with
these kernels, therefore involves a high number of opera-
tions, (R3×S2)× (R3×S2).

For illustration purposes, a convolution with a 3× 3×
3 kernel, for second order of tessellation (42 directions),
means 47628 iterations per voxel. Applying these operations
in a real dataset and for smoother (higher) orders of tessella-
tion (needed to avoid discretization errors) quickly escalates
into a time consuming process.

How can this process be accelerated ?

3.1. Preprocessing

Pre-computing. Since the kernels are not adaptive to the
data, they do not change depending on each voxel one im-
mediate optimization is to pre-calculate and store the check
convolution kernel aligned with every position and orienta-
tion.
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The check convolution kernel p̌ : R3 o S2 → R+ is basi-
cally the correlation kernel related to the convolution kernel
p : R3 o S2→ R+:

p(y,n) = k(0,ez,y,n) whereas
p̌(y,n) = k(y,n,0,ez)

where we recall from Eq. (4) that

k(y′,n′,y,n) = p(RT
n′(y−y′),RT

n′n).

To align the correlation kernel with each position x and ori-
entation n we define

qy,n(y′,n′) = p̌(RT
n (y′−y),RT

n n′) ,

which we use in our discrete convolution scheme, Eq. (7),
where we stress that

p(R−1
n′ (y−y′),R−1

n′ n) = p̌(R−1
n (y′−y),R−1

n n′).

which explains why we must the pre-computed the aligned
check kernel qy,n rather than the original kernel p in Eq. (7).

Figure 4: TODO: figure with 1 voxel of the kernel, with
the center, the ez direction, and we can see the lots of small
values, far from the maxima.

Thresholding. As we can see in Figure 4, these kernels ex-
hibit an interesting characteristic: the probability of diffusion
is larger at the locations around the starting direction ez. For
all the pre-computed kernels, i.e. one per point in the tessel-
lation, we sort the probability values per kernel voxel, and
then we can then define a set N(y), for position y that con-
tains the orientations with the largest probabilities such that:

N(y) : {n | k(y,n) < p} (12)

where p is a probability threshold. Note that by sorting the
values of the kernel we ensure that only the directions cor-
responding to the ’important’ kernel values are iterated, and
not any other. These tuples (value, index) are stored into a
file for further use. In Figure 5, k0 and k1 are two simplified
2D examples of a kernel for the 2 first directions in this tes-
sellation. The two tables the corresponding representation of
the sorted and re-indexed kernels.

3.2. Look-up-table (LUT) convolution

Since the kernels are sorted and thresholded, the convolu-
tion must now take care to match the correct values per ker-
nel direction to the corresponding HARDI image directions.
Figure 5 illustrates this process. For instance, the resulting
convolved HARDI image:

• for direction 0, is the outcome of the thresholded kernel
k0 with the matching values from the input HARDI image
u;

• for direction 1, is the outcome of the thresholded kernel
k1 with the matching values from the input HARDI image
u;

• ... and hence forth.

After convolving each direction of the input image with
the corresponding kernels, we obtain the new HARDI image.

4. Results

In this section we present the experiments conducted in or-
der to analyse the performance of the proposed optimiza-
tion using a synthetic DW-MRI dataset, fibercup’s hardware
phantom and a real HARDI data set from a healthy brain.

In all presented experiments, to the (simulated or ac-
quired) signal, QBalls of 4th order Spherical Harmonics
(SH) were fit, and the resulting SDF was sampled on a tes-
sellated icosahedron (3rd order, 162 points). From our ex-
periments the choices for SH and tessellation orders are a
good balance between the amount of crossing information
conveyed (4th order of SH), and a relatively small amount of
points on a sphere, 3th order of tessellated icosahedron).

For validation and illustration of the method, we synthe-
sized a dataset with an underlying splaying fibers configura-
tion, whose orientations follow the tangent of two ellipsoids
centred in the bottom corners of the image. Using the multi-
tensor model as in [DAFD07], we constructed a dataset with
size 20× 28, with eigenvalues for each simulated tensor to
be [300,300,1700]× 10−6mm2/s, b-value of 1000 s/mm2

and added Rician noise with realistic SNR of 15.3. Figure 6
shows this image (a) and the result of the convolution with
the tractosemas kernel (b) (σ = 1,κ = 10 and 3 iterations).
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min

max

X

u0
u1

u2

u3

u4

u5
u6

u7

u8

u9

u10

u11

k0
k1

k2

k3

k4

k5
k6

k7

k8

k9

k10

k11
k0

k1

k2

k3

k4

k5
k6

k7

k8

k9

k10

k11

u’0
u’1

u’2

u’3

u’4

u’5
u’6

u’7

u’8

u’9

u’10

u’11u’u

k0 k1

=

(...)

k

v #
0 0.9 0
1 0.5 11
2 0.5 1
3 0.3 10
4 0.3 2
5 0.1 9
6 0.1 3
7 0.1 8
8 0.1 4
9 0.1 7
10 0.1 5
11 0.1 6

v #
0 0.9 1
1 0.5 0
2 0.5 2
3 0.3 11
4 0.3 3
5 0.1 10
6 0.1 4
7 0.1 9
8 0.1 5
9 0.1 8
10 0.1 6
11 0.1 7

u'[0] =
k0[0] u[0]

+ k0[1] u[11]
+ k0[2] u[1]
+ k0[3] u[10]
+ k0[4] u[2]  

u'[1] =
k1[0] u[1]

+ k1[1] u[0]
+ k1[2] u[2]
+ k1[3] u[11]
+ k1[4] u[3]

Figure 5: The optimized convolution illustrated. The pre-computed kernels, k0 and k1, are sorted and the pairs value/index are
stored. With a threshold t = 0.1, only 5 out of 12 directions are used in the convolution. In the LUT convolution, each direction
in the resulting image u′i is equal to the inner product between the corresponding kernel ki and the matching values in the input
image u.

Figure 6: Synthetic splaying fibers example: a) Simulated
data; b) The computed convolution with Barmpoutis’ trac-
tosemas.

We can observe the resulting asymmetric profile in the center
region corresponding to the splaying fiber configuration.

The proposed toolkit was also applied to real DW-MRI
datasets. For the next experiments, Duit’s kernel was used
with diffusion parameters D33 = 0.4,D44 = 0.02, t = 1.4.

From FiberCup’s data [PRK∗08], with b-value 1500

s/mm2 and 3× 3× 3mm voxel size, we estimated QBalls
as previously described. Figure 7 shows a region of inter-
est (ROI) in the full dataset. Here two fiber bundles cross at
approximately 90deg. As we can observe, the QBall model
expresses a complex fiber structure in the crossing region,
however due to the low b-value, few voxels actually show the
2 expected maxima. Additionally, we can also observe the
perturbation caused by noise. After convolving this dataset
with Duit’s kernel, we obtain a regularized image where the
crossing voxels are clearly enhanced, with evident maxima
matching the underlying crossing bundles.

Applying the optimized convolution, again with Duit’s
kernels, to a healthy brain volunteer, acquired with b-value
4000 s/mm2, clearly illustrates the benefits of such convo-
lution. Figure 8 shows a ROI where two major white matter
structures intersect: the corpus callosum from the left, and
the corona radiata from down-right. We can observe the ef-
fect of the low SNR, due to the high b-value, causing clear
perturbations in the profiles, specially in the crossing voxels.
After convolving this data, we obtain the expected coherency
between voxels. Using the neighbourhood information al-
lows the regularization of the data, specially in the more lin-
ear voxels, and the enhancement of the crossing voxels.
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Figure 7: fibercup, qball, bvalue 1500, min-max normalized

4.1. Performance

In Figure 9 we present a time comparison between the dif-
ferent convolution methods. We show the time realizations
for 4 datasets:

• Y synthetic - software simulated dataset [DAFD07],
where the tractosemas kernel was applied
• Fibercup - Fibercup dataset [PRK∗08], with b-value

1500 s/mm2 and 3×3×3mm voxel size

Figure 8: 132, 4000

• Brain slate - one coronal slate from a healthy brain’s vol-
unteer, with b-value b-value 4000 s/mm2

• Brainvisa’s brain - brain dataset [PPAM06], with b-value
700 s/mm2

Precomputing the kernels, for 3rd order tessellation, takes
47 seconds. This calculation, of course, is only needed once,
per set of parameters.

Applying the proposed optimization, by thresholding the
kernels at 90% (t = 0.003) of its L1-norm, we obtain iden-
tical results as using the full kernel, however 8 times faster.
The used threshold was chosen by analysing visually the re-
sulting output that differs minimally from the result using
the full kernel. Further work will investigate the influence of
the threshold on the resulting smoothed image, but our initial
results shows that a great time improvement can be gained
with small lost in result’s accuracy.

5. Conclusions and Future Work

There are two key limitations in DW-MRI data: spherical
distribution functions are symmetric, which does not always
express correctly the underlying fiber structure; images can
be very noisy, specially at high b-values. Processing of the
data on the full domain (spatial and orientational), where
contextual information plays an important role, is of utmost
importance. However their complexity can be a limiting fac-
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Figure 9: Table a - Performance comparison between ap-
plying the convolution with full kernel or with optimized lut
convolution.

tor in their use. The proposed toolkit allows the addition
of these methods to the DW-MRI processing/visualization
pipeline, with much improved time costs. The framework’s
kernel independence enables the use of different kernels, for
different purposes (e.g., smoothing, enhancing, completion),
but still with optimized costs.

Further work will analyse the optimal balance between
optimization (i.e. which threshold to use) and results’ accu-
racy. Further improvements can be achieved by making us-
ing of multiple processors (common in nowadays comput-
ers) since the processing an image can be atomized to voxel
level.
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