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Figure 1: High-quality shadows generated using a single shadow map with a resolution of 256k×256k. The shadow map is efficiently stored
as a compressed merged multiresolution hierarchy. The top-right inset visualizes the hierarchy depth for traditional MH-based compression
[SBE16]. Our representation (bottom-right) merges redundant subtrees (indicated in red) and reduces the required memory from 38.43 MB
down to 23.77 MB (61.8%) compared to the previous approach while maintaining full run-time performance.

Abstract

Multiresolution Hierarchies (MH) and Directed Acyclic Graphs (DAG) are two recent approaches for the compression of high-
resolution shadow information. In this paper, we introduce Merged Multiresolution Hierarchies (MMH), a novel data structure
that unifies both concepts. An MMH leverages both hierarchical homogeneity exploited in MHs, as well as topological similar-
ities exploited in DAG representations. We propose an efficient hash-based technique to quickly identify and remove redundant
subtree instances in a modified relative MH representation. Our solution remains lossless and significantly improves the com-
pression rate compared to both preceding shadow map compression algorithms, while retaining the full run-time performance
of traditional MH representations.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture, I.4.2 [Computer Graphics]: Compression (Coding)—Exact coding

1. Introduction

Real-time high-quality shadows are still a challenge for today’s
rendering applications. A recent trend is to precompute and com-
press high-resolution shadow maps [Wil78]. This approach gen-

erates high-quality shadows for static environments and, in con-
trast to traditional techniques (e.g., light maps), allows for shadow
casting on dynamic receivers. Only shadows from dynamic objects
have to be handled with traditional shadow techniques. The pre-
computed shadow map is typically of very high resolution (up to
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1024k×1024k texels), making compression a necessity. These so-
lutions should not alter the shadow test results and provide efficient
run-time access.

Most shadow map compression techniques build upon a well-
known observation: in a shadow map, any arbitrary depth value
within the interval defined by the entry and exit point of an occlud-
ing object can be used for a conservative depth test if the object is
watertight and never seen from the inside [Woo92]. Therefore, each
texel in a shadow map corresponds to an interval of possible values
which can represent it, a concept usually referred to as dual shadow
maps [WE03]. By exploiting this property, specialized shadow map
compression algorithms achieve significantly higher compression
rates than traditional lossless image compression.

Currently, multiresolution hierarchies (MH) achieve the high-
est compression rates [SBE16] while supporting real-time shadow
evaluation. Starting with a dual shadow map, the algorithm derives
an extremely sparse hierarchical representation by exploiting the
similarities of depth intervals in homogeneous regions. The sparse
hierarchy is encoded in a compressed quadtree representation. As
every level in the hierarchy encodes a complete shadow map, hier-
archical filtering is naturally supported.

Directed Acyclic Graphs (DAG) [KSA13] are another com-
pact representation for high-resolution shadow information. In-
stead of storing a shadow map, DAGs encode a voxelized repre-
sentation of the depth test results for discrete points in the scene
[SKOA14,KSA15]. The information is stored in a sparse voxel oc-
tree, and compression is further achieved by merging equal tree
structures. Since each node in a DAG simply encodes the state for
lit or shadowed, equal structures can directly be found by a simple
dictionary search.

In this paper, we propose a novel data structure that fuses both
concepts and exploits both homogeneity in depth intervals as well
as topological similarities. Our method is based on the observa-
tion that traditional MH representations frequently exhibit similar
hierarchical patterns around small structures and edges due to the
regular and axis-aligned nature of the underlying quadtree. This re-
sults in a significant amount of almost identical, redundant subtrees
in the quadtree representation, especially at the finer levels of the
hierarchy (Fig. 4). We exploit the fact that each node in these sub-
trees does not represent a single value, but a depth interval defining
a margin of tolerance. This allows us to merge subtrees by finding
a common instance that is able to represent multiple occurrences of
similar subtrees without introducing any loss of information. Given
that each node represents a depth interval, subtree matching and
merging becomes a much more complex task compared to the DAG
approach. Therefore, we propose an efficient matching algorithm
based on a hashing strategy. We show that our method significantly
improves the compression rate by up to 40% compared to MH-
based and DAG compression, while maintaining the full rendering
performance of the traditional MH-based compression algorithm.

2. Related Work

Shadow maps have been around in computer graphics for decades
and many techniques address their shortcomings (e.g., [WSP04,
PWC∗09, SFY13]). In this section, we primarily discuss previous

work on image compression and specialized shadow compression
algorithms. For a more general and detailed review of shadow
algorithms, we refer the reader to the surveys of Eisemann et al.
[ESAW11] and Woo et al. [WP12].

2.1. Texture compression

Image compression techniques are abundant; two widespread al-
gorithms are the JPEG [PM92] and PNG [Bou97] standards. Tra-
ditional techniques often do not provide efficient random-access
to the data, i. e., they require to decode larger parts or the whole
image at once, which prohibits their use for real-time applica-
tions. In the context of real-time rendering, several GPU-supported
compression formats that allow random-access queries exist, such
as S3TC [INH99], ETC [SAM05], ASTC [NLP∗12] and others.
While these methods work well for texture and normal maps, they
are lossy and encoding an image with these techniques results in
a globally bounded per-texel error. In the context of shadow map
compression, it is necessary to ensure that the result of the depth
test is always correct in order to avoid artifacts and thus, lossy tech-
niques are not suitable. Although lossless compression methods
based on decomposition and block-based matching exist [HC07],
they achieve very modest results compared to specialized shadow
map compression methods that can exploit per-texel error margins.

2.2. Shadow map compression

In order to alleviate biasing problems in shadow mapping,
Weiskopf and Ertl [WE03] introduced the concept of dual shadow
maps. Since only points outside closed objects are ever tested dur-
ing shadow mapping, any value inside the first closed object as seen
from the light source for a given texel can be stored in a shadow
map without affecting the result. Dual shadow maps capture this
concept by representing per-texel allowable depth intervals as a pair
of depth maps representing minimum and maximum valid depths.

Compressed Shadow Maps In their seminal work for shadow
map compression, Arvo et al. [AH05] proposed the use of dual
shadow maps to exploit the fact that consecutive texels in a scan-
line have very similar depth intervals in homogeneous shadow-map
regions. Consequently, each scanline can be decomposed into a
piecewise-linear function that respects the per-texel depth intervals.
Only relatively few segments have to be stored for representing a
scanline, leading to significant compression rates. However, the ho-
mogeneity is only exploited along a single dimension and filtering
typically requires the traversal of several scanlines.

Multiresolution Hierarchies MH-based shadow map compres-
sion [SBE16] exploits local homogeneity in shadow maps by cre-
ating a sparse decomposition of a dual shadow map. The algo-
rithm recursively groups four neighboring texels together in the
same fashion as traditional mip-maps. However, each texel does
not represent a single value but a depth interval instead, and the al-
gorithm finds the largest subset of texels with intersecting intervals
for each group. The subset is then represented at a lower resolution
by the intersection interval of all texels in the subset and only the
remaining texels which are not in the subset need to be stored ex-
plicitly. Initially, this procedure starts at the high-resolution dual
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Figure 2: MH creation iteratively sparsifies each resolution level.
Neighboring intersecting depth intervals, represented by equal-
color texels here, are removed and represented at coarser levels
in the hierarchy. Compression is hierarchical, i.e., information is
moved up the hierarchy where it is represented more compactly.

shadow map and effectively sparsifies it in favor of a common
lower-resolution representation, thus reducing the memory require-
ments. The sparsification is then recursively performed again at ev-
ery decreasing resolution representation until a single texel level
is reached (Fig. 2). This repeated sparsification process exploits
neighboring homogeneity and per-texel allowable depth intervals to
replace large homogeneous regions of the original high-resolution
dual shadow map by a single representative.

Finally, each depth interval is replaced with a single representa-
tive value (usually the midpoint of the interval), and the structure
is encoded in a sparse quadtree for fast run-time evaluation on the
GPU. The resulting quadtree contains one node per remaining value
in the sparse decomposition, and adds special empty inner nodes to
preserve connectivity. At run-time, the value for a specific texel is
retrieved by traversing the quadtree top-down, following the path
defined by the location of the texel, and returning the value of the
deepest non-empty node.

As is common practice, each inner node of the quadtree con-
tains a single pointer to its first child node, and all sibling nodes are
stored consecutively in memory. To further reduce memory require-
ments, the pointers are compressed using the method proposed by
Lefebvre et al. [LH07]. Their approach is based on the insight that
serializing the nodes using a depth-first order leads to small dis-
tances between nodes at lower levels of the hierarchy. Since these
levels typically contain the larger number of nodes, pointers can be
replaced with (positive) offsets in the serialized layout, which can
be encoded using fewer bits. The growing offsets for the coarser
levels of the hierarchy are alleviated by introducing an additional
offset scale for each level and, if necessary, a padding in the mem-
ory layout. Each level l of the tree has an associated scaling factor
s(l), and the offset o of a node is multiplied by the scaling factor
during evaluation to retrieve the actual address (s(l)× o) at which
the children are located. Hereby, the final serialized quadtree uses
only 16 bits per offset, which along with a 32-bit depth value, an
8-bit flag for the children, and 8 bits of padding leads to an inner
node size of 64 bits. Since empty inner nodes do not store depth
values, they are represented using 32 bits.

Directed Acyclic Graphs A DAG is a special type of sparse voxel
octree [LK10] where matching subtrees are merged and only one

Similarity Compression 

Figure 3: DAG compression identifies equivalent subtrees and redi-
rects pointers in order to have a single representative for each sub-
tree configuration. Compression is based on similarity, two equal
subtrees anywhere in the hierarchy are merged.

instance of them is kept in the structure. The DAG method was
first introduced for geometry [KSA13] and later extended to en-
code precomputed static, voxelized shadow information of a scene
[SKOA14, KSA15]. During construction, a dictionary of existing
subtrees in the structure is kept. Before adding a new subtree to
a DAG, the dictionary is checked to see if a matching subtree is
already present, and if so, the new subtree is replaced by a pointer
to the existing one. This procedure exploits structural similarity and
creates a very sparse representation for data sets that contain repeat-
ing patterns, such as typical computer-generated scenes (Fig. 3).

Despite their ability to greatly reduce memory requirements for
1-bit or 2-bit values, DAGs are not well suited for compressing
more complex data, since equal subtrees become scarce. State-of-
the-art approaches in this area [DKB∗16] require heavy quantizing
of data in order to obtain acceptable results, which is incompatible
with the lossless constraint of shadow map compression. Hence,
the DAG algorithm cannot be directly applied for merging subtrees
of nodes representing depth intervals or full 32-bit precision values.

3. Merged Multiresolution Hierarchies

Our goal is to create a structure that can capture both the hierar-
chical similarities exploited by MH representations as well as the
non-hierarchical similarities exploited by DAG representations. We
propose to merge subtrees of an MH quadtree if we find that they
(a) exhibit the same structure and (b) each corresponding pair of
non-empty nodes have matching depth intervals. If both conditions
are met, we can select one of the subtrees and replace its depth
intervals for each node with the intersection of the corresponding
nodes in the other trees. We then remove all other repeating occur-
rences and replace them with references to the modified subtree.
This allows us to remove redundant subtrees from the hierarchy
without violating the bounds of the dual shadow map.

In order to be able to merge similar structures at different depths,
we change the MH representation to represent depth values relative
to their parent node. For every node in the hierarchy, we subtract
the mid-interval value of the parent from the interval bounds of
the children. Since the mid-interval value will be stored in the final
serialized quadtree, the original absolute value for a node is recov-
ered by summing the depth values along a traversal path (Alg. 1).
Changing the traditional MH representation from an absolute one
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Figure 4: MMH captures both the hierarchical compression present
in MH representations as well as the similarity compression present
in DAGs.

to a relative one, does not increase evaluation times since all the an-
cestors of a node have to be visited anyways during the top-down
tree traversal. Having subtree values relative to their parent nodes
is beneficial, because it allows structurally similar subtrees at dif-
ferent levels of the hierarchy to be potentially merged.

A major task is to identify and match redundant subtrees in the
hierarchy. Unfortunately, this task is not as straightforward as in the
case of DAGs, where subtrees are only mergeable if they are iden-
tical. Subtrees in a MH representation can potentially have very
different depth intervals, but are still mergeable as long as an in-
tersection for each pair of corresponding nodes and their intervals
exists. Hence, building a dictionary of MH subtrees is not enough
to capture similarity; we need to compare each corresponding depth
interval between subtrees to establish mergeability. Further, multi-
ple combinations for merges exist frequently, rendering this task a
combinatorial problem.

High resolution MHs may contain potentially millions of sub-
trees and comparing each possible pair is infeasible in practice. We
restrict matching of subtrees to pairs of equal topology, which al-
lows us to define clear partitions of subtrees. Although cases exist
where a subtree is mergeable with another subtree of larger topol-
ogy, these cases are unusual and would result in increased evalu-
ation times for the replaced smaller topology branch. We propose
a two-step approach to greatly reduce the number of tests and effi-
ciently find small sets of similar subtrees.

The overview of our technique is as follows. We start by creating
the high-resolution dual shadow map, which defines the per-texel
depth intervals, via depth-peeling; this represents the highest res-
olution level of the initial MH. Then, we iteratively sparsify each
level in a bottom-up manner and create a quadtree representation,
as proposed by Scandolo et al. [SBE16]. The depth intervals for

Algorithm 1 Pseudo-code for relative quadtree evaluation
function evaluateQuadtree(rootNode, coord) :

value← rootNode.value
node← rootNode
while true:

child← getChildNode(node, coord)
if isLeaf(child):

return value + child.value
if not isEmpty(child):

value← value + child.value
node← child

each node are kept as auxiliary information, and we convert them
to a relative representation as explained earlier.

In the next step, we use a hash-based technique to partition the
set of all inner nodes according to the topology of their descendants
(Sec. 3.1). We then perform the pair-wise matching solely between
elements in the hash collision lists, hereby enforcing comparisons
only between trees of matching topology (not necessarily at the
same depth in the hierarchy). Fig. 5 illustrates this procedure. To
reduce the number of tests further, we restrict comparisons within
each collision list to local areas by inserting elements following
a spatial ordering. To accelerate the pair-wise subtree matching,
we introduce an interval-based rejection test (Sec. 3.2). Finally, we
discuss how to perform the final serialization step while taking into
account the presence of merged subtrees (Sec. 3.3).

3.1. Hashing

Given an inner node (empty or full) in the initial MH quadtree
structure, its child pointer always indicates the first existing child
node in memory. All siblings of a child node lie consecutively in
memory and the parent node contains a flag byte that is used to
indicate every child’s existence and type (full inner node, empty
inner node, or leaf node). Since each group of 4 sibling nodes is
packed consecutively in memory, the subtrees we merge have a 4-
node pack at their root level (see Fig. 5). Hence, each subtree has
exactly one parent node, whose child pointer indicates the first node
in the 4-node root level. If two subtrees can be merged, we redirect
the pointer in one of their parents to the other subtree.

Testing all subtree combinations is impractical due to the very
large quantity of them present in an MH. We therefore assign a hash
code for each subtree, which we store in their parent node, such that
potential merge candidates collide when inserted in a hash table.
We then only need to test node pairs in the same collision lists.

The hash encodes the topology of a subtree by involving the flags
of all its nodes. Note that the parent node type does not have to
match for two subtrees to be compatible, since the parent node is
not part of the subtree. Further, we only match subtrees of the same
height, and thus we keep a separate hash table for each subtree
height to avoid collisions. We insert each node into its correspond-
ing hash table, according to the hash code stored in it. This allows
us to keep a reference to the subtree parent in order to redirect its
child pointer if a merge candidate is found. Hence, after each node
has been inserted into the hash table corresponding to its height,

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



L. Scandolo, P. Bauszat, and E. Eisemann / Merged Multiresolution Hierarchies for Shadow Map Compression

Figure 5: The matching procedure inserts subtrees into their corre-
sponding hash table based on their height using a topology-based
hash code. Subtree pairs in each hash table collision list within a
certain distance are then tested to determine their mergeability.

each hash table entry contains a collision list representing all equal-
topology subtrees (Fig. 5).

Since the hash value stored at each inner node represents its de-
scendant subtree, it is convenient to produce the hash codes for the
whole hierarchy in a single bottom-up sweep of the hierarchy. This
allows us to easily track the height of the subtree, in order to in-
sert it into the corresponding hash table. Further, we insert nodes
into the hash table in a depth-first order to preserve a spatial local-
ity inside each collision list. Our hash function, which fulfills these
properties, is presented in Alg. 2.

3.2. Subtree Matching

So far, we have produced the collision lists of the hash tables. Now,
the actual matching takes place and the hash tables are processed
in the order of their height from large to small. Hereby, we make
sure that larger subtree matching can remove larger parts of the tree
before proceeding to test the smaller subtrees. The collision lists
themselves can be treated in arbitrary order, as no elements of two
separate collision lists will ever be tested. Therefore we can speed-
up the subtree matching step by processing all collision lists of a
single hash table in parallel, since there is no dependency between
them. To further increase performance, we reduce the number of
overall tests by a local matching and speed up the individual pair-
wise tests by an early rejection test.

Local matching Testing all possible subtree pairs in a collision
list would lead to a creation time that is quadratic with respect to
the number of nodes. This would render the algorithm impractical,
and thus we propose a local matching scheme to keep the run-time

Algorithm 2 Pseudo-code for bottom-up hash code construction
function bottomUpHashCreation() :

for level from deepestLevel to rootLevel
for every node in level

updateHash(node)

function updateHash(node) :
node.size← typeSize(node.type)
if isLeaf(node)

node.hash← 1
return

hash← node.childFlags
for each child in node.children

node.hash← node.hash + (child.size « childIndex)
node.hash← node.hash * (child.hash « childIndex)
node.size← node.size + child.size

return hash

Algorithm 3 Pseudo-code for subtree matching
function matchPairs(hashTable, searchLimit) :

for each collisionList in hashTable
listSize← collisionList.size
for i from listSize - 1 to 0

for j from i + 1 to min(i + searchLimit, listSize - 1)
n1 ← collisionList[i]; n2 ← collisionList[j]
if (n1.lMax<n2.lMin) || (n1.hMin>n2.hMax)

continue
if offsetTooLarge(n1, n2)

continue
if fullTest(n1,n2)

merge(n1,n2)
break

bounded. Having used a depth-first insertion, the nodes in each col-
lision list correspond to spatially-close neighborhoods. It is likely
to find matches between elements close in the list as they tend to be
located nearby similar features. In consequence, we limit the testing
of a node to a certain distance within a collision list. In our exper-
iments, a distance limit of 1000 entries provided a good trade-off
between compression and construction time. Furthermore, increas-
ing this limit further will eventually lead to testing subtrees that
cannot be merged since their distance in the final structure will be
too large to represent as an offset pointer. We discuss the influence
of this parameter further in Sec. 4 and show that the usage of local
matching decreases compression only slightly while reducing the
run-time of the algorithm by several orders of magnitude.

Early Rejection When testing two subtrees for merge compati-
bility, all of their nodes and depth intervals need to be compared.
While this process can become costly, specially for large trees, a
single mismatch is enough to stop the comparison. Hence, we in-
troduce a fast early rejection test.

For our rejection test, we aggregate information about the depth
intervals of each subtree and store it in their parent node. This is
done during the previously described bottom-up traversal that com-
putes the hash codes of each subtree. We exploit the observation
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Figure 6: Compatibility testing of two trees with equal topology
can be sped up by observing the aggregated statistics of their nodes’
depth intervals. In this example, we see that the lowest minimum
depth of all nodes in the left tree is higher than the lowest max-
imum depth of all nodes in the right tree. We can then conclude
that the lowest interval in the right tree is guaranteed to not have an
intersection with any intervals of the left tree.

that merging is only possible if the depth interval of all correspond-
ing node pairs in the tested subtrees intersect (otherwise, there is
no possible conservative depth value). In consequence, a conserva-
tive test checks if there is at least one node in one of the subtrees
whose depth intervals fails to intersect the union of all intervals in
the other subtree. In order to test this property, we keep track of the
lowest and highest minimum and maximum depth of all node in-
tervals for each subtree. If the highest minimum depth of a subtree
is higher than the highest maximum of another subtree, at least one
node exists in the first tree without an intersection with any node in
the second one. The same is true if the lowest maximum depth of a
subtree is lower than the lowest minimum of another subtree. Fig. 6
provides a graphical example of this test. In both cases, merging the
two subtrees can be immediately rejected if the test fails.

Subtree Merging Once a pair of compatible subtrees has been
found, we have to decide which one to remove and which one to
keep. We apply a simple rule and always remove the one that ap-
pears earlier in the collision list. The reason is that the serialized
quadtree uses positive offsets instead of full pointers, and remov-
ing the earlier subtree avoids a negative offset. The depth intervals
of all nodes in the surviving subtree are modified to intersect the in-
tervals of the nodes in the removed subtree. Hereby, we ensure that
this subtree correctly represents both original subtrees. If the sur-
viving subtree is later merged with another one, the intervals in its
nodes will be the intersection of all the intervals of the correspond-
ing nodes in the original trees. At this point, instead of actually re-
moving the redundant subtree immediately from the hierarchy, we
only mark its parent as merged and save a reference to the surviving
subtree’s root. All marked subtrees will later be skipped during the
serialization step.

Alg. 3 summarizes the matching algorithm. Note that the outer
loop over each element in the collision list proceeds in back-to-
front order. This ensures that each subtree indexed by the outer loop
is not already merged, thus allowing us to safely merge it with an-
other subtree if we find a suitable match.

Figure 7: An overview of the tested CITYSCAPE, VILLA, and SHIP

scene. The CLOSED CITY scene is shown in Fig. 1. Larger images
can be found in the supplementary material.

3.3. Serialized Tree Creation

Once the subtree matching is completed and redundant subtrees
are marked in the hierarchy, we perform the quadtree serialization.
While the original serialization applied a single depth-first order
traversal, our altered serialization requires two passes through the
hierarchy. The reason is that to correctly encode the redirected child
pointers, we need to know the final position of a subtree in the seri-
alized representation. To this extent, we perform a first pass where
we only compute the final position of all nodes in the serialized rep-
resentation. In the second pass, we write the serialized structure and
use the previously computed positions to assign the correct offset
to the nodes that were marked as merged.

Offset scaling After the merging process, each inner node con-
tains a pointer to a subtree, which might be shared by several nodes.
These pointers will be represented in the form of 24-bits offsets into
the serialized quadtree. The original MH quadtree used 16 bit off-
sets and added 8 bits of padding. In our case, merged subtrees may
be very distant in the final serialized quadtree layout, and therefore
we use the padding bits to increase the offset size to 24 bits.

Two nodes at different levels in the quadtree might share the
same subtree, since subtrees are merged according to their topol-
ogy and depth intervals, and not their position in the final struc-
ture (see Fig. 5). This means that during the quadtree traversal, the
same subtree may be encountered at two different levels. Conse-
quently, we need to ensure the offset scaling factors of those lev-
els are the same. Fortunately, the quadtree depth-first order ensures
that the scale factor will always be one for the lower levels; imag-
ine a complete quadtree, then the first 12 levels (412 = 224) contain
only parent nodes whose offset to the children will fit into 24 bits.
Therefore, we restrict merge operations to the lowest 12 levels to
ensure that all merged nodes are at levels with scale one. Since the
lowest tree levels typically contain most of the nodes, very little
compression is lost by this restriction.

To ensure that all merged subtrees use unscaled offsets and fit in
24 bits, we determine whether there is a risk to exceed this bound
during each merge test. We compute a conservative bound on the
number of required bits for the resulting offset and forbid the merg-
ing operation if it is too large. This bound is the distance within the
original (unmerged) quadtree as computed in [SBE16], since our
merging algorithm can only cause a decrease in this offset.

4. Results

We implemented our approach using C++ with multi-threading
support and CUDA. The unmerged parts of the MH construc-
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Scene 4K2 16K2 64K2 256K2

DAG 0.62 3.40 14.90 60.46
CLOSED CITY MH 0.41 2.10 9.33 38.43

Ours 0.30 1.43 5.80 23.73
DAG 0.94 3.94 16.38 63.34

CITYSCAPE MH 0.60 2.73 11.53 47.07
Ours 0.40 1.67 6.83 27.71
DAG 1.78 9.27 39.70 166.47

VILLA MH 0.88 5.01 23.61 101.52
Ours 0.63 3.62 17.36 74.11
DAG 2.01 8.66 35.57 153.67

SHIP MH 1.11 5.64 24.57 102.36
Ours 0.82 3.83 16.34 67.64

Table 1: Size comparison in MB for MH-based compression
[SBE16], DAG-based compression [KSA13], and MMH-based
compression for our four test scenes and varying shadow map res-
olutions.

Scene 4K2 16K2 64K2 256K2

DAG 0.098 0.53 4.88 65.23
CLOSED CITY MH 0.27 1.24 5.80 56.17

Ours 0.37 1.59 8.72 72.54
DAG 0.12 0.67 6.16 78.74

SHIP MH 0.31 1.59 7.08 69.30
Ours 0.54 3.1 15.6 109.9

Table 2: Creation time comparison in seconds of the MH-
based compression [SBE16], DAG-based compression [KSA15],
and MMH-based compression for at varying resolutions for the
CLOSED CITY and SHIP test scenes.

tion and the baseline comparison are implemented according to
[SBE16] and perform most computations on the GPU using NVidia
CUDA. All statistics were captured on a Windows 7 PC with an In-
tel i7-5820K CPU, 16GB of system memory, and an NVidia Titan
X GPU. We evaluate our method for four test scenes (Fig. 1 and
Fig. 7). The CLOSED CITY (613K triangles) and the CITYSCAPE

(11K triangles) scene are typical examples of open-world games
or architectural scenes. The VILLA (89K triangles) scene and the
SHIP (810K triangles) scene exhibit small geometric details mak-
ing them hard cases for typical shadowing algorithms.

In Table 1, we compare the memory footprint of traditional
MH compression, DAG compression and our MMH compression
method. Our solution reduces the memory footprint by up to 60%
compared to DAG compression and up to 40% compared to MH-
based approaches. Averaged over all scenes and resolutions, our
approach achieves 31.3% higher compression rates than traditional
MH-based compression.

Table 2 shows a comparison of creation times for our method
and the competing approaches. It can be seen that our approach
adds an overhead to the construction time that is between 30%
and 150% at higher resolutions in comparison to MH-based and
DAG-based compression. However, precomputing and compress-
ing a static shadow map only needs to be done once and construc-

Scene Resolution Interval
mismatch

Offset
too large

Full test
rejection

16K2 67.2 % 0.00 % 32.63%
CLOSED CITY 64K2 64.8 % 0.28 % 34.76 %

256K2 63.5 % 11.9 % 24.39 %
16K2 64.88 % 0.00 % 34.90 %

CITYSCAPE 64K2 62.15 % 1.49 % 36.21 %
256K2 61.94 % 13.51 % 24.44 %

Table 3: Early rejection statistics showing the effectiveness of each
individual test during the examination of node pairs. Note that the
rejection criteria are given in the order that they are performed in
the implementation, e.g., a pair rejected for interval mismatch will
never be tested for offset incompatibility.

tion time is often not considered as significant as memory reduction
in applications typically employing this technique.

Large shadow maps cannot be rendered in a single render call,
but are instead created using tiled rendering. In our implementation,
we use a tile size of 4k× 4k leading to around 1 GB of required
GPU memory during construction. CPU memory requirements are
smaller, since the CPU only performs the merging operations on the
already compressed MH structure tiles. For the scene in Fig. 1, the
CPU memory usage never exceeded 600 MB during construction.

For all scenes, the evaluation time for a full HD image at 256k
resolution is below 1 ms for single queries, and between 1 ms and
2.5 ms using a 3x3 hierarchical PCF filter kernel. We include de-
tails of the evaluation of run-time performance as supplementary
material, since the measured difference to the original MH-based
compression method was insignificant in all our experiments. A
more detailed comparison of evaluation times between MH-based
and DAG compression was presented by Scandolo et al. [SBE16].

We also evaluated the influence of the local search distance pa-
rameter (Fig. 8). It can be seen that our standard choice of 1000
leads to a good trade-off between the achieved compression and
construction time. Beyond this point the cost of comparing nodes
dominates the total time, and the diminishing returns in achievable
compression do not seem to justify the strong increase in construc-
tion time. Furthermore, local search distance is eventually limited
by the maximum offset representable in the final quadtree structure.

Finally, Table 3 shows statistics for the early rejection test during
the individual pair-wise subtree matching. It can be seen that the
interval-based rejection test quickly eliminates most (avg. 64%) of
the comparisons and only one quarter to one third of the subtree
pairs perform a full node-by-node comparison. Further, it can be
seen that only a small amount of merges are rejected due to the
24-bit offset limit for our choice of local search distance.

5. Conclusion

We introduced the concept of Merged Multiresolution Hierarchies
for compact representation of extremely high-resolution shadow
maps. Our method provides a novel way of fusing the existing MH-
based and DAG compression algorithms, which allows simultane-
ous exploitation of hierarchical and topological similarities lead-
ing to significantly higher compression rates. The memory foot-
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Figure 8: Compressed size vs. subtree merging time for varying local search distances in the CLOSED CITY and VILLA scenes at 64k
resolution. The graph shows the diminishing returns of larger distances during the pair matching of subtrees. The green line shows the
minimum attainable size, resulting from an infinite search distance. A reasonable trade-off between final size and creation time can be
achieved using search distances between 500 and 1000.

print of our compressed representation is up to 40% smaller com-
pared to previous techniques, while maintaining full run-time per-
formance. We proposed an efficient construction scheme based on
a hash-based strategy addressing the issue of raised complexity due
to more sophisticated subtree merging constraints. Our approach
can be used to speed-up shadow computations in real-time graph-
ics applications and enables the use of highly detailed and complex
static shadow casters.
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