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Fig. 1. We compare our method to conventional and gradient-domain path tracing in an equal-time comparison. Gradient-domain path reusing produces

visually pleasant images with much less noise than path tracing and significantly lower artifacts than gradient-domain path tracing given the same time.

Monte-Carlo rendering algorithms have traditionally a high computational

cost, because they rely on tracing up to billions of light paths through a scene

to physically simulate light transport. Traditional path reusing amortizes the

cost of path sampling over multiple pixels, but introduces visually unpleasant

correlation artifacts and cannot handle scenes with specular light transport.

We present gradient-domain path reusing, a novel unbiased Monte-Carlo

rendering technique, which merges the concept of path reusing with the

recently introduced idea of gradient-domain rendering. Since correlation

is a key element in gradient sampling, it is a natural fit to be performed

together with path reusing and we show that the typical artifacts of path

reusing are significantly reduced by exploiting the gradient domain. Further,

by employing the tools for shifting paths that were designed in the context

of gradient-domain rendering over the last years, we can generalize path

reusing to support arbitrary scenes including specular light transport. Our

method is unbiased and currently the fastest converging unidirectional

rendering technique outperforming conventional and gradient-domain path

tracing by up to almost an order of magnitude.

CCS Concepts: • Computing methodologies → Ray tracing;

Additional Key Words and Phrases: Global illumination, light transport

simulation, path reusing, gradient-domain rendering

ACM Reference format:
Pablo Bauszat, Victor Petitjean, and Elmar Eisemann. 2017. Gradient-Domain

Path Reusing. ACM Trans. Graph. 36, 6, Article 229 (November 2017), 9 pages.

https://doi.org/10.1145/3130800.3130886

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

0730-0301/2017/11-ART229 $15.00

https://doi.org/10.1145/3130800.3130886

1 INTRODUCTION

Monte-Carlo ray tracing techniques are today’s standard for pro-

ducing photo-realistic images. One of the most popular techniques

is path tracing which accurately simulates the light transport in a

scene and renders a large variety of natural phenomena. Path trac-

ing was first proposed in 1986 as an algorithm to solve the rendering

equation [Kajiya 1986] and is nowadays widely-used throughout

the computer graphics community due to its simplicity and practi-

cality. The rendering equation, a nested recursion of integrals over

the space of incoming light, is solved by path tracing using Monte

Carlo integration and light path samples are generated by random

walks through the scene. Unfortunately, the computational cost of

path tracing is very high since up to billions of paths are typically

required for an image and several expensive ray-scene intersec-

tion tests have to be performed to generate a path. An insufficient

number of path samples leads to high variance in the Monte Carlo

estimate manifesting itself as image noise and computing smooth

images often requires several hours or even days. An abundance

of techniques have been developed over the last decades reducing

the amount of required path samples, lowering the cost of path

sampling, or trading off noise for bias (e.g., by filtering).

In 2002, path reusing was introduced as means to amortize the

cost of tracing a path over multiple image pixels in an unbiased

way [Bekaert et al. 2002]. By sharing path samples between neigh-

boring pixels, the sampling rate is virtually increased at a low cost.

Although path reusing has been around for a long time, it has not

found wider application in rendering systems yet due to two major

drawbacks. First, traditional path reusing is not efficient in scenes

with specular or highly-glossy light transport (e.g., scenes contain-

ing mirrors or glass) which are prevalent today. Further, sharing

paths between pixels in an efficient way involuntarily introduces
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correlation, exchanging image noise for visually unpleasant and

easily recognizable patterns.

Recently, gradient-domain rendering has been introduced by

Lehtinen et al. [Lehtinen et al. 2013] as new concept for image

synthesis and received a lot of attention in the research commu-

nity since then. At its core, the main idea is to directly estimate

image gradients (finite differences between pixels) in addition to

pixel values. Image gradients are known to represent the image

content in a sparser way [Ruderman 1994] and by directly sampling

gradients using carefully correlated pairs of paths, the estimated

gradients exhibit a significantly lower variance than their image

domain counterpart. Gradient-domain path tracing has been shown

to improve the convergence rate of traditional path tracing by up to

an order of magnitude [Kettunen et al. 2015].

In this paper, we show that path reusing and gradient-domain

rendering share conceptual similarities and by fusing them, we de-

velop a novel powerful rendering algorithmwhich we term gradient-
domain path reusing. Our method is based on the insight that the

correlation in the path samples introduced by path reusing is actu-

ally a desired and essential property for gradient-domain rendering.

We demonstrate that performing path reusing in the gradient do-

main significantly reduces the visually disturbing patterns that hin-

dered traditional path reusing so far. First, we express path reusing

more generally in the path-space framework of Veach and Guibas

[Veach and Guibas 1997] and propose generalized path reusing which
abstracts the process of reusing samples with a generic reusing func-

tion. Building on top of path shift methods developed in the context

of gradient-domain rendering, we design a reusing function that

improves performance for highly-glossy materials and supports

specular light transport. Following, we apply the concept of path

reusing to gradient sampling, leading to a novel gradient estimator

which remains unbiased and benefits from sharing path samples

between multiple pixels. By correlating paths over image neighbor-

hoods for gradient estimation, we achieve a lower variance leading

to improved convergence and perceptually more pleasant images.

We evaluate our proposed method on several test scenes and show

that it is able to harvest the benefits of both techniques efficiently,

improving convergence compared to gradient-domain path tracing

by up to almost an order of magnitude.

2 PREVIOUS WORK

Rendering photo-realistic images is a long-standing challenge in

computer graphics. Monte-Carlo ray tracing methods interpret the

incoming light at an image pixel as a random variable which ex-

pected value is given by the solution of the rendering equation

and estimated using unbiased sampling. They have been estab-

lished as a powerful approach since their early introduction in the

form of distributed ray tracing [Cook et al. 1984] and path tracing

[Kajiya 1986]. Since then, they received a lot of interest from re-

searchers and an abundance of improvements and advances have

been proposed. To alleviate the rendering cost, techniques either

try to reduce the amount of required samples or to lower the indi-

vidual sampling cost. Seminal advances such as bi-directional path

tracing [Veach and Guibas 1995] and Metropolis Light Transport

(MLT) [Veach and Guibas 1997] fall in the first category and reuse

sub-paths for multiple light and pixel measurements. Similarly, ap-

proaches based on virtual-point lights [Keller 1997] perform reusing

for light paths. Techniques such as Russian roulette and splitting

[Arvo and Kirk 1990; Vorba and Křivánek 2016] belong to the latter

category and reduce the cost of individual sampling by adapting

to the sample contribution. Interpolation-based techniques such as

irradiance caching [Ward et al. 1988] or photon mapping [Jensen

1996; Shirley et al. 1995] amortize sample cost over multiple image

pixels, but introduce bias and we will omit discussing biased render-

ing techniques (e.g., recent methods depending on image filtering)

in the following. For an extensive overview of physically-based

Monte-Carlo rendering techniques, we refer to the excellent book

by Pharr et al. [2016].

An important milestone was the introduction of the path integral

formulation of light transport by Veach and Guibas in 1995 [Veach

and Guibas 1995, 1997] which allows to conveniently express the

value Ij of a pixel j with a single integral over the space of light-

transporting paths:

Ij =

∫
P

hj (x)f ∗(x) dµ(x) =
∫
P

fj (x) dµ(x) (1)

The integration domain P is called the path space and denotes the

union of all paths of finite length along which light can potentially

travel through a scene, hj denotes the pixel filter function of j indi-

cating how much the path measurement x = (x0, x1, x2, . . . ) (with
x0 being the image plane vertex) contributes to the pixel, and f ∗ is
the (spectral) image contribution function which defines the amount

of light that reaches the image through the path. The path contribu-
tion function fj is the product of the filter and image contribution

function and gives the contribution of a path specifically to the

pixel j. The function f ∗ consists of the product of the bidirectional
scattering distribution functions (BSDF), the geometric factors be-

tween the path vertices, and the emitted radiance. Finally, dµ is the

differential of the integral path-space measure which is the product

of the surface area measures associated with the integration at each

path vertex (see [Veach and Guibas 1997] for more details). Most of

today’s (unbiased) rendering algorithms can be expressed in this

formulation of light transport.

2.1 Path Reusing

Path reusing [Bekaert et al. 2002] amortizes the cost of generating

path samples by sharing them between nearby pixels. It is based

on the insight that a path from one pixel often contributes to its

neighboring pixels as well and independently sampled paths can be

mutually reused after minor, low-cost changes. As an inexpensive

way to create new path samples for a pixel, Bekaert et al. proposed

to connect the primary hit point of the pixel’s path to the secondary

hit points of other path samples when they are mutually visible.

Since a path sample can then be generated by more than one pixel,

multiple importance sampling (MIS) [Veach and Guibas 1995] is

required to re-weight the samples accordingly and account for the

change in path density. Path reusing divides the image in distinct

tiles, generates a path for each pixel using its associated pixel path

sampler, and then defines the unbiased estimator of the pixel value
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(a) Path tracing (b) Path reusing (c) Shifted tiles (d) N-rooks patterns (e) Shifted patterns (f) Gradient-domain (g) Reference

Fig. 2. Path reusing artifacts. The figure illustrates common artifacts from path reusing for the Veach-Door scene with 64 samples and a tile size of 8. The

inset (a) shows path tracing and (b) - (e) shows combinations of path reusing using tile shifts and four different N-rooks like patterns (see [Bekaert et al. 2002]).

Even with extensive scrambling, the correlation remains clearly visible and is perceptually disturbing. Gradient-domain path reusing (f) significantly reduces

these artifacts and, while not artifact-free for the low sampling rate chosen for illustration, provides a visually more pleasant image.

Ij of a pixel j inside the tile as

Ij ≈
∑
k ∈T

wk (xj,k )
fj (xj,k )
pk (xk )

(2)

with xj,k = (x0j , x
1

j , x
2

k , x
3

k , x
4

k , . . . ) | V (x1j → x2k ) = 1

where T denotes the set of all the paths in the tile which contains

j, V defines the visibility between two surface points, pk denotes

the probability density function (PDF) for sampling a path with the

path sampler of pixel k , andwk (xj,k ) is the MIS weight. The weight

can be freely chosen as long as it fulfills the conditions for multiple

importance sampling and traditional path reusing uses the balance
heuristic:

wk (xj,k ) =
pk (xk )∑

m∈T pm (xm,k )
(3)

Since the path sampling strategies inside T remain fixed due to the

distinct tiling, the weight from Eq. 3 is constant over the tile for k
and can be computed efficiently.

Unfortunately, the tiling introduces visually unpleasant correla-

tion artifacts and disturbing discontinuities at tile edges. A mea-

sure proposed by Bekaert et al. for reducing these artifacts is to

reuse paths not in rectangular tiles but in scrambled (N-rooks like)

patterns and to shift tiles in-between sample iterations. Further,

Xu and Sbert proposed the use of overlapping tiles [Xu and Sbert

2007] to overcome the problems at tile edges. Reusing paths from

the camera has also been explored in the context of virtual-point

light rendering by Segovia et al. [Segovia et al. 2006] andDavidovic

et al. [Davidovič et al. 2010], where the latter further proposed an

improved tiling scheme and the use of a linear ramp weight to make

tile boundaries less perceivable. Despite all efforts, tiling often re-

main clearly visible especially in the presence of outliers (see Fig. 2).

Another problem of conventional path reusing is that the way new

path samples are created becomes less efficient for highly-glossy

and specular surfaces because it lacks proper importance sampling

of the local BSDFs and generates new path samples with low or even

zero contributions. Nonetheless, path reusing is often beneficial in

terms of variance reduction because it is typically less expensive

to reuse a path sample than generating a complete new one. Path

reusing has further been applied to other applications, e.g., for light

source animation [Sbert and Halton 2004] and in the context of

radiosity [Castro et al. 2008]. Recently, it has also been proposed for

light paths in bi-directional path tracing [Popov et al. 2015] where

correlation does not become as obvious as for eye paths.

2.2 Gradient-Domain Rendering

Gradient-domain rendering has been recently proposed as an alter-

native way to reduce the noise of Monte-Carlo ray tracing. It was

first introduced in the context of MLT by Lehtinen et al. [Lehtinen

et al. 2013] who proposed to trace pairs of paths to estimate image

gradients directly and steer the Metropolis sampler more frequently

towards image regions where large gradients are located. They de-

rived a mathematical formulation to express the image gradient ∆i, j
(finite difference) between the pixels i and j in a single integration:

∆i, j =

∫
Pi

(
fi (x) − fj (Ti→j (x))

���T ′
i→j

���) dµ(x) (4)

Here, Ti→j (·) is a shift mapping that deterministically maps a path

(x) originating at pixel i to a path that connects with the image at

pixel j, and
���T ′
i→j

��� is the Jacobian determinant of T that accounts

for the change of integration domain for the pixel j (from Pj to

Pi ). Since paths are only allowed to be shifted by a spacing of ex-

actly one pixel, the filter functions hi and hj are identical. For a

detailed derivation of the expression, we refer the reader to the

original work ([Lehtinen et al. 2013], Sec. 4.1). Another benefit of

directly sampling gradients via Eq. 4 is that it allows to correlate

the base path samples of pixels i and the shifted paths for pixel k .
By designing the shift function T in such a way that a shifted path

becomes as similar as possible to its base path, variance from the

random sampling process cancels and each gradient sample exhibits

a significantly lower variance compared to conventional sampling.

Several shift functions have been previously designed to support

diffuse, glossy, and specular light transport, and we will rely on

these tools for generalizing path reusing.

The formulation in Eq. 4 will only correctly estimate the gradient

if the shift mapping is bijective in the path space and the mapped

paths from Pi cover Pj , i. e., Pj = T (Pi ). In practice, however,

the path sampler of pixel i is not guaranteed to ensure the second

property. To circumvent this issue, Manzi et al. [Manzi et al. 2014]

proposed to sample the gradients symmetrically using the mappings
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from i to j and conversely from j to i:

∆i, j =

∫
Pi

wi, j (x)дi, j (x) dµ(x) +
∫
Pj

w j,i (x)дj,i (x) dµ(x) (5)

with дa,b (x) = fa (x) − fb (Ta→b (x))
��T ′
a→b

��
The weightswi, j (x) andw j,i (x) either account for the duplicated
appearance of estimates using multiple importance sampling, or

handle non-invertible shifts. Manzi et al. [Manzi et al. 2014] further

introduced structure-aware gradients, i. e., gradients between pixels

that are not necessarily adjacent and which locations are selected

based on scene features. Structure-aware gradients introduced path

shifts over distances farther than one pixel which is also a key el-

ement in our method. However, an important distinction to our

approach is that structure-aware gradients are still estimated solely

from the samples of the two involved pixels. In contrast, our ap-

proach estimates the gradients using samples from multiple nearby

pixels combined with proper multiple importance sampling.

Unfortunately, MLT typically suffers from an uneven conver-

gence behavior which is further amplified when gradient sampling

is used. To show that gradient sampling is also beneficial in the

traditional Monte Carlo context, gradient-domain path tracing was

introduced by Kettunen et al. [Kettunen et al. 2015] and improved

the convergence of its traditional counterpart by up to an order of

magnitude. Recently, direct gradient estimation was also applied in

the context of bi-directional path tracing [Manzi et al. 2015], photon

mapping [Hua et al. 2017], and vertex connection and merging [Sun

et al. 2017]. Further, Manzi et al. proposed an extension of gradient

sampling for the time domain [Manzi et al. 2016].

After the gradients have been estimated together with a coarse

image, the final result is computed using a screened Poisson recon-

struction step [Bhat et al. 2010; Pérez et al. 2003]. Lehtinen et al.

[Lehtinen et al. 2013] also proposed the use of a L1-norm Poisson

reconstruction, which produces smoother results but introduces

bias. Recently, Manzi et al. [Manzi et al. 2016] demonstrated how

to improve the quality of the Poisson reconstruction step and pro-

duce smoother results by involving features from the rendering

process (e.g., per-pixel normals, depth values, texture colors, etc.).

The Poisson reconstruction can also be replaced with an iterative

reconstruction scheme that uses the estimated pixel values and gra-

dients as image-space control variates [Rousselle et al. 2016]. Since

these methods build on top of the estimated gradients but do not

alter the gradient sampling process itself, we consider them orthog-

onal to our approach.

3 GRADIENT-DOMAIN PATH REUSING

While sample correlation leads to unwanted results in conventional

path reusing, it is a welcoming property in gradient-domain render-

ing and our goal is to define a path reusing estimator for gradient

sampling. Unfortunately, conventional path reusing lacks the abil-

ity to efficiently correlate paths with primary and secondary hit

points on specular and highly-glossy surfaces which limits its appli-

cability. To overcome this issue, we first propose generalized path
reusing which abstracts the process of sharing path samples using a

generic reusing function. The advantage of our formulation is that

it allows for more elaborated reusing strategies and we design a

reusing function that builds on top of existing shift functions from

gradient-domain rendering to fully support scenes with specular

and highly-glossy light transport. Finally, we extend generalized

path reusing from the image to the gradient domain.

3.1 Generalized Path Reusing

Conventional path reusing is specifically designed for the case of

sharing paths at primary hit points and mainly focuses on sample

creation. Abstracting the process of sharing paths using a generic

function R that performs the operation of reusing a path allows us to

express path reusing more general in the path integral formulation.

We define the value Ij of pixel j using the function R as the sum of

integrals over the path spaces of all pixels in a tile T which contains

the pixel j:

Ij =
∑
k ∈T

∫
Pk

wk (Rk→j (x))fj (Rk→j (x))
���R′
k→j

��� dµ(x) (6)

Multiple importance sampling is required for unbiasedness as orig-

inally since the path spaces Pj and Pk for each k might overlap

in certain regions and would be accounted for multiple times. In-

terestingly, in this expression the function R closely resembles the

shift mapping T of gradient-domain rendering (although paths are

shifted farther than just one pixel). However, the conceptual dif-

ference between R and T lies in the practical implementation and

their way of creating new paths during the Monte-Carlo sampling

process. A shift mapping T maps an input path from one pixel to

another, but does not consider the original path sample of the shifted

pixel. In contrast, we define the function R in the discrete case of

the Monte-Carlo estimator to create a new path for the pixel j from
the path sample xk of pixel k and the original path sample of j, xj :

Rk→j (x) = Rj (xj , xk )

This definition leads to a more general form of the original path

reusing estimator from Eq. 2:

Ij ≈
∑
k ∈T

wk (Rj (xj , xk ))
fj (Rj (xj , xk ))

���R′
k→j

���
pk (xk )

(7)

A "good" reusing function fulfills two criteria: first, it establishes

a connection between the paths as early as possible to maximize

the amount of work load that is reused, and second, it creates path

samples with significant contributions. Interestingly, the first criteria

also facilitates correlation which is a desired property for a shift

mapping T . Further, the design of the function R must allow to

efficiently compute the PDF of a newly generated path for each

pixel sampling strategies of T since it is required for the estimation

of the MIS weights wk . Conventional path reusing focuses solely

on the first quality criteria, but neglect the latter which potentially

reduces the efficiency of the estimator (e.g., in the case of specular

surfaces where samples with zero contribution will be created). We

design an improved version of R that creates new path samples

with potentially higher contributions and improves the power of

the estimator.
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Originally, path reusing provides only a single strategy for reusing

a path which always connects primary and secondary hit points.

This process can be modeled by defining R as

Rj (xj , xk ) = (x0j , x
1

j , x
2

k , x
3

k , x
4

k , . . . )

when x1j and x2k are mutually visible. We propose a new definition

for R that allows more than a single strategy and exploits the power

of the shift mappings that have been developed in the context of

gradient-domain rendering. The improved function R creates a path

sample from the original vertices of xj and xk , and a new series of

path vertices C = (c2, c3, . . . , ca ):

Rj (xj , xk ) = (x0j , x
1

j , c2, c3, . . . , ca−1, x
a
k , x

a+1
k , . . . )

This definition allows to choose the strategy and the vertex of xk
for the connection (which is indexed by a) more freely. For example,

imagine that the path xk has several specular interactions early

on (e.g., a directly observed glass or a caustic). In these cases, the

improved R can connect to a later, more diffuse vertex and the re-

sulting path’s contribution will be more significant if the vertices

of C are chosen properly. Note that the conventional connection

strategy is covered as well and is simply performed by setting a = 2

which would result in C being empty.

To create the new vertices c2, c3, . . . , ca , we employ a variation

of the shift mapping T . Our motivation is that shift mappings are

designed to create shifted paths with non-zero contributions (which

we want to avoid) and they optimize correlation between paths.

Shift mappings for gradient-domain rendering typically need to be

bijective and this property ensures in our case that the new vertices

will be deterministic and conditioned on xj and xk . If the strategy
of choosing the vertices c2, c3, . . . , ca would not be deterministic or

bijective, computing the PDF of a new path would require a costly

marginalization which is infeasible in practice. Since the mapping

T is originally defined to shift an image plane position of a path, we

have to slightly modify it to perform a shift between primary hit

points instead. Using a variant of T which maps the sub-path of xk
starting at the primary hit point x1k to originate at x1j , we define(

x1j , c2, c3, . . . , ca−1, x
a
k

)
= Tx1k→x1j

(xk )

for the new vertices to hold. Note that by definition the function R
is then also bijective, i. e., Rk (xk ,Rj (xj , xk )) = xk .

The PDF of a new path yj = Rj (xj , xk ) for a given sampling

strategy of a pixelm is then uniquely defined and can be computed

efficiently. First, recall that the PDF for the new path sample yj with
respect to the pixel j itself is simply the product of all local sampling

PDFs from the pixel’s path sampler at each vertex. Further, the first

two vertices of yj are always defined by the pixel j itself and do not

depend onm. The PDF for sampling the following sub-path of yj
from the pixelm is computed by shifting yj tom, giving a new path

ym = Rm (xm , yj ). The bijectivity of R implies that the PDFs of the

sub-paths (y1j , y
2

j , . . . ) and (y
1

m , y2m , . . . ) are the same form and we

can write:

pm (yj ) = pj (x
0

j → x1j )
∏
n=1

pm (ynm → yn+1m )

Estimating the PDF of a path for them-th pixel sampling strategy

hence requires the path to be shifted to the pixelm, however, this

process does not introduce any computational overhead and occurs

naturally since each path is reused for each other pixel in the tile

anyway. The Jacobian determinant of our proposed function R solely

depends on the shift mapping since the Jacobian for the first path

segment is always unity and it follows that

���R′
k→j

��� = ����T ′

x1k→x1j

����. Note
that the original formulation of path reusing from Bekaert et al.

does not explicitly include a Jacobian term for converting between

path spaces because it assumes that all paths and PDFs are expressed

relative to the global path-space measure in which case the Jacobian

determinant is simply one.

Several shift functions have been proposed in previous works

and designing new shifts is an active area of research. To shift paths

with highly-glossy and specular light transport, Lehtinen et al. pro-

posed to employ the manifold exploration technique from Jakob and

Marschner [Jakob and Marschner 2012]. Later, a less powerful but

simpler shift was proposed for gradient-domain path tracing, whose

Jacobian determinant only relies on local information and can be

computed more conveniently without the need for costly numerical

optimization. We will use the simpler shift from [Kettunen et al.

2015] to construct the vertices c2, c3, . . . , ca−1 for a fair comparison

to gradient-domain path tracing. Note however that we are free to

use any shift as long as it is bijective. The main idea of the shift

from Kettunen et al. is to follow the half-vectors of the base path

for the shifted path when a direct connection is not immediately

possible. Once two consecutive vertices which are classified as con-

nectable (i. e., they are not specular or highly-glossy) are found,

the shifted path is reconnected to the base path. In the easiest case

(every path vertex is connectable), the shift will closely resemble the

standard operation of conventional path reusing.We refer the reader

to [Kettunen et al. 2015] for more details on the shift mapping and

the computation of the Jacobian determinant.

As a result of the generalized path reusing estimator (Eq. 7) and

the newly designed reusing function, we are now able to signifi-

cantly improve the efficiency of path reusing for scenes including

specular and highly-glossy light transport. An example is shown in

Fig. 3 where we compare conventional and generalized path reusing

(still in the image domain) for a part of the popular Lamp scene from

the bi-directional path tracing paper by Veach and Guibas [Veach

and Guibas 1995]. The illustrated part features a glass egg made out

of a perfectly specular material casting caustics on a diffuse table.

It can be seen that our generalized version can handle paths with

specular interactions more properly. An advantageous property of

our method is that, once a difficult path is found (e.g., a caustic path),

the neighboring pixels are able to explore that regions of path space

as well. This property leads to a more even convergence in regions

with paths that are hard to find with unidirectional techniques. We

believe that our formulation of generalized path reusing further pro-

vides a useful framework for the future design of more sophisticated

reusing functions.
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(a) Path tracing (b) Path Reusing (c) Generalized

Fig. 3. Conventional vs. Generalized Path Reusing. The figure shows
part of the popular Lamp scene from [Veach and Guibas 1995] rendered

with 1024 samples. Conventional path reusing can reduce noise for diffuse

paths, but fails to reuse paths for pixels that directly view the glass egg on

the table or caustic paths. Generalized path reusing with an adequate shift

handles these paths more properly.

3.2 Reusing Paths for Gradient Sampling

Our next goal is to combine path reusing and gradient sampling.

In the spirit of conventional path reusing, we unify Eq. 4 and Eq. 6

and define the gradient ∆i, j between two pixels i and j as:

∆i, j =
∑
k ∈T

∫
Pk

wk (x)
(
Fk→i (x) − Fk→j (x)

)
dµ(x) (8)

with Fa→b (x) = fb (Ra→b (x))
��R′
a→b

��
Note that by definition of the balance heuristic the weight wk is

constant over the tile for a given path xk and is identical for xk and

its shifted paths Rk→i (xk ) and Rk→j (xk ).

We make one more assumption about the reusing function R to

define an efficient estimator for Eq. 8. Since the first path segments

of the shifted paths Ri (xi , xk ) and Rj (xj , xk ) depend only on the

original samples xi and xj , the values of the pixel filter hi and hj
might differ and would be required to be evaluated for each term

in the difference of Eq. 8. However, we can correlate the first path

segment throughout T for all sampled paths and guarantee that

the relative image positions for each path are at the same distance

to their respective pixel center making their pixel filters identical.

This condition is easily achieved, e. g., by using the same random

numbers for all pixels in T when sampling their primary rays. We

can then define the gradient-domain path reusing estimator as:

∆i, j ≈
∑
k ∈T

wk (xk )
fi (Ri (xi , xk ))

���R′
k→i

��� − fj (Rj (xj , xk ))
���R′
k→j

���
pk (xk )

The estimator resembles Eq. 7 with the important distinction that

a path xk is now reused twice. Since the gradient estimate is com-

puted between two shifted versions of the same path, correlation is

implicitly introduced. For the case that T only contains the pixels

i and k , the estimator resembles the symmetric gradient-domain

path tracing estimator proposed in [Kettunen et al. 2015] (recall

that Rj (xj , xj ) = xj and
���R′
j→j

��� = 1). Note that the estimator au-

tomatically performs symmetric gradient sampling because paths

are mutually shifted between pixels (given that the pixels i and j
belongs to the same T ).

A problem occurs at tile borders where the correctness of gradient

sampling is not guaranteed. Consider two neighboring pixels i and
j which are not in the same tile. In this case, the path sampler of

pixel j would not be included in the sampling process of ∆i, j and
it cannot be assured that all pairs involving paths from the path

space Tj are completely covered. To ensure this property, we have

to make sure that both pixels of a gradient are inside the same

tile. Therefore, we propose to extend each tile with a border of

a single pixel to the right and the bottom (considering that we

only need to compute the forward image gradients with one pixel

spacing) as illustrated in Fig. 4. The final gradient image is stitched

together using only the "inner" parts of each tile in the spirit of

seamless image stitching [Levin et al. 2006]. Note that only a single

row/column of pixels is added to each tile, which is different from

the overlapping tiles approach from Xu and Sbert [Xu and Sbert

2007]. The introduced overhead is typically reasonable and further

decreases with an increasing tile size.

Fig. 4. Tile Stitching. The figure illustrates how the final image is stitched

from the "inside" regions of the extended tiles.

3.3 Implementation

The implementation of gradient-domain path reusing first divides

the image into tiles as previously described. For each tile, we initially

trace and store a primary ray for each pixel inside it and use the

same random numbers to achieve correlation. Next, we construct a

complete base path for the first pixel and store it. Having access to

the full path at once allows for performance optimizations in form

of early outs and Russian roulette. We then shift the base path to all

other pixels in the tile one bounce at a time, eventually tracing new

rays for following the half-vectors of the base path or connecting

to it. During this process, the contribution from all shifted paths

and the multiple importance sampling weight (which is constant

over the whole tile) are updated sequentially and accumulated to

the gradient estimates. Once a base path has been used all over the

tile, we continue to the next pixel until all original paths in the tile

have been reused. Afterwards, we move on to the next sample itera-

tion. We jitter the tile centers in the same way for the whole image

after each iteration to give every pixel roughly the same chance of
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being close to the center or nearby tile borders on average which

eliminates the need for overlapping tiles when a sufficient number

of sample iterations is performed. Finally, after all path samples are

exhausted, the final image is reconstructed from the estimated gra-

dients and pixel values using the screened Poisson reconstruction.

Our method potentially performs a larger number of shifts in con-

trast to gradient-domain path tracing which only creates up to four

shifts per base path. Since the shift functions are computationally

involved, eliminating fruitless shifts becomes more important in

our approach. We decided to store the current base path to exploit

full knowledge of the complete path and provide an early out for

connection attempts which are guaranteed to add no contribution,

i. e., base paths with zero contribution after the connection vertex.

To avoid reusing paths with very small contributions, we further

perform proportional Russian roulette for the base paths. To this end,

we choose a survival probability q for each base path xj depending
on the luminance of its contribution:

qj = min

(
1,

luminance(xj )
δ

)
We select δ = 0.1 for all our scenes, which means that only paths

with a contribution smaller than 0.1 undergo Russian roulette. If

the base path "survives" it will be reused for all other pixels in the

tile. A problem with considering only the contribution of the base

path for Russian roulette in gradient sampling is that a shifted path

might have a non-zero contribution while the base path does not

carry any light. Giving a zero survival probability to these path pairs

would lead to an incorrect Monte-Carlo estimation. Therefore, we

prohibit the survival probability to fall below qmin = 0.1, which

means that every base path with a contribution below 0.1 has at

least a 10% chance of being reused. While this is not optimal in terms

of estimator variance, it does not introduce bias and performed rea-

sonable well for all our test scenes. Developing more sophisticated

Russian roulette strategies (e.g., based on efficiency-optimized Rus-

sian roulette [Veach 1998]) for path reusing is a potentially fruitful

direction for future work.

4 RESULTS

We integrated our method into the Mitsuba renderer [Jakob 2010a].

The rendering integrator was implemented on the CPU with multi-

threading support using C++, while the Poisson solver was taken

from the implementation provided in [Kettunen et al. 2015] which

is implemented on the GPU using NVIDIA CUDA. Reconstructing

the final image using the screened Poisson step takes only a few

seconds and is negligible compared to the total rendering cost. All

results were captured on a Windows 7 PC with an Intel(R) Core i7-

4770 CPU with 3.40 GHz, 24GB of system memory, and an NVIDIA

Geforce GTX 760.

We evaluated our method in four popular test scenes for light

transport; Veach-Door, Bathroom, Bookshelf, and Kitchen. All

scenes feature complex glossy and specular light transport and, with

the exception of the Bookshelf scene, are dominated by indirect

illumination. All scenes were rendered in HD (720p) resolution and

the references were generated with bi-directional path tracing and
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Fig. 5. Tile Size Evaluation. The figure shows the influence of the tile

size parameter for the Bathroom and Kitchen scene with 64 samples per

pixel. The bars show the relative MSE for each tile size, while the line plots

indicate the efficiency of the estimator which is defined as the inverse of

the product of time and error. It can be seen that tile sizes around 6 - 8 give

a good trade-off between error and render time.

100000 samples per pixel , taking up to days on a render cluster

with 64 CPU cores. We used a maximum path length of 6-8 which is

rather low for complex scenes, but were used as default parameters

in [Kettunen et al. 2015]. We expect the benefit of our method to be

even greater with an increasing number of bounces. We also used

the default parameters provided in [Kettunen et al. 2015] for the

shift threshold that classifies the connectivity of glossy materials

and for the parameter of the Poisson reconstruction. All errors were

measured using the relative mean-squared error (relMSE) [Rousselle

et al. 2012] which is defined as the mean over all pixel errors given

by

∑
c (I

c
k −re f

c
k )

2/(re fk
2

+ϵ)where c sums over the color channels,

re fk is the mean of all color channels of the reference pixel, and

ϵ = 0.001.

The main parameter of our method is the tile size which has a

significant influence on the performance. Choosing the tile size too

small leads to only a minor noise reduction, while a too large tile

size will perform many connection attempts that are likely to fail

and wastes computation time. Bekaert et al. estimated the gain of

path reusing to be dependent on the average path length, the cost

along a path (e.g., from next even estimation), and the tile size. Since

generalized path tracing also supports highly-glossy and specular

light transport, the material complexity of a scene further effects the

efficiency of the estimator. We evaluate the quality for varying tile

sizes in the Bathroom and Kitchen scene with 64 samples in Fig. 5.

We report errors as well as the efficiency of the estimator which

is defined as
1

error·time
(c.f. [Veach 1998]). It can be seen that the

highest efficiencies are typically found around a size of 6 - 8 which

corresponds to 36 - 64 paths per tile. Our findings roughly coincide

with the ones from Bekaert et al. and Xu et al. which typically used

a slightly lower number of 16 - 36 paths.

We further report statistics of our estimator in our four test scenes

using 16 samples per pixel in Table 1. On average, around 83.7% of

base paths are skipped by Russian roulette and we found that the

number remains stable over varying tile sizes and sampling rates.

While the value seems high at first, it is mainly due to the fact that
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RR % T = 4 T = 6 T = 8

Veach-Door 85.3% 3.66 (15.2%) 7.15 (14.8%) 11.85 (14.8%)

Bathroom 81.6% 4.59 (19.1%) 8.98 (18.7%) 14.86 (18.5%)

Bookshelf 84.8% 3.79 (15.7%) 7.40 (15.4%) 12.24 (15.3%)

Kitchen 83.3% 4.16 (17.3%) 8.12 (16.9%) 13.45 (16.8%)

Table 1. Reusing Statistics. The table shows the average percentage of
base paths skipped per tile by Russian roulette (RR %), and the average

number of base paths used for each gradient and pixel estimate. The number

in brackets gives the percentage of reused base paths relative to the tile size.

a unidirectional path sampler has difficulties finding high contribu-

tions paths in our test scenes and only a small fraction of generated

path samples actually carry light. Nonetheless, around 16.5% of the

path samples in a tile are reused on average for the estimation of

the gradients and pixel values compared to gradient-domain path

tracing which always uses two paths per gradient estimate. For the

following convergence analysis, we chose a fixed tile size of 6.

We compare our method to traditional path tracing (PT), conven-

tional path reusing (PR), and gradient-domain path tracing (G-PT) in

terms of convergence and visual quality in Fig. 6. Gradient-domain

path reusing gives much smoother results than traditional path trac-

ing and reusing, and drastically reduces the artifacts from gradient-

domain path tracing. This is especially visible at lower sampling

rates and around discontinuities where our method produces sharp

and clean edges which reflects the virtually higher sampling rate

and robustness of our estimator. In the Veach-Door and the Book-

shelf scenes, the convergence is improved by up to almost an order

of magnitude. The improvement is not as drastic in the Kitchen

scene which is mainly due to the fact that the scene contains many

highly-glossy surfaces for which the shift function cannot efficiently

perform an early-out as explained in Sec. 3. However, our method

still performs better by comparison and gives visually more pleasant

results. Overall, gradient-domain path reusing performs best for all

test scenes in terms of convergence and visual quality.

One limitation that our method shares with conventional path

reusing is its reduced efficiency when surfaces are viewed at graz-

ing angles. In this case, fewer neighboring samples can be reused,

however, even in the worst case our estimator recedes to classic

gradient sampling. Further, outliers in the gradient estimates have a

similar impact as for gradient-domain path tracing. To address these

issues, the L1 Poisson reconstruction as proposed in [Lehtinen et al.

2013] could be applied if image smoothness is preferred over unbi-

asedness. Currently, our method does not incorporate a temporal

component andwe expect it to perform similarly as gradient-domain

path tracing for scenes with motion blur and animations. However,

we believe that extending our method to the temporal domain in the

spirit of [Manzi et al. 2016] is possible. Finally, adaptive sampling

of the image is feasible but must be properly integrated in the tiled

sampling process and requires a more involved computation of the

multiple importance sampling weights.

5 CONCLUSION AND FUTURE WORK

We proposed gradient-domain path reusing, a novel rendering tech-

nique which unifies the strength of path reusing and gradient-

domain rendering. Further, we generalized path reusing and im-

proved its efficiency for scenes with highly-glossy and specular

light transport. We believe that the proposed mathematical frame-

work of generalized path reusing facilitates future designs of reusing
functions and extends beyond the scope of this paper. Our proposed

method outperforms conventional and gradient-domain path trac-

ing and significantly reduces the perceptually disturbing correlation

patterns of traditional path reusing.

We hope that our method inspires future work and believe that

fruitful directions are importance sampling strategies for path con-

nections and the design of novel reusing functions. Further, extend-

ing our concept to bidirectional approaches has the potential to lead

to very powerful unbiased rendering algorithms.
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relMSE. Note that both axis are given in the log10-scale. Our method performs best in all cases, with significant improvements especially for the Veach-Door

and Bookshelf scenes. Visually, our approach produces much smoother results than conventional path tracing and greatly reduces the typical artifacts of
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