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Abstract

We present a combination of techniques for interac-
tive out-of-core isosurface extraction and rendering of
time-dependent data sets. We make use of an index
tree that allows extraction of all isovalue-spanning
cells from any time step, and for any isovalue, at
rates of several hundreds of frames per second. This
data structure is constructed in a pre-processing stage,
and effectively uses the temporal coherence in the
data set. However, for very large data sets such as
those resulting from CFD simulations, this tree struc-
ture can easily become too large to fit in main mem-
ory. Therefore, we have adapted the data structure for
out-of-core application by adding an intelligent pag-
ing scheme, which allows interactive exploration of
very large data sets on a normal PC. Only a user-
specified time window will be kept in main mem-
ory and other parts of the tree will be read and re-
leased on-demand. This paging scheme was imple-
mented using multi-threading. Finally, to avoid time-
consuming triangulation and surface reconstruction,
we have used a hardware-assisted direct point render-
ing algorithm, achieving interactive rendering frame
rates.

1 Introduction

Interactive exploration of large, time-varying data sets
is one of the greatest challenges in visualisation to-
day. This is especially true for areas such as flow vi-
sualisation, where time-dependent simulations are be-
coming common practice, and can produce high res-
olution grid data sets with many thousands of time
steps. In spite of this, scientists investigating these
large data sets need interactive visualisation tech-
niques with which they can browse through the data
in both space and time.

When using a flexible, general-purpose visualisation
technique such as isosurface extraction for a time-
varying data set, it is desirable to interactively change
the isovalue, and watch the development of the sur-
face shape over time. However, extracting and render-
ing isosurfaces separately for each time step is gener-
ally too slow for interactive exploration.

Our approach to this challenge is to use specialised
data structures allowing very fast access and data re-
trieval for answering a specific type of visualisation
query, as required for isosurface extraction. We used
a number of criteria in choosing such a data struc-
ture. First, it should do fast isosurface extraction
for any isovalue. Second, it should be suitable for
time-dependent data sets. Combining these two, it
should be possible to do incremental surface extrac-
tion, or to determine the differences between succes-
sive time steps. Of course, it should be much faster
than straightforward isosurface extraction from every
time step separately. Finally, the results of the ex-
traction should be directly passed to a fast rendering
algorithm for display.

We have employed a data structure for fast isosurface
extraction from time-dependent data sets [1]. It is
generic in the sense that any isovalue can be extracted
from any time step. To make our system achieve in-
teractive frame rates in browsing a data set, we have
directly linked the output of our isosurface extraction
with a fast, hardware-supported direct rendering algo-
rithm [2], resulting in interactive isosurface extraction
and visualisation from time-varying data sets. The di-
rect rendering avoids the time-consuming construc-
tion of polygonal surfaces using a Marching Cubes-
type of algorithm [3]. By combining these two meth-
ods, and capitalising on incremental surface extrac-
tion, the user can specify an arbitrary isovalue and
time step, and the development of the isosurface can
be dynamically visualised in forward or backward



time direction.

However, the tree data structure used may become too
large to fit in main memory. Therefore, we have de-
signed and implemented an intelligent paging scheme
to enable interactive out-of-core isosurface extraction
and rendering.

This paper is organised as follows. In Section 2,
we discuss related work in isosurface extraction tech-
niques from time-dependent data, and suitable render-
ing techniques to display the isosurface. Then we will
shortly explain the data structures we have used in
Section 3, together with the paging scheme we have
implemented in Section 4, and the modified shell ren-
dering algorithm in Section 5. Some performance re-
sults are given in Section 6, and we will reflect on the
results and further work in Section 7.

2 Related Work

Most data structures for fast isosurface extraction are
based on tree representations. Sutton and Hansen
introduced the Temporal Branch-on-Need Tree (T-
BON) [4]. This is an extension to the original Branch-
on-Need Octree (BONO), described by Wilhems and
Van Gelder [5]. The T-BON is a version for time-
dependent data sets, but it does not make use of tem-
poral coherence. The data structure is suitable for fast
isosurface extraction.

Shen presents an algorithm for fast volume rendering
of time-varying data sets, using a new data structure,
called the Time-Space Partition (TSP) Tree [6]. This
structure could also be adapted for fast isosurface ex-
traction. The TSP tree is capable of capturing both
spatial and temporal coherence in a time-dependent
field. Both the spatial and temporal domain are repre-
sented hierarchically in the TSP tree: each node of the
octree representing space, contains a full bintree rep-
resenting time. Although this allows multi-resolution
access in any dimension, it involves a huge storage
overhead.

Shen describes another data structure for isosurface
extraction from time-varying fields, called the Tem-
poral Hierarchical Index Tree [1]. The idea behind
this structure is to store voxels that remain (approxi-
mately) constant throughout a certain time span only
once for that entire time span.

Recently, Gregorski et al. [7] presented a technique
for progressive isosurface extraction with adaptive re-
finement from compressed, time-dependent data sets.
However, they are restricted to playing forward and
backward in time. The vertex programming capabil-
ities of modern graphics hardware are used to speed
up the surface extraction.

Pascucci also uses the vertex programming capabili-
ties of modern graphics hardware [8]. In his approach,
the workload is distributed between the CPU and the
graphics card. A tetrahedral decomposition of the do-
main is used. The application draws one quad per
tetrahedron; the vertex program on the graphics card
does the interpolation to find the position of the ver-
tices of the isosurface, and computes the normal of
the isosurface.

For our purposes, we decided to use and extend the
Temporal Hierarchical Index Tree by Shen [1]. We
will describe this structure in more detail in the fol-
lowing sections.

We have made an implementation of this data struc-
ture with optimisations for space efficiency. We have
created search routines for retrieving the isosurface-
spanning cells for any isovalue and from any time
step, and specialised incremental search routines that
allow an even faster cell search from any time step,
given the previous results from another time step [9].

We have designed and implemented a paging scheme
for this tree data structure that makes out-of-core ex-
traction possible for very large data sets. The data
structure presented is suitable for paging per time
step, unlike for example the TSP tree. Recently, Chi-
ang presented a technique for out-of-core isosurface
extraction from time-varying fields [10], which uses
as the basic data structure a time tree similar to the one
described here. The underlying structures of his tech-
nique are however optimised for I/O and out-of-core
computation. We have focused on both fast extraction
and rendering and afterwards adapted the data struc-
ture and added the paging scheme. For an overview of
out-of-core algorithms for computer graphics and vi-
sualisation, we refer to the survey by Silva et al.[11].

For visualisation we implemented two different point-
based rendering techniques. The first, ShellSplat-
ting, is a hardware-accelerated direct volume render-
ing method that is based on a combination of splat-
ting [12] and shell rendering [13]. The second is a
much faster, but lower quality, point-based volume
rendering method that was created specifically for the
isosurface extraction documented in this paper. The
points are displayed as opaque, flat-shaded polygons
that are parallel with the viewing plane. This is an ex-
treme simplification of systems like QSplat [14] and
object space EWA surface splatting [15].

Both rendering techniques have been tightly coupled
with the extraction technique. The cells that result
from the search routines are fed directly into the ren-
dering algorithm, without the need for retrieving the
raw data or having to perform interpolation or trian-
gulation. This high level of integration between ex-
traction and rendering is an important advantage of



Figure 1: An example of a binary time tree for 10 time
steps.

our technique.

3 Temporal index tree

Isosurface extraction involves selection of the voxels,
or cells, that are intersected by the isosurface, that is,
those cells that contain the isovalue. This means that
those cells must have some vertices with scalar val-
ues lower and some with values higher than the iso-
value. To check if a cell is intersected by the isosur-
face, it is therefore sufficient to store the extreme val-
ues of the cell. It is the main idea for this and other
data structures, that each cell is stored as an interval
[mini,maxi], and to check if a cell is an isosurface cell,
we simply check if the isovalue is contained in that in-
terval.

We have used and modified the Temporal Hierarchi-
cal Index Tree [1]. An important aspect of this data
structure is the use of temporal coherence of cells. In-
stead of storing all the data set’s cells for each time
step, cells that remain approximately constant (that
is, within a certain tolerance) throughout a given time
span, are stored only once for that entire time span.

The basic structure of our index tree is a binary time
tree, dividing the entire range of time steps of the data
set recursively into smaller and smaller ranges. Each
node in the tree corresponds to a certain range of time
steps. In other words, one level of the binary tree rep-
resents the data set at a certain temporal resolution.
This resolution doubles with each level of the binary
tree. See for a simple example Figure 1. In each node
of this binary tree, the cells are stored that remain
approximately constant throughout the corresponding
time interval. This means that those cells need not be
stored anywhere in the tree below the current node.
This is the main cause for the potentially large data
reduction that can be achieved using this data struc-
ture.

The top node of the binary tree represents the entire
range of time steps of the data set. The leaf nodes of
the tree represent the single time steps at the highest
temporal resolution. To retrieve the isosurface cells

for a certain time step, the binary tree must be tra-
versed from root to leaf nodes. The cells that are
found first, are cells that remain constant throughout
the entire time range and therefore must be searched
for every time step. The cells that are found in the leaf
nodes are those that differ with respect to the neigh-
bouring time steps. Only when the tree has been tra-
versed entirely from root to leaf node, all isosurface
cells have been found.

Note that the time tree structure is determined a pri-
ori, only by the number of time steps. Therefore, the
time intervals which are represented by each node of
the tree, are fixed. Referring to Figure 1, if a cell re-
mains constant for the time interval [0,5], for exam-
ple, it will be stored in the two nodes [0,3] and [4,5],
because there is no node for the interval [0,5].

We need a way to store a (possibly large) number of
cells in each binary tree node efficiently, enabling a
quick and efficient search for isosurface cells. For
this we use an Interval Tree [16]. A description of
this data structure is beyond the scope of this article.
We refer to the original article by Cignoni et al. [16]
and our previous work [9]. In the current context, it
suffices to know that the intervals are stored in inter-
val trees, and that one interval tree is stored in each of
the nodes of the index tree.

3.1 Isosurface cell query

The index tree can be queried for any isovalue at any
time step. The tree will be traversed from top to bot-
tom, selecting the correct nodes depending on the re-
quested time step. In each node of the tree, the corre-
sponding interval tree is searched. The cells returned
by every search contribute to the final result, which
will be complete when the leaf nodes of the index tree
have been reached. The list of cells we have obtained
then contains all cells in the requested time step that
span the isovalue, and therefore, all cells that are in-
tersected by the isosurface. However, cells that are
found outside the leaf nodes of the index tree, are rep-
resented by their temporal extreme values, measured
over a certain time interval. The fact that these tem-
poral extreme values span the isovalue does not guar-
antee that the extreme values for the current time step
also span the isovalue. This means that the resulting
list of cells will contain a number of false positives.

The number of false positives can be controlled, but a
reduction of this number will be at the cost of mem-
ory space [9]. In general we can say that with our
default setting, we get approximately 0.5% false pos-
itives. This will hardly show up in the images.



3.2 Incremental search

The binary tree structure for representing time spans
makes it possible to do incremental searching for iso-
surface cells. Because each node in the tree represents
a certain time span, the information that is known in
that node can be used for all time steps in that span,
that is, for all child nodes of that node. For exam-
ple, let us assume that a search has been performed
for time step 0, and that the resulting isosurface cells
are known. When time step 1 is to be searched next
(for the same isovalue), there is no need to do a full
search of the tree again. Instead, the previous result
can be used, because all the cells that have been found
from the root of the tree down to the node represent-
ing time span [0,1], can be reused. These cells are (by
definition) identical for both time step 0 and time step
1. Only the leaf node representing the single time step
1 must be searched. Next, when time step 2 is to be
searched, we need to do a little more ’back-tracking’,
because the last common node for time steps 1 and 2
is the node [0,3].

This can be implemented fairly easily. The search in
each node of the tree returns a number of cells. These
cells are appended to a single result vector. For the
incremental search to work, we save the number of
cells found so far, that is, the size of the result vector,
in a single vector of integers. This vector is the only
space overhead for the incremental search — at most
d integers, where d is the maximum depth of the time
tree.

For an incremental search of any time step tn, we pass
the result vector of the previous search, the integer
vector V [d] just described, and the time step to of the
previous search. Note that these time steps do not
have to be consecutive; any two time steps can be
used. The binary tree is then traversed from the root to
the leaf node representing tn. In each node Ni (at depth
i), we check whether tn and to are in this node’s time
span. If so, we simply go to the next node, because
we can reuse the first V [i] cells from the result vector.
If not, we truncate the result vector after V [i−1] cells,
because that is the number of cells that tn and to have
in common. The rest of the tree must be searched
normally. During this search the result vector and the
integer vector V have to be kept up-to-date. While
only causing a negligible space overhead, this incre-
mental search routine offers a speed-up of about 35 in
our application, when we search 600 consecutive time
steps incrementally, as opposed to 600 full searches.

4 Paging scheme

The index tree described in the previous section can
easily become too large to fit in main memory. The

size of the tree very much depends on the size of the
original data set and on the amount of temporal coher-
ence in the data. However, the tree structure hints at
an intelligent paging scheme. Such a scheme would
remove the constraints on memory size for the index
tree and allow arbitrary-sized data sets to be explored.
Therefore we adapted the data structure to make it
possible to keep only a limited number of time steps
in memory, and load other time steps on demand from
disk. We have used the idea of a time window, cen-
tered around the current time step, to implement this.

4.1 Time window

This concept corresponds very well to the way scien-
tists will work when exploring a data set. Often, one
will browse forward or backward through the data,
until a certain event is detected. Then the main fo-
cus will be on the frames around the event. This time
window needs to be in main memory in order to be
explored interactively.

A number of adaptations have been made to provide
this functionality. First, the user must be able to
specify the time window size, defining the number of
time steps that will be kept in main memory at one
time. Alternatively, the user can specify the maximum
amount of memory that is to be used, after which the
window size can be determined automatically. This
way, the number of time steps in memory can be max-
imised, while always fully using the available amount
of memory.

The index tree structure itself has been modified. We
have decided that the skeleton of the tree should al-
ways be kept in main memory. In each individual
node of the tree the range of time steps for that node
is stored, the interval tree containing all the intervals,
and the pointers to both child nodes. The range of
time steps and the pointers to the children will be kept
in main memory at all times. Only the interval tree,
which takes up most of the memory, can be paged in
and out of main memory.

The entire index tree is stored as one (binary) file on
disk, so when we want to read the data (that is the
interval tree) for a single tree node, we need the file
offset and the number of bytes to read. These two val-
ues have been added to and are now stored with each
node in the index tree. Actually, the number of bytes
is not necessary for reading a single index tree node.
The entire index tree including all interval trees, will
be reconstructed in memory on the fly, while reading
from disk. Therefore the number of bytes to be read
does not need to be known beforehand. However, this
number is necessary when the index tree node is not
read, that is, when the structure of the index tree is



read, without the data in nodes. In this case, it is nec-
essary to know how many bytes to skip to find the file
offset for the next tree node to be read.

The structure of the index tree can be read entirely
from disk, without reading any data. The tree then
occupies only a few hundred bytes in memory. Next,
tree nodes can be read (meaning the interval trees in
the index tree nodes) selectively whenever they are
needed.

When a tree node has to be freed, the interval tree for
that node is simply removed from memory.

Of course, we must keep track of which tree nodes
currently are in main memory. To this end, we have
added a single boolean variable to each tree node. We
say a tree node is in memory, or online, if the inter-
val tree for that tree node is in memory, and offline,
otherwise. Again, the index tree structure remains
in memory at all times, and therefore, all index tree
nodes also exist in memory permanently. Only the in-
terval tree in an index tree node can be paged in and
out of memory.

As the user can specify the window size, meaning the
number of time steps that will be in memory at one
time, we can easily keep track of the window of time
steps, centered around the current time step. This
means we can free all time steps before the first, or
after the last time step of the window. When reading
a time step, we have to make sure we read all nodes
from the top of the tree down to the leaf node repre-
senting the given time step. However, when freeing a
time step, we must make sure we free all nodes that
are no longer needed, but leave those nodes that span
or overlap with the time window untouched.

This is easily implemented. Each tree node contains
the range of time steps that the node represents. Fur-
thermore, we know the first and last time step of the
time window. Therefore, we can check if these two
ranges overlap. If not, we can remove the node from
memory.

This does have some consequences for the time com-
plexity, both for reading tree nodes and freeing them.
(See Figure 2.) If for example the time window starts
at t = 3, time step 2 can be removed from memory. In
this case, that means the single leaf node represent-
ing t = 2 can be freed. If the time window shifts one
time step forward, time step 3 is no longer needed.
But now, the three nodes [0,3], [2,3] and 3 can be
freed. Similarly, when reading time steps the number
of nodes and therefore the amount of data that has to
be read will be different with every time step.

Figure 2: A binary time tree with a time window [3,7].
Only the colored nodes will be kept in main memory.

Figure 3: The GUI element that shows the time win-
dow and current time step.

4.2 Feedback

To provide the user with feedback about the time win-
dow, we have designed a GUI element to show a bar
from the first to the last time step of the window, with
an indicator at the current time step. See Figure 3.

Because reading new time steps will always be slower
than visualising them, the visualisation will, in the
end, catch up with the last time step of the window.
This is of course dependent on the size of the time
window and on the frame rate of the player. It can
happen that the user will have to wait (or rather, the
user will notice a delay). For this purpose it is desir-
able for the user to get feedback. He will see that the
visualisation is catching up with the reading of new
time steps and be prepared that he will have to wait.
Or, he could slow down the visualisation by lowering
the frame rate. Finally, he could also increase the time
window if memory size allows this.

4.3 Multi-threaded design

In order to let the visualisation run independently
from the reading of time steps from disk, to prevent
unacceptable delays, we have decided to use a multi-
threaded design for our program. The main thread
of the program is concerned with the visualisation.
When a certain time step is selected by the user this
thread ensures that the part of the index tree contain-
ing that time step is in memory. If necessary, it will
read the corresponding tree nodes from disk. Next, it
will perform an isosurface cell search and visualise
the result. In the mean time, the second thread is
awakened and this thread will start reading new time



steps, from the current time step in both time direc-
tions, until the requested number of time steps (spec-
ified as the window size) has been read in from disk.
This could take some time, especially if all time steps
in the time window have to be read, but as it happens
in the background, the user might not notice anything,
while he is investigating the current time step. Of
course, when the user simply plays through the data
set, only one time step will have to be read at a time,
in which case interactive browsing is quite feasible.
A third thread has been designed to perform the task
of cleaning up unused time steps. This thread will re-
move all nodes in the tree that are not needed for the
current time window.

These last two threads both consist of an infinite loop
in which they are suspended while waiting for a sig-
nal. The main thread broadcasts the signals whenever
a new time step is selected. The two threads wake up:
one will read the required tree nodes from disk, the
other will remove all other tree nodes from memory.

4.4 Mutexes

A multi-threaded approach requires very careful pro-
gramming to avoid race conditions or deadlock. The
solution is in the use of mutex variables. We need mu-
texes (short for mutual exclusion objects) to ensure
that the individual threads do not read from or write
to the same tree node at the same time. The straight-
forward solution would be to use a single mutex on
the entire index tree. However, that would be too re-
strictive: it should be possible for the main thread to
search in one time step, while another thread is writ-
ing in another part of the tree. Instead, we decided
to use a single mutex for every tree node, as the tree
nodes can be seen as the basic units for reading from
disk, freeing from memory, or searching for isosur-
face cells. Using this locking scheme, with one mutex
per tree node, it is possible to search in one tree node,
while for example, one of its child nodes is being read
from disk.

It is very important to consistently check the mutex
variable before reading or writing a tree node. If
one thread or one function call does not strictly ad-
here to this principle, the program will show unpre-
dictable and irreproducible behaviour. Therefore both
the read and cleanup functions used in the two auxil-
iary threads, but also the search function in the main
thread have to check and lock / unlock the mutex as-
sociated with every tree node very consistently.

Summarising, we have adapted the index tree data
structure to provide out-of-core functionality. The
structure of the tree will remain in memory at all
times, but the data at each node can be paged in and
out of memory whenever needed. In this manner, it

is possible to keep only a certain time window cen-
tered around the current time step in memory, while
the other time steps remain on disk and will be read on
demand. We have chosen a multi-threaded approach,
where the main thread is concerned with the visualisa-
tion and two auxiliary threads have the tasks of read-
ing new time steps from disk and freeing up the mem-
ory of time steps that are no longer needed.

5 Point-based Rendering

After extracting the cells intersected by the isosurface
it would be possible to construct a polygonal mesh for
each frame and visualise this using polygon render-
ing. However, this would take away the advantage of
fast access, as the original data would have to be read
from disk to perform surface reconstruction using for
example the Marching Cubes algorithm [3].

To avoid this, we have used a point-based direct ren-
dering algorithm. We further optimised our Shell-
Splatting rendering algorithm [2], a combination of
shell rendering and splatting, to take advantage of the
a priori knowledge that the voxels we are dealing
with are completely opaque and together constitute an
isosurface. ShellSplatting makes use of special data
structures that enable very fast implicit space leaping
and back-to-front or front-to-back traversal from any
viewing angle. This ordering is very important as the
technique makes use of Gaussian textured polygons
that are composited and scaled by graphics hardware.

The ShellSplatting technique yields high quality ren-
derings of the extracted isosurfaces. However, due to
the nature of the data structures used, the voxels have
to be ordered in at least the fastest-changing dimen-
sion and this slows down the data conversion stage.
We wished to provide a second, much higher speed
rendering option [9].

By opting to use flat-shaded rectangular polygons in-
stead of Gaussian-textured ones, the ordering con-
straint could be ignored. In return, the rendering qual-
ity would be slightly lower. In this second method,
the polygon that is to be used for rendering the cells
is calculated in the same way as for ShellSplatting.

The polygon is constructed to be parallel to the view-
ing plane. This is correct for parallel projection.
Strictly speaking, in the perspective projection case
each rendered polygon should be perpendicular to the
viewing ray that intersects it. However, for efficiency
reasons, we make use of slightly larger screen-aligned
polygons [17]. The polygon is also constructed so
that we can perform all rendering in isotropic voxel
space and have the graphics hardware perform neces-
sary anisotropic scaling.
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Figure 4: Illustration of the calculation of the voxel
sphere in voxel space, transformation to world space
and projection space and the subsequent “flattening”
and transformation back to voxel space.

To visualise this construction, imagine a three-
dimensional ellipsoid bounding a small neighbour-
hood around a voxel. If we were to project this el-
lipsoid onto the projection plane and then “flatten” it,
i.e. calculate the outline of its orthogonal projection
(an ellipse) on the projection plane, the outline would
also bound the projected voxel. A rectangle with prin-
cipal axes identical to those of the projected ellipse,
transformed back to the drawing space, is used as the
rendering polygon.

Figure 4 illustrates a two-dimensional version of this
procedure. In the figure we also show the transfor-
mation from voxel space to world space. This extra
transformation is performed so that rendering can be
done in the isotropically sampled voxel space, even
if the volume has been anisotropically sampled. Al-
ternatively stated, the anisotropic volume is warped
to be isotropic. The voxel-to-model, model-to-world,
world-to-view and projection matrices are concate-
nated in order to form a single transformation matrix
M with which we can move between the projection
and voxel spaces.

The list of cells extracted from the index tree is up-
loaded to the graphics pipeline in arbitrary order as a
list of view plane parallel polygons. Because all poly-
gons are non-textured and completely opaque, their
ordering is not important. As explained above, scal-
ing is done in hardware, so anisotropic volumes are
handled correctly.

6 Results

We have tested our application on two large data sets.
The first data set is is of a multi-phase flow simula-
tion of a number of air bubbles rising in water. Five
double-precision floating point values are computed
per grid point: the pressure, the level set value and
the three components of the velocity. We use only
one scalar to create the index tree, being the level set
value; this leaves us with 128 MB of data per time

Figure 5: Scenes from the two data sets. On the left is
the bubble data set, on the right is the cloud data set.

Data set Bubbles Clouds
Resolution 2563 128×128×80
# Time steps 39 600
Raw data size 4992 MB 3000 MB
Index tree size 1630 MB 750 MB

Table 1: Details of the two data sets and of the gener-
ated index trees.

step. See Figure 5, left.

Another data set we used is of a Large Eddy Simu-
lation of cumulus clouds, with one vector and three
scalar quantities: the air velocity vector, meteorolog-
ical temperature, liquid water and total water. For the
creation of an index tree, we only used the tempera-
ture. See Figure 5, right.

For each of these data sets, we created an index tree;
the details are in Table 1.

6.1 Benchmarks

For these two data sets, we ran a couple of bench-
marks. First we ran a rendering benchmark, both
with the ShellSplat renderer and the Fast Point-Based
renderer, for different isovalues, meaning different
numbers of cells to render. In the other two bench-
marks we measured the speed at which we could play
through the data set. This involves both extraction
and rendering for each time step. This was done for
a (worst case) time window of 1, meaning that each
time step has to be read from disk before extraction
can be done, and for a very large time window. In the
latter case, all data is kept in main memory and no
data transfers from disk are needed. This is done to
test the speed of the extraction algorithm. When we
use the ShellSplat renderer, a sorting step is needed
for each time step. To see the influence of this sort-
ing, we have performed the last benchmark with both
renderers.

We ran the benchmarks on a modern computer with
an Intel Pentium 4 processor, running at 3.0 GHz, and
1 GB of main memory. The graphics card is a NVidia



Quadro FX 1300 with 128 MB of memory on a PCI
Express graphics bus.

The results of the rendering benchmarks are shown in
Figure 6. It is clear that interactive rendering is possi-
ble with the Fast Point-based Renderer, even for over
400,000 cells. Also the Shell Renderer can achieve
interactive frame rates up to about 100,000 cells. Be-
cause of the texturing and compositing, the Shell Ren-
derer is much slower than the Fast Point-based Ren-
derer.

Next, we timed at which rate we could play through
the entire data set. This involves extraction and ren-
dering for every time step, using the same isovalue.
With a time window of 1, only a small amount of
main memory is needed, but for every frame, we have
to read a new time step from disk into main mem-
ory and delete the previous time step from memory.
The speed is therefore very much dependent on the
amount of data that is to be read per time step. The
cloud data set, consisting of 600 time steps, occupies
a total of 750 MB on disk, or on average 1.25 MB per
time step. We can play through the entire range of 600
time steps at an average rate of 7.8 to 9.5 frames per
second, depending on the number of cells to render.

The bubble data set, on the other hand, with only 39
time steps and occupying 1.6 GB on disk, has an aver-
age of almost 42 MB per time step. Playing this data
set with a time window of 1 is not really interactive,
with an average framerate of about 0.46 FPS.

However, if there is more memory available, it should
obviously be used. Therefore we also tested the speed
at which we could play through the data within a large
time window. We used a fixed time window which
could be completely stored in main memory; no disk
transfers were needed whatsoever. Because the ren-
dering again depends on the number of cells, we ran
the benchmarks with different isovalues. The results
are shown in Figure 7.

Extraction of the isovalue-spanning cells can be done
extremely fast. In the cloud data set, extraction rates
of over 5000 time steps per second can be achieved,
using our incremental search. For the larger bubble
data set, we get extraction rates of about 180 time
steps per second. Rendering is also very fast, as long
as we don’t need the sorting step to create the shell
data structure for the Shell Renderer. Construction of
this data structure takes so much time that it is not re-
ally suitable for interactive use. Once you have made
the shell data structure, it is suitable for interactive
rendering, but every time you change the isovalue or
the time step, the shell structure has to be regener-
ated. The recommended use would therefore be to
switch to the Fast Point-based Renderer when brows-
ing through time or searching an interesting isovalue.

When a particular isosurface in a certain time step has
been found and needs to be explored, the Shell Ren-
derer can very well be used interactively.

7 Conclusions and Future Work

We have described techniques for fast isourface ex-
traction and direct rendering from time-varying data
sets. In a preprocessing step, data structures are gen-
erated that allow us to retrieve the isovalue-spanning
cells at any time step and for any isovalue with high
frame rates. Incremental searching uses temporal co-
herence to further speed up the extraction process.
The extracted cells are rendered directly with a fast
point-based rendering technique, displaying a shaded
quadrangle at each voxel at high frame rates. No vis-
ibility ordering is needed in this case, so the overall
speed is not reduced by an intermediate data conver-
sion step. A high quality rendering technique based
on ShellSplatting does require visibility ordering, but
can still achieve interactive frame rates for a 2563 data
set. In an interactive environment, the fast rendering
can be used during interaction, while the high quality
technique can be automatically invoked when the in-
put queue is empty. We will integrate this in our VR
data exploration system.

With this work, our main contributions are the fast
incremental search and the integration of the fast
isospanning-cell extraction and rendering stages. We
have also attempted to further optimise the search data
structures for space efficiency. Even more improve-
ment is possible by using compression techniques, as
recently proposed by Bordoloi and Shen [18].

We have made our technique truly scalable to very
large data sets by introducing the possibility of out-
of-core isosurface extraction and rendering in combi-
nation with an intelligent paging scheme. We have
adapted the data structure such that only part of the
tree will be in main memory. Paging is done per time
step. A user-specified window of consecutive time
steps will be in main memory, while other time steps
are read from disk on demand. Within the time win-
dow the frame rates will be the same as for the in-core
version. Only when playback catches up with the time
window, the frame rate will drop and the reading of
new time steps will be the bottleneck.

Further optimisations might be possible by making
the data structure more I/O efficient. The temporal
index tree was designed to do fast isosurface cell ex-
traction and we adapted it for out-of-core functional-
ity. It can probably be optimised for I/O, however,
that might be at the cost of in-core performance.

There are two possible sources of error in the display
of the isosurfaces that must be investigated further.
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Figure 6: The results of the rendering benchmarks. On the left is the bubble data set, on the right is the cloud data
set.
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Figure 7: The results of the play benchmarks. Playing involves extraction and rendering through (part of) the time
range. On the left is the bubble data set, on the right is the cloud data set.



Although this did not show up in the test images, the
rendering of false positive cells may cause artefacts.
Also, the surface normals are stored only once over a
time interval that is considered “approximately con-
stant”. This also did not have any noticeable effect in
the images, but we will analyse the extent of the errors
caused.
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