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This work investigates the possibilities of applying high-angular-resolution-diffusion-imaging- (HARDI-) based methods in a
clinical setting by investigating the performance of non-Gaussian diffusion probability density function (PDF) estimation for a
range of b-values and diffusion gradient direction tables. It does so at realistic SNR levels achievable in limited time on a high-
performance 3T system for the whole human brain in vivo. We use both computational simulations and in vivo brain scans to
quantify the angular resolution of two selected reconstruction methods: Q-ball imaging and the diffusion orientation transform.
We propose a new analytical solution to the ODF derived from the DOT. Both techniques are analytical decomposition approaches
that require identical acquisition and modest postprocessing times and, given the proposed modifications of the DOT, can be
analyzed in a similar fashion. We find that an optimal HARDI protocol given a stringent time constraint (<10min) combines a
moderate b-value (around 2000 s/mm2) with a relatively low number of acquired directions (>48). Our findings generalize to other
methods and additional improvements in MR acquisition techniques.

1. Introduction

Diffusion-weighted magnetic resonance imaging (DW-MRI)
is a clinicalmedical imaging technique that provides a unique
view on the structure of brainwhitematter in vivo. Right from
its early stages, in the early 1990s, DW-MRI was perceived
to have immediate value for the evaluation of neuropatholo-
gies such as acute ischemic stroke. Since then, numerous
advents in diffusion imaging technology have greatly aug-
mented image quality unraveling new clinical applications.
Moreover, the debut of diffusion tensor imaging (DTI) and
fiber tractography enabled a completely new, noninvasive
view on white matter fibre bundles connecting gray matter
neural populations, of increasing importance for cognitive
neuroimaging applications.With DTI and fiber tractography,

the understanding of several neurological and psychiatric
disorders, such as schizophrenia, traumas, stroke, and ede-
mas, has been increased, and they have also been applied
clinically to aid presurgical planning before intracranial mass
resections.

In DW-MRI, white matter fiber bundles are probed indi-
rectly by measuring the directional specificity (anisotropy)
of local water diffusion. During a small time interval (the
“so-called” effective diffusion time 𝑡), at each location of
the tissue, the diffusion causes a displacement of water
molecules. Postprocessing of diffusion-weighted images is
fundamentally aimed at calculating the probability density
function (PDF)𝑝(r), for this displacement of watermolecules
in each imaging voxel, where r is the 3D displacement
vector. Since fiber bundles in tissue allow relatively free
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diffusion of water along the fibers but tend to obstruct the
diffusion perpendicular to the fibers, one assumes that the
reconstructed PDF, also known as the diffusion propagator,
reflects the local fiber structure within a voxel. Diffusion
tensor imaging (DTI) approximates the diffusion propaga-
tor by a 3D Gaussian function, which allows a relatively
simple estimation of a small number of sampled diffusion
directions [1]. However, it has recently become clear that a
simple unimodal Gaussian approximation of the diffusion
PDF cannot represent interesting complex fiber architecture
such as single fiber bundles curving or fanning or multiple
fiber bundles with different directions contained in a single
imaging voxel [2–6]. Consequently, much of the modeling
efforts have aimed at estimating multimodal (non-Gaussian)
characterizations of the diffusion PDF that capture complex
fiber architecture, particularly the presence of multiple fiber
populations in single voxels. Although the full diffusion PDF
provides the most extensive information about the structure
of the material at microscopic scale, for many applications
like fiber tracking, it is the orientation that is of most
importance.Therefore, a simplified function is often derived,
called the orientation distribution function (ODF), defined
as the radial projection of the diffusion function. Crucially,
a characterization of the ODF generally puts much lower
requirements on the sampling of diffusion directions and,
particularly, degrees of diffusion weighting than a charac-
terization of the full diffusion PDF. Many recent modeling
techniques, such as Q-ball [7–9], the DOT [10], and spherical
deconvolution (SD) [11], focus on obtaining a low-variance
unbiased estimate of the diffusion ODF (or the “fiber” ODF
that represents probabilities of fiber orientations, rather than
water diffusion positions) with only moderate acquisition
requirements. The required acquisition is generally a high
angular resolution diffusion imaging (HARDI) acquisition
that acquires a large number of diffusion directions at a single
level of diffusion weighting (a “moderate” q-space sampling
on a single spherical shell).

The general convention for conducting HARDI acqui-
sitions in presenting, extending, or testing non-Gaussian
techniques is to sample as many gradient direction vectors,
at as high as possible 𝑏-values that the scanner and the
subject stamina allow, while maintaining sufficiently high
SNR. Tuch [4] reports 𝑏-values of 12000 s/mm2 and number
of gradients (NG) of about 492, whereas Hagmann et al.
[12] reports 𝑏 > 4000 s/mm2 and NG > 60, and
Descoteaux [13] 𝑏 > 1000 s/mm2 (although he states that
𝑏 > 3000 s/mm2 is desirable) and NG > 60. Compared to
the modest q-space sampling for DTI (with total acquisition
time of 3–6 minutes [12]), the HARDI techniques have 3-4
times longer acquisition times on average. Although there
is some variation in the requirements between different
techniques, generally a large number of diffusion directions
(on the order of 50–300) at a considerable level of diffusion
weighting (on the order of 𝑏 = 1000–4000 s/mm2) with
a high signal-to-noise ratio is needed. In addition, fiber
tractography requires whole-brain coverage at a high spatial
resolution (i.e., small isotropic voxel size). However, each of
these requirements generally increase the acquisition time

needed, potentially making HARDI unattractive for clinical
applications or cognitive neuroscience investigations that
want to add a limited time diffusion protocol to their fMRI
measurements.

Therefore, an important combination of open questions
about the measurement requirements of these HARDI
modeling techniques arises. To what degree does the dense
angular gradient sampling improve the accuracy of these
techniques, particularly in less favorable SNR regimes? Do
high 𝑏-values contribute to the accuracy of the reconstruc-
tions, given the SNR penalty that needs to be payed? More
generally, given the multiway trade-off between spatial reso-
lution, angular resolution, 𝑏-value, SNR, and measurement
time, what are suitable settings for these parameters in a
HARDI protocol for a modern 3T scanner and considerable
time constraints (10–20minutes) typical for a clinical or fMRI
experiment setting? Finding the optimal parameters for the
acquisition schemes in terms of both the direction sets and 𝑏-
value has been an open issue inHARDI acquisitions and a few
investigations have partially tackled this issue. Crucially, all of
these studies focussed on a situation where acquisition time
constraints were very lenient (long diffusion-only protocols
on experienced subjects) or absent (phantom and simulation
studies). This allowed them to perform their investigation of
optimal sampling schemes in a very favorable signal-to-noise
ratio (SNR) regime.

This work investigates the possibilities of applying
HARDI-based methods in a clinical setting by investigating
the performance of non-Gaussian diffusion PDF estimation
for a range of 𝑏-values and diffusion gradient direction tables.
It does so at realistic SNR levels achievable in limited time
on a high performance 3T system for the whole human brain
in vivo. We use both computational simulations and in vivo
brain scans to quantify the angular resolution of two selected
reconstruction methods: Q-ball imaging and the diffusion
orientation transform (DOT) (and its derivations). Since the
output of the DOT is the diffusion PDF, for fair comparison
in this work, we derive the ODFs from the DOT and quantify
the angular resolution in a similar fashion as for Q-ball.
Moreover, we propose an analytical solution of the ODF
derived from theDOT. Both techniques are analytical decom-
position approaches that require identical acquisition and
modest postprocessing times, and given the modifications of
the DOT can be analyzed in a similar fashion. Our findings
generalize to other methods and additional improvements in
MR acquisition techniques.

2. Methods

2.1. Q-ball Imaging. InDW-MRI, the obtainedmeasurements
do not give the diffusion propagator or its derivations, such
as the ODF, directly. We review the transformation from
measured signals to reconstructed directional profiles under
a few of themost usedmodeling assumptions and conditions.

The simplest transformation that relates the measured
signal 𝑆(q) and the full PDF is the 3D Fourier transform as
shown by Callaghan et al. [14]:

𝑝(r) = F [𝐸 (q)] , (1)
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where 𝐸(q) = 𝑆(q)/𝑆
0
is the normalized signal, 𝑆

0
is the

unweighted or zero-weighted baseline signal obtained with-
out any applied diffusion gradients, and q is the diffusion
3D wavevector that characterizes the direction and strength
of the diffusion weighting obtained from the nuclear spins
in the presence of a diffusion sensitizing magnetic gradient.
This relationship has been exploited in diffusion spectrum
imaging (DSI) [15, 16], where the full PDF is reconstructed
by a discrete Fourier transformation of a densely sampled
(on a cartesian grid) signal 𝑆(q). However, the requirements
on measurement duration in DSI are considerable, and one
might not be always interested in reconstructing the full
and exact PDF. Therefore, depending on the application,
simpler and less accurate methods are usually applied. For
the purpose of simplification, many assumptions about the
signal and/or the underlying PDF can be made, hence many
different modeling techniques have been proposed in the
literature among which are the follwing.

(1) Assumption of a mono-exponential signal decay and
Gaussian PDF: the simplest approach is DTI. In DTI
one assumes a Gaussian diffusion propagator which
results via Fourier transformation in aGaussian signal
𝑆(q) = 𝑆

0
𝑒
−𝑏𝐷(g), where 𝑏 = |q|2𝑡 is the acquisition

parameter, 𝑡 is the effective diffusion time, and g =
q/|q|. The apparent diffusivity 𝐷(g) is modeled by a
second order tensor D, such that with gradient g one
assumes 𝐷(g) = gT⋅D⋅g. DTI requires very modest
gradient g samplings on a q-shell [15] to determine
its coefficients. However, this approach is limited, as
it can resolve only one fiber bundle per voxel.

(2) Assumption of a monoexponential signal decay 𝑆(q) =
𝑆
0
𝑒
−𝑏𝐷(g): in HARDI, to increase the angular reso-

lution, the apparent diffusivity 𝐷(g) is modeled in
a less crude way by spherical harmonics (SH) or
high order tensors (HOT) [3, 6, 17]. This enhances
the characterization of tissue properties, but also
increases the number of necessary 𝑆(q) samples, and
gives incorrect results regarding the directions of
the fiber crossings as shown by Özarslan et al. [10].
DOT maps the ADC into a probability function 𝑝(r)
by solving the Fourier transform using the Rayleigh
expansion of a plane wave in spherical coordinates.
It is worth mentioning that DOT permits multi-
exponential signal decaywhich allows the exploration
of multiple q-shell samplings.

(3) No assumption about signal decay or the underlying
diffusion process: Q-ball imaging [4] simply maps
the measurements on a q-shell via the Funk-Radon
transform into another function on a sphere called
orientation distribution function 𝜓(u) (ODF). This
ODF𝜓(u) is the integral in radial direction of the true
diffusion propagator 𝑝(r):

𝜓 (u) = ∫
∞

0

𝑝 (r, u) 𝑑𝑟, (2)

where u = r/|r|. One of the biggest recently devel-
oped advantages of Q-ball is its analytical solution

of the Funk-Radon transform [8, 9, 18] utilizing a
basis of spherical harmonics (SH), which significantly
improves its performance.

(4) Lately, spherical deconvolution (SD)methodsproposed
in the literature [11, 19] are becoming popular, espe-
cially for fiber tracking purposes due to sharper
profiles of the reconstructed fiber orientation distri-
bution (FOD) 𝐹. One assumes, that the DWI signal
𝑆(q) can be modeled by a superposition of fiber
bundle signals 𝑅 via the convolution 𝑆 = 𝐹 ∗ 𝑅.
The FOD that one obtains by a spherical deconvo-
lution of 𝑆 with 𝑅 reflects the angular distribution
of fiber bundles. One has to keep in mind that this
approach incorporates assumptions about the single
fiber response 𝑅. Recently, it has been shown that
some of the bias in the fiber extraction fromODF and
FOD (especially under small angles of crossings) can
be improved using tensor decomposition approach as
in the work of Schultz and Seidel [20].

There are many other diffusion modeling techniques in the
literature, but these exceed the scope of this paper. In our
analysis we will include the analytical Q-ball proposed by
Descoteaux et al. [8], since it is an analytical solution to the
numerical ODF [15], and it has advantages as such. In our
comparison,we excluded the Laplace-Beltrami regularization
proposed by Descoteaux et al. [8], due to the increase of the
complexity of the parameter space examined in this work as
well as the difficulties that arise when trying to compare this
method to the DOT (see below) that is proposed without
any regularization. However, due to the assumption of the
monoexponential decay for the signal attenuation in DOT,
a smoothing in q-space can be assumed and has advantages
for smaller 𝑏-values where the monoexponential signal decay
holds.

2.2. Diffusion Orientation Transform. The DOT [10] recon-
structs the diffusion propagator 𝑝(𝑅

0
u) at a given radius 𝑅

0

and a unit vector u. In the DOT, the radius for reconstructing
a single shell of the PDF𝑅

0
has to be determined heuristically,

and this process is not a trivial task, especially in the case of
real data.𝑅

0
is highly dependent on the scanning parameters,

especially the 𝑏-value, and possibly the tissue properties of the
voxel that we try to resolve.

2.2.1. Numerical DOT-ODF. To avoid the selection of 𝑅
0
and

inspired by definitions of the ODF from q-ball imaging [4]
and the marginal ODF (mODF) from diffusion spectrum
imaging (DSI) [21], we propose similar ODFs computed from
the DOT as

𝜓DOT-ODF (𝜃, 𝜙) = ∫
∞

0

𝑝 (𝑅
0
, 𝜃, 𝜙) 𝑑𝑅

0
,

𝜓DOT-mODF (𝜃, 𝜙) = ∫
∞

0

𝑝 (𝑅
0
, 𝜃, 𝜙) 𝑅

2

0
𝑑𝑅
0
,

(3)

where 𝑝(𝑅
0
, 𝜃, 𝜙) = 𝑝(𝑅

0
u) is the PDF computed from the

DOT [10], with u as a unit vector defined by (𝜃, 𝜙), where 𝜃∈
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(a) (b) (c)

(d) (e) (f)

Qball DOT-ODF 𝑅0max = 50 𝜇m DOT-mODF 𝑅0max = 50 𝜇m

DOT 𝑅0 = 14𝜇m DOT 𝑅0 = 16𝜇m DOT 𝑅0 = 18𝜇m

Figure 1: Profiles of the DOT and the proposed derivations in a single crossing voxel from a real brain in the area of the centrum semiovale.
The data is acquired at b = 1500 s/mm2 and 60 gradient directions. For the DOT, the effective diffusion time t is set to 25ms.We observe that
the DOT-mODF performs similarly as the DOT reconstructed at R

0
= 16 𝜇m. Additionally, Q-ball and the DOT-ODF show similar diffusion

profiles.

[0, 𝜋], 𝜙∈[0, 2𝜋]. In our calculations we truncate the integrals
(summations in a discrete form) to an arbitrary high value,
𝑅
0max, and then perform a large number of summations from

the full diffusion PDF. In Figure 1, we illustrate the diffusion
profiles of theDOTand the proposed derivations.Weobserve
that the DOT-mODF performs similarly as the DOT itself,
and the Q-ball and DOT-ODF profiles exhibit resemblance
as well.

2.2.2. Analytical DOT-ODF. Even though the sensitivity on
the parameter 𝑅

0max for the numerical DOT-ODF is less
than for the original formulation, an arbitrary high value for
𝑅
0max still must be specified. Additionally, a high number

of integrations (or in discrete sense summations) have to be
performed in each orientation of the full PDF to calculate
the ODF value in that direction. Therefore, we propose the
analytical derivation of the DOT-ODF explained in detail
in Appendix A. The advantage of using the analytical DOT-
ODF, is not only in reducing the computational expenses
but also in avoiding the 𝑅

0
selection problem entirely. This

way, we propose an ODF that can be easily compared to
the ODFs proposed by Tuch [15] and later Descoteaux et
al. [8]. Moreover, the analytical DOT-ODF method is less
computationally expensive than the numerical method, since
it does not require sampling of multiple shells of the PDF for
summations.The required computational time is the same as
for the analytical Q-ball.

2.3. Data. Previous studies have largely focussed on either
software simulations or real MRI data. Where the analysis
and validation of the simulated data can be absolutely
quantitative, one must be cautious in generalizing results
since simulated properties of tissue, acquisition, and noise
parameters could be unrealistic for any simulation. In con-
tradistinction, where full realism is evidently obtained in
actual in vivo data, the analysis must be relatively qualitative
because of the absence of an exact gold standard. To quantify
the accuracy of the selectedmodeling techniques, we generate
both synthetic data of two fiber crossings, and we extend our
analysis to real data acquired in vivo on a human subject. In
this way, we combine the advantage of a ground truth and
full knowledge and control of all parameters in the synthetic
data simulations, with the guaranteed realism of the tissue,
acquisition, and noise parameters in the real data.

2.3.1. Synthetic Data. We generate synthetic software data
according to the Söderman and Jönsson’s [22] model used
in Özarslan et al. [10], Brampoutis et al. [23], and von dem
Hagen and Henkelman [24].

We fix the parameters for thismodel similarly to Özarslan
et al. [10] to fiber length 𝐿 = 5mm, fiber radius 𝜌 = 5 𝜇m, and
free diffusion coefficient𝐷

0
= 2.02 × 10

−3mm2/s.
We calculate the effective diffusion time as 𝑡 = Δ − 𝛿/3

where the 𝛿/3 correction is due to the diffusion which occurs
during the time in which the gradients are on.
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Table 1: Direction tables from our data.

# gradient directions 24 36 48 60 72 96 120
# zero-weighted 3 4 5 6 7 9 11
total # acquisitions 27 40 53 66 79 105 131

Table 2: Parameters for the synthetic data similar to the one from
our real data measurements.

Parameters
𝑏 (s/mm2) 1000 1500 2000 3000 4000
Δ (ms) 32.44 36.18 39.18 43.58 47.18
𝛿 (ms) 25.34 29.04 32.08 36.48 40.08
𝑡 (ms) 24.0 26.5 28.5 31.4 33.8

Using Söderman’s model we create two fiber crossings
under angles of: 40∘, 45∘, 50∘, 55∘, 60∘, and 90∘. The choice
for these angles was made given the expected accuracy for Q-
ball imaging [8, 25] of around 50∘ (however, this is strongly
dependent on the 𝑏-value and applied regularization). To
create different datasets with different acquisition parameters
we vary the number of gradients and 𝑏-values as in Tables 1
and 2, respectively.

Additional parameters that need to be specified for the
Söderman’s model are the values for the gradient pulse
duration 𝛿 and gradient spacing Δ. We use the same values
as from our real acquisition protocol where we optimize the
echo time TE per 𝑏-value.

This way we optimize the SNR per 𝑏-value, and the result-
ing profiles will be less deteriorated from noise. However,
one has to be careful here because the representations of the
PDFs are for different measurement times. For all the data in
this work, the same parameters listed in Table 2 are used in
order to allow for a fair relation between the synthetic and
in vivo data. To create noisy synthetic data we add Gaussian
noise to the real and complex part of the signal, and we vary
the standard deviation depending on the analysis we want to
perform.

2.3.2. In Vivo Human Data. DW-MRI acquisitions were per-
formed on a female subject using a twice refocused spin-echo,
echo-planar imaging sequence on a Siemens Allegra 3T scan-
ner (Siemens, Erlangen, Germany) equipped with a 40mT/m
head gradient set, an 8-channel cylindrical phased-array RF-
coil. Informed consent was obtained prior to the measure-
ment. Twenty axial slices (FOV[220 × 220]mm2, matrix
[88 × 88][2.5 × 2.5 × 2.5]mm3 voxel size) were positioned
through the body of the corpus callosum and the centrum
semiovale. EPI acquisition was performed with 3/4 partial
Fourier and a readout bandwidth of 2840Hz/Px. Datasets
were acquired with diffusion gradient sampling schemes of
24, 36, 48, 60, and 72 unique directions obtained by a static
repulsion algorithm, with the diffusion-weighted volumes
interleaved with zero-weighted volumes every 12th scanned
diffusion gradient direction. For each gradient scheme the
scans were performed with 𝑏-values of 1000, 1500, 2000, and
3000 s/mm2 (TE, resp., 77, 85, 91, and 100ms, TR = 4000ms
throughout), using the same gradient pulse duration 𝛿 and

gradient spacing Δ as given in Table 2. No averaging of
repeated acquisition was performed, that is, there was only
a single acquisition for each parameter set.

2.4. Analysis of Synthetic Data. To analyze the accuracy
of the reconstructed HARDI models in the synthetic data
sets, we report the detected angular error. We use a simple
scheme for determining the angular error, that is, we find
the local maxima of the reconstructed profiles on a mesh
generated by tessellating icosahedron of certain order and
then report the angular difference between these maxima
and the simulated (true) fiber directions. To reduce the error
that the discrete mesh imposes, in our analysis we use the
7th order of tessellation of the icosahedron, that imposes
1∘ spacing between tessellation points, thus, a maximum
distance between any point and the nearest tessellation point
of 0.5∘. Depending on the orientation of the fibers in the space
of the gradients, different errors might appear for the same
simulated angle. For example, if we simulate an angle of 60∘
by two crossing fibers and then rotate the fibers in 3D space,
one would assume that always the same angle of crossing is
detected. However, in Söderman’s model, different angular
errors are calculated for different orientations of the fibers.
In general, these errors cause less than 5∘ angular error, and
therefore while choosing our optimal parameters for certain
angular configuration, we take these errors into account. For
example, for an angle of 60∘, the 𝑏-value of 3000 s/mm2might
give an angular error of 4∘ and the 𝑏-value of 4000 s/mm2 an
angular error of 2.5∘. However, due to the errors imposed by
the tessellation of themesh and the orientation of the fibers as
well as our choice of tolerance for 5∘, we report the b-value of
3000 s/mm2 as preferable, since both 𝑏-values are within our
range of tolerance, and we always report the smallest 𝑏-value
as optimal.

2.5. Analysis of Human Data

2.5.1. Criteria for In Vivo Data Analysis. For qualitative
analysis of the real data, we select the centrum semiovale
(CS) (see Figure 2) where crossings are to be expected. This
is a challenging region for DW-MRI analysis techniques,
since fibers of the corpus callosum (CC), corona radiata (CR),
and superior longitudinal fasciculus (SLF) form a three-fold
crossing. A region-of-interest (ROI) was defined on a coronal
slice. Red rectangle indicates the position of the slices in the
acquisition.

The qualitative criteria for comparison are the sharpness
of the profiles in CC and lower parts of the CR, the presence
of two ODF maxima for the CC and CR and the spread of
the their crossing in the centrum semiovale, and the presence
of the superior longitudinal fasciculus in the upper corners of
the region. Furthermore, the presence of spurious peaks is an
indication of poor SNR and unreliably detected crossings.

2.5.2. SNR in In Vivo Data. We calculate the SNR in
the images via the “difference method” as described by
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Corpus callosum
Corpus callosumCorona radiata

Corona radiata

Figure 2: ROI used to illustrate the real data findings.

Reeder, et al. [26]. For a set of two unweighted volumes, the
SNR is computed via the difference method as

SNR|ROI =
𝜇 (𝐵
0
+ 𝐵


0
)





ROI

√2𝜎 (𝐵
0
− 𝐵


0
)





ROI

, (4)

where 𝐵
0
and 𝐵

0
are two unweighted images and 𝜇 and 𝜎

are the mean and the standard deviation respectively. The
SNRs, computed in an ROI of 60 voxels in the middle of the
corpus callosum, is 23.58, 20.75, 19.29, and 18.61 at 𝑏-values
of 1000, 1500, 2000, and 3000 s/mm2, respectively. The final
reported SNR is calculated as the median of six SNRs, each
computed from two unweighted images closest in time. Since
unweighted volumes were interspersed between 12 diffusion
weighted volumes, the SNRs are probably slightly under-
estimated due to bulkmotion and drift over themeasurement
time. Note that, due to the characteristics of the phased-array
RF coil, the SNR in the CC in themiddle of the head is a lower
bound for the SNR in the rest of the scanned volume. SNR is
expected to increase (quadratically) towards the periphery.

2.5.3. Scanning Time. To give an indication for the time
requirements for the individual acquisition schemes, we
estimate the total scanning time needed to obtain a full brain
acquisition at the given parameters. Assuming at least 60
axial 2.5mm slices would be needed for whole brain coverage
and the shortest achievable TR would be used, whole brain
measurement times are given in Table 3.

3. Results

In this section we will discuss the quantitative results from
our synthetic data and give qualitative implications for the
real data scanned under the same parameters.

3.1. Synthetic Data Analysis. To get an indication on the
optimal parameters for each simulated angle, we run a series
of tests, where we determine the minimal angular error that
can be obtained with the minimal combination of 𝑏-value

Table 3: Approximate whole brain measurement times for a single
repetition in (min:sec) with the acquired protocol.

b-value 24 dirs 36 dirs 48 dirs 60 dirs 72 dirs
1000 2:58 4:24 5:50 7:16 8:41
1500 3:14 4:48 6:22 7:55 9:29
2000 3:31 5:12 6:53 8:35 10:16
3000 3:47 5:36 7:25 9:14 11:04

and ℓ-order, under different gradient sampling schemes. The
results are presented in Table 4.

We observe similar trends for both of the reconstruction
techniques. Both Q-ball and DOT-ODF can accurately rep-
resent crossings of 90∘ for 𝑏-values as low as 1000 s/mm2
and order of SH ℓ = 4 regardless of the choice for the
gradient sampling scheme. The scenario changes for the
angle of 60∘, where the best choice for 𝑏-value recommends
3000 s/mm2 and higher order of SH of ℓ = 6. Trying
to resolve smaller angles of crossings, with these analytical
decomposition methods results in higher choices for 𝑏-
values and SH order even in noiseless cases. The SNRs
in clinical scanners at high 𝑏-values such as 4000 s/mm2
drop and therefore these 𝑏-values are not recommended.
The noise corrupts the reconstructed profiles, and modeling
with high orders of SH will result in capturing the noise,
which is dominant in these cases. Therefore, from the
noise tables (see Supplementary Material available online
at http://dx.doi.org/10.1155/2013/658583) we already get the
indication that the lowest angle which can be captured
within reasonably imposed angular error would be around
60∘. To reduce the parameter space, we therefore select this
interesting angle and SH order of ℓ = 6 (as Table 4 indicates
for this angle) and look at some interesting influences of
the 𝑏-values and number of gradients, under different SNRs.
Another motivation for this choice of reconstruction angle is
the region that we select for illustrating the in vivo results.The
centrum semiovale contains a large amount of voxels where
the crossing angles are approximately between 60∘ and 90∘.
To investigate the effect of the gradient sampling schemes,
we performed tests where for 𝑏-values of 2000 s/mm2, we
vary the number of gradients under different levels of added
Rician noise. In Figure 3, we report the calculated angular
error and the standard deviation of 100 noise realizations for
simulations of 60∘ angle of crossing. We observe that for SNR
of about 20 (similar to our case) of the recovered angle suffers
from an angular error of less than 10∘. For higher SNRs (20–
40), we observe that around a number of 70 gradients the
graph stabilizes and we do not gain much accuracy by having
denser gradient sampling schemes. The results are similar
to the ones from the DOT-ODF and for completeness are
reported in Figures 8, 9 and 10.

In a similar fashion, we investigate the effect of the
𝑏-value, on the accuracy of the reconstruction techniques
under different SNRs. From the previous discussion, we con-
cluded that the number of 70 gradient direction is sufficient
for good detection of a 60∘ crossing fiber configuration, and
therefore in this analysis we fix the number of gradients to
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Table 4: Söderman’s model without added noise, with tolerance: 0.5∘. The table presents the optimal combination of 𝑏-value (s/mm2) and
𝑙-order together with the detected angular error (∘) for each combination of simulated angle and number of gradients.

Tag 𝑁grad 40∘ 45∘ 50∘ 55∘ 60∘ 90∘

24 No crossing! No crossing! No crossing! No crossing! 10.6
𝑏 = 3000, 𝑙 = 4

0.1
𝑏 = 1000, 𝑙 = 4

36 No crossing! 5.2
𝑏 = 4000, 𝑙 = 6

1.3
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

1.1
𝑏 = 3000, 𝑙 = 6

0.1
𝑏 = 1000, 𝑙 = 4

48 3.9
𝑏 = 4000, 𝑙 = 8

2.3
𝑏 = 4000, 𝑙 = 8

1.6
𝑏 = 4000, 𝑙 = 6

1.1
𝑏 = 4000, 𝑙 = 6

0.6
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 1000, 𝑙 = 4

Q-ball 60 4.6
𝑏 = 4000, 𝑙 = 8

1.9
𝑏 = 4000, 𝑙 = 8

1.4
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

1.6
𝑏 = 3000, 𝑙 = 6

0.1
𝑏 = 1500, 𝑙 = 4

72 4.1
𝑏 = 4000, 𝑙 = 8

1.9
𝑏 = 4000, 𝑙 = 8

1.4
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 1000, 𝑙 = 4

96 4.6
𝑏 = 4000, 𝑙 = 8

1.9
𝑏 = 4000, 𝑙 = 8

1.4
𝑏 = 4000, 𝑙 = 6

0.6
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.6
𝑏 = 3000, 𝑙 = 4

120 4.1
𝑏 = 4000, 𝑙 = 8

1.9
𝑏 = 4000, 𝑙 = 8

1.4
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.6
𝑏 = 1000, 𝑙 = 4

24 No crossing! No crossing! No crossing! No crossing! 4.9
𝑏 = 4000, 𝑙 = 4

0.1
𝑏 = 1000, 𝑙 = 4

36 No crossing! 3.2
𝑏 = 4000, 𝑙 = 6

1.0
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.6
𝑏 = 3000, 𝑙 = 6

0.1
𝑏 = 1000, 𝑙 = 4

48 3.4
𝑏 = 4000, 𝑙 = 8

1.6
𝑏 = 4000, 𝑙 = 8

1.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 3000, 𝑙 = 6

0.1
𝑏 = 1000, 𝑙 = 4

DOT-ODF 60 3.6
𝑏 = 4000, 𝑙 = 8

1.4
𝑏 = 4000, 𝑙 = 8

1.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

1.3
𝑏 = 3000, 𝑙 = 6

0.1
𝑏 = 1500, 𝑙 = 4

72 4.1
𝑏 = 4000, 𝑙 = 8

1.9
𝑏 = 4000, 𝑙 = 8

1.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 3000, 𝑙 = 6

0.1
𝑏 = 1000, 𝑙 = 4

96 4.1
𝑏 = 4000, 𝑙 = 8

1.9
𝑏 = 4000, 𝑙 = 8

1.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 3000, 𝑙 = 6

0.6
𝑏 = 2000, 𝑙 = 4

120 4.1
𝑏 = 4000, 𝑙 = 8

1.9
𝑏 = 4000, 𝑙 = 8

1.1
𝑏 = 4000, 𝑙 = 6

0.6
𝑏 = 4000, 𝑙 = 6

0.1
𝑏 = 3000, 𝑙 = 6

0.6
𝑏 = 1500, 𝑙 = 4

𝑁grad

Figure 3: Influence of the gradient sampling schemes on the
accuracy of Q-ball imaging for angle of 60∘.

72 (Figure 4). For data with SNR 10, there is a clear tendency
for an optimum 𝑏-value of around 2000 s/mm2 as seen in

the decrease in the angular error. Higher 𝑏-values, produce
worse results with high standard deviations. However, if the
SNRs are higher, the angular error and the standard deviation
decay and stabilize around 𝑏-values between 2000 s/mm2 and
3000 s/mm2. Again, the results coincide with the ones from
the analysis of analytical DOT-ODF, and for completeness are
reported in Figures 8, 9 and 10.

The previous analysis emphasizes the importance of the
SNRs for reliability in the reconstruction of analyticalHARDI
decomposition techniques. To address this important issue,
we investigate the effect of the SNR under fixed parameters
for 𝑏-value and number of gradients and report in Figure 5.
We observe that data with SNRs lower than 15 would produce
very unreliable datasets, where the accuracy would drop to
an angular error bigger than 10∘. Smaller angles cannot be
resolved accurately and most probably will not be detected
as distinct fiber populations. It can also be seen that the
effect of the number of gradient directions (at least at the
level between 48 and 72) has much less of an effect on
detection performance than the SNR level does. Take note
that this is a simplified model of the diffusion process, where
only two fiber populations are simulated. The scenario gets
more complicated when more fiber populations interfere
within a voxel. Increasing the number of gradients does not
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Figure 4: Influence of the 𝑏-value on the accuracy of Q-ball imaging
for a crossing angle of 60∘.

Figure 5: Influence of the SNR on the accuracy of Q-ball imaging
for angle of 60∘.

significantly improve the angular error in the case of SNR of
about 20.

3.2. Real Data Analysis. For better appreciation of anatom-
ical locations, we present the results by visualizing the
recovered maxima, overlaid over an FA-map. To be able
to observe the changes in the shape of the glyph pro-
files, in Figures 11, 12, 13, 14, 15, and 16 we additionally report
the min, max normalized glyphs since the normalization

Table 5

ℓ 0 2 4 6 8
𝐼
ℓ

1/8𝜋 1/16𝜋 3/64𝜋 5/128𝜋 35/1024𝜋

Table 6:The SNR relative to that for a TE equal to𝑇2 (assumed to be
70ms) for different 𝑏-values and two maximum achievable gradient
strengths 𝐺max.

𝑏-value
(s/mm2)

𝑇𝐸min (ms)
(2∗d + 25)

Rel-SNR
𝑇2 = 70ms

𝐺max = 35mT/m

1000 72.0 1.15
2000 85.2 0.99
3000 94.6 0.88
4000 102.2 0.81

𝐺max = 60mT/m

1000 56.6 1.39
2000 65.8 1.24
3000 72.4 1.15
4000 77.6 1.08

enhances the profiles. However, in the noisy areas this con-
siderably deforms the glyphs, and should be interpreted with
care. For the color-coding we use standard RGB directional
coloring. We present the results fromQ-ball in all our figures
since they are almost identical with the ones from the DOT-
ODF (see Figures 1(a) and 1(e)).

Figure 6 illustrates the effect of the ℓ-order acquired
under different parameters. The visualization is by recovered
maxima. We observe that in all of the cases, the threefold
crossing is better recovered at order 6, at the higher 𝑏-value
(3000 s/mm2), and higher number of gradients (72). At these
parameter settings the structure of the SLF (yellow rectangle)
becomes more evident.Therefore, we conclude that SH order
ℓ = 6 is the optimal for recovering the crossing information
in this region. This statement corroborates our findings from
the synthetic data. Going to orders higher than ℓ=6 results in
many false maxima detected from the spurious peaks coming
from the noise. Additionally, we observe that 𝑏 = 3000 s/mm2
performs better than 𝑏 = 1000 s/mm2, since more threefold
crossings are detected in the centrum semiovale.

The key investigation that answers the question of clin-
ically realizable HARDI protocols is of the effect the 𝑏-
value (and thus the SNR level) and the number of gradients
on the accuracy of the analytical decomposition techniques
like Q-ball and DOT (and its previously defined derivations
DOT-ODF and DOT-mODF). From the previous synthetic
analysis, we observed that at about a number of 70 gradients
the angular error stabilizes anddoes not decrease significantly
when increasing the number of gradients. However, it is
interesting to investigate how low the number of gradients
can go at a given 𝑏-value and SNR level, such that the data
still has reasonable reconstructions and detected crossings.
Therefore, we select gradient schemes with NG lower than 72
to investigate this question.

In Figure 7, we observe this influence of the 𝑏-value and
NG (for different ℓ-orders and glyph representations refer to
Figures 11, 12, and 13). We observe that the crossings from
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𝑏 = 1000 s/mm2
𝑏 = 3000 s/mm2

NG = 48 NG = 72 NG = 48 NG = 72
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Figure 6: The effect of the truncation order of the spherical harmonics. The yellow rectangle marks the expected three-fold crossing of the
CC, CR, and SLF. We observe more three-fold crossings at order ℓ = 3. Additionally, 𝑏 = 3000 s/mm2 performs better than 𝑏 = 1000 s/mm2,
since more threefold crossings are recovered.
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Figure 7:The effect of the 𝑏-value and the number of gradients at ℓ = 6. We observe that the crossings from CC and CR are already observed
in the lowest parameter combination of 𝑏 = 1000 s/mm2 andNG = 36.The SLF structures becomemore prominent at higher 𝑏 ≥ 2000 s/mm2
(see yellow marked rectangles).
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Figure 8: Influence of the gradient sampling schemes on the
accuracy of the analytical DOT-ODF imaging for angle of 60∘.

Figure 9: Influence of the 𝑏-value on the accuracy of the analytical
DOT-ODF imaging for angle of 60∘.

CC and CR are already observed in the lowest parameter
combination of 𝑏 = 1000 s/mm2 and NG = 36 (for order
ℓ = 4 already at NG = 24). However, the SLF structures
are not that obvious and become more prominent at higher
𝑏 ≥ 2000 s/mm2 (see yellow marked rectangles in Figure 7).
However at higher 𝑏-values we observe many spurious peaks
that disappear with the increase of the number of gradients
(this can be better observed in Figure 11). At NG ≥ 48

there is no appreciable difference between the profiles at 𝑏 =
2000 s/mm2 and 𝑏 = 3000 s/mm2. Given that the spurious

Figure 10: Influence of the SNR on the accuracy of the analytical
DOT-ODF imaging for angle of 60∘.

peaks are slightly more prominent at 𝑏 = 3000 s/mm2, and
that lower 𝑏-values are more attractive with respect to the
total scanning time, we conclude that 𝑏 = 2000 s/mm2 and
NG ∈ [48−72]would be preferable with a total scanning time
of about 7–10 minutes. For datasets with SNR of about 20, the
accuracy of the reconstructed profiles at angles of about 60∘
would be with angular error of about 8∘.

4. Discussion

The benefits from applying HARDI modeling techniques
that require modest q-space single shell sampling over the
classical DTI model are well known. However, once the
potentials are clear from the theoretical point of view, the
questions about the employment of these techniques in every
day practice (clinical or cognitive neuroscience research)
arise. In the case of HARDI, not only the modeling tech-
niques are complex, but there are many parameters from the
acquisition to the postprocessing of the data that influence
the accuracy in the estimation of the underlying diffusion
profile. The main bottleneck for applying HARDI in clinical
practice or as an added protocol in fMRI investigations
is the acquisition time, given that decreasing it generally
decreases the signal-to-noise ratio in the data thus inferring
the accuracy in the reconstructions. The main parameters
that influence the total acquisition time are the number of
gradients, the spatial resolution (especially the number of
slices), and the number of averages, many of which inevitably
influence the SNR of the acquired data (please refer to
Appendix B). In this study, we compared only analytical
decomposition techniques such as Q-ball and DOT. Recent
techniques with single q-space shell requirements that are
known to have better angular resolution than Q-ball such
as the solid angle consideration, Q-ball [27] and spherical



International Journal of Biomedical Imaging 11

𝑏-value

1000 s/mm2
2000 s/mm2

3000 s/mm2

N
um

be
r o

f g
ra

di
en

ts

72
48

36

Figure 11: The effect of the 𝑏-value and the number of gradients at 𝑙 = 6. At higher 𝑏-values we observe many spurious peaks that disappear
with the increase of the number of gradients (see yellow marked rectangles). At NG ≥ 46 there is not a significant difference between the
profiles at 𝑏 = 2000 s/mm2 and 𝑏 = 3000 s/mm2. Given that the spurious peaks are slightly more prominent at 𝑏 = 3000 s/mm2, and that
lower 𝑏-values are more attractive with respect to the total scanning time, we conclude that 𝑏 = 2000 s/mm2 and NG ∈ [48; 72] are the
optimal combination of parameters.

deconvolution techniques [11, 28] could be used as well.
However, we would expect the relative conclusion regard-
ing empirically optimal short-time protocols to also hold
for these techniques, possibly at a higher overall accuracy
level.

Finding the optimal parameters for the acquisition
schemes in terms of both the direction sets and 𝑏-value
has been an open issue in HARDI acquisitions and a few
investigations have partially tackled this issue. Jones [29]
investigated the effect of gradient sampling schemes on the
correctness of estimating the diffusion tensor (DT) and scalar
indices derived from it. However, this study was limited to
DTI where the effect of the 𝑏-value is not as significant
as in HARDI-based modeling techniques, and therefore 𝑏-
values were not investigated. Moreover, it is based purely
on computer simulated data. Alexander and Barker [30]
investigated the effect of the 𝑏-value on a correct estimation
of fiber orientations. This Monte Carlo study was limited
only to functions that are a mixture of Gaussian distribu-
tions and a reconstruction of algorithms that fit this same
class or models to synthetic data. There have been a few
recent studies that investigated the effect of the number of
gradient direction on real experimental data. Zhan et al.
[31] focused on a user study for investigating the effect of

the number of gradients on the signal-to-noise ratio (SNR)
of DTI derived scalar indices. Tournier et al. [32] focused
on finding the minimum required number of gradients for
successfully reconstructing HARDI diffusion profiles. Other
studies have used a hardware diffusion phantom to investigate
the effect of measurement parameters on the accuracy of
directional diffusion estimation. Cho et al. [33] concentrated
on finding the optimal 𝑏-value for resolving small angles of
crossing (in this case 45∘) using Q-ball imaging. In Poupon
et al. [34] new hardware diffusion phantoms are proposed
to similarly investigate the implications on the optimal 𝑏-
value for reconstructing 45∘ of crossing with Q-ball imaging.
Tournier et al. [35] report an extensive study on hardware
phantoms comparing the angular resolutions of Q-ball Imag-
ing, Spherical Deconvolution [36], and constrained spherical
deconvolution (CSD) [11]. However, in this study the effect
of gradient sampling was not examined. Crucially, all of
these studies focussed on a situation where acquisition time
constraints were very lenient (long diffusion-only protocols
on experienced subjects) or absent (phantom and simulation
studies). This allowed them to perform their investigation of
optimal sampling schemes in a very favorable SNR regime.

In this work, we investigated the relations between
above mentioned parameters. We addressed some important
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Figure 12: The effect of the 𝑏-value and the number of gradients at 𝑙 = 4. Conclusions are similar to Figure 11, however, at order ℓ = 4 it is
more difficult to spot the threefold crossings.

questions that relate the SNR of the acquired data with the
accuracy of the reconstructions of some popular HARDI
analytical decomposition techniques: Q-ball and DOT. To
make both of the techniques comparable, we derived from
the DOT two numerical ODFs: the DOT-ODF (comparable
to the ODF derived from Q-ball) and the DOT-mODF.
To utilize the performance of the DOT-ODF, we derive an
analytical solution that is comparable to the speed of the
DOT and Q-ball. Finally, with synthetic data simulation,
and series of real data acquisitions, we gave implications
that recommend a set of optimal acquisition parameters for
these techniques. If the data is represented by ℓ = 6 order
of spherical harmonics, an empirically optimal combination
(given stringent time constraints) of 𝑏-value and number of
gradients that would resolve most of the angles ≥60∘ with
error of less than 10∘ is 𝑏 = 2000 s/mm2 and NG = 72.
However, even at a more modest combination of the acqui-
sition parameters (𝑏=1000 s/mm2 and NG = 24) most of the
two fiber populations of larger angles will be resolved under
the cost of larger angular error. Moreover, these parameters
are recommended, given that the data has a minimal SNR

(in the 0-weighted acquisitions) of about 20. Decreasing the
SNR (increasing the spatial resolution or increasing acqui-
sition speed by techniques such as parallel imaging) would
produce unreliable results with angular errors of more than
30∘.

It is important to remark that these conclusions to a
very large degree hold even for radically different MRI
hardware (e.g., high performance head gradient sets, phased-
array RF coils with ≥32 channels, or even higher main field
strengths than 3T) or new acquisition developments (e.g.,
highly accelerated parallel imaging) when two observations
are taken into account. First, many techniques that are
able to speed up the acquisition of a given protocol (e.g.,
parallel imaging) have an inevitable cost in the SNR level
(see Appendix B). Therefore, employing them does not
change the fundamental trade-off between spatial resolution,
acquisition time, and SNR that define the playing field for
the empirical optimization presented here. Second, where
the available acquisition technology allows a fundamentally
higher SNR or shorter acquisition times (e.g. phased-array
coils, simultaneous multi-slice or multi-band acquisitions,
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Figure 13: The effect of the 𝑏-value and the number of gradients at 𝑙 = 4, maxima representation. Conclusions are the same as in Figure 12.
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Figure 14: The effect of the averaging of the data at 𝑙 = 6 in a Q-ball glyph representation. There is not a significant difference between the
quality of the data without and with averaging even at higher 𝑏-values.

and higher field strengths), it stands to reason that this
margin would be used to increase the spatial resolution of
the acquisition beyond the 2.5mm or 2mm isotropic voxel
level, given that a satisfactory angular resolution and total
acquisition time has been obtained. Particularly, when the

final processing aim of a study is fiber tractography, there is
much to gain in the veridicality of tracked fiber bundles by
decreasing partial volume effects and increasing the ability
to resolve finer white matter structures (see, e.g., the work of
Roebroeck et al. [37]).
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Figure 15: The effect of the averaging of the data at 𝑙 = 4 in a Q-ball glyph representation. There is not a significant difference between the
quality of the data without and with averaging even at higher 𝑏-values.
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Figure 16: The effect of the averaging of the data at 𝑙 = 4 represented by the maxima detected from Q-ball glyphs. There is not a significant
difference between the quality of the data without and with averaging even at higher 𝑏-values.

Appendices

A. Derivation of Analytical DOT-ODF

A.1. Diffusion Orientation Transform. The diffusion proba-
bility function 𝑝(r) is related to the measured MR diffusion
signal 𝐸(q) by a Fourier integral as noted in (1). In the work
of Özarslan et al. [10], the point-wise expansion of the plane

wave in spherical coordinates is used in order to obtain the
following expression:

𝑝 (𝑅
0
u) = ∑
ℓ,𝑚

(−𝑖)
ℓ
𝑌
ℓ𝑚
(u) ∫𝑌

ℓ𝑚
(g)∗𝐼
ℓ
(g, 𝑅
0
) 𝑑g, (A.1)

where

𝐼
ℓ
(g, 𝑅
0
) = 4𝜋∫

∞

0

𝑞
2
𝑗
ℓ
(2𝜋𝑞𝑅

0
) 𝑒
−4𝜋
2
𝑞
2
𝑡𝐷(g)

𝑑𝑞, (A.2)
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where 𝑗
ℓ
(2𝜋𝑞𝑅

0
) is the ℓth order spherical Besel function.

Normally, the radius 𝑅
0
is fixed, but one needs to find an

optimal radius in order to have a sharp enough profile. In
order to avoid this problem, we consider ODF, described in
the following section.

A.2. ODF from DOT. In order to obtain the ODF, we need to
integrate (2):

𝜓 (u) = ∑
ℓ,𝑚

(−𝑖)
ℓ
𝑌
ℓ𝑚
(u) ∫𝑌

ℓ𝑚
(g)∗ (∫

∞

0

𝐼
ℓ
(g, 𝑅
0
) 𝑑𝑅
0
)𝑑g.

(A.3)

According to the work of Özarslan et al. [10], 𝐼
ℓ
(g, 𝑅
0
), given

by (A.2), can be computed analytically
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where
1
𝐹
1
is the confluent hypergeometric function of the

first kind.
In order to compute ∫∞

0
𝐼
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(g, 𝑅
0
)𝑑𝑅
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, we use the integral

representation of
1
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and change the integration order. As a result, we obtain an
analytical formula for the integral

∫

∞
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. (A.7)

The values for ℓ up to 8 are summarized in Table 5.
Therefore, if 1/𝐷(g)𝑡 is given in spherical harmonic

representation

1

𝐷 (g) 𝑡
= ∑

ℓ,𝑚

𝑐
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(g) , (A.8)

(A.3) and (A.6) give us
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ℓ,𝑚
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𝑐
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Since tensor terms of order 𝑘 belong to the span of the
spherical harmonics of the same order, we conclude that the
same holds for the tensor representation

𝜓 (u) = ∑
ℓ,𝑚
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, (A.10)

where𝐷𝑖ℓ ⋅⋅⋅𝑖𝑘-coefficients of tensor expansion for 1/𝐷(g)𝑡.

B. The Basics of Signal and Noise in Pulse
Gradient Spin echo–echo Planar Imaging
(PGSE–EPI) Diffusion MR Sequences

Leaving static magnetic field B0 outside of consideration, the
signal for a spin echo experiment is directly proportional
to the available transverse magnetization, which is itself a
function of TR, T1, TE, and T2:

𝑀
⊥
≈ (1 − 𝑒

−TR/T1
) 𝑒
−TE/T2

. (B.1)

Tomaximize the available signal, TRmust be maximized and
TE minimized. Given the usual requirement in diffusion MR
imaging for whole brain coverage using a 2D (slice selective)
sequence, the TR is naturally long, usually longer than 4 times
T1 (which is about 800ms for white matter at 3T), recovering
at least 98% of the available signal. In contrast, the achievable
TE in a Stejskal-Tanner PGSE sequences is typically long
compared to T2 (which is about 84ms for whitematter at 3T),
due to the diffusion gradient lobes. The amount of diffusion
weighting, when gradient ramps are a small proportion of the
diffusion-gradient lobes, is given by the 𝑏-value:

𝑏 = 𝛾
2
𝛿
2
(Δ −

𝛿

3

) |G|2, (B.2)

where 𝛾 is the 1H gyromagnetic ratio and |G|, Δ, and 𝛿 are
the amplitude, time between onsets, and length of the two
diffusion gradients, respectively. Since the 𝑏-value has a cubic
dependence on 𝛿, quadratic on |G|, and linear on Δ, the most
SNR-efficient way (i.e., minimumTE) to achieve any given 𝑏-
value is to play out diffusion gradients at maximum available
amplitude |G| and keep the Δ as short as possible. Therefore,
the SNR in diffusion imaging necessarily falls with increasing
𝑏-value, through increasing TE. An estimate of the relative
SNR for different 𝑏-values can be made if one estimates a
minimumachievable TE as 2∗𝛿+25 (assumingΔ = 𝛿+5, and
25ms total for RF pulse lengths, pre-TE readout train length,
and additional encoding and spoiling). The SNR relative to
that for a TE equal to T2 (assumed to be 70ms) for different 𝑏-
values and twomaximum achievable gradient strengths𝐺max
is given in the Table 6.

In addition, the SNR for each voxel is crucially dependent
on the parameters of the imaging gradients and the readout
train in EPI. The SNR in 2D Fourier-encoded MRI is
proportional to

SNR ∝ Δ𝑥Δ𝑦𝑇ℎ√𝑁avg𝑁𝑦𝑇𝑠 (B.3)

with 𝑇
𝑠
= 𝑁
𝑥
/𝐵𝑊read, Δ𝑥 and Δ𝑦 are voxel sizes along

readout and phase-encoded direction, respectively,𝑇ℎ is slice
thickness, 𝑁avg is the number of averaged repetitions of the
entire sequence,𝑁

𝑥
and𝑁

𝑦
are the number of samples along

readout and phase-encoded direction, respectively, 𝑇
𝑠
is the

readout sampling time, and 𝐵𝑊read is the readout bandwidth.
This highlights the trade off between SNR, spatial resolution,
spatial distortion, and dropout and total imaging time. In
particular, for PGSE-EPI sequences, SNR can be traded off
in the following ways.
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(i) Increasing voxel size Δ𝑥 × Δ𝑦 × 𝑇ℎ increases the
SNR at the cost of spatial resolution and increased
susceptibility related distortions and dropout at air-
tissue boundaries. Increasing voxel size from [2 × 2 ×
2]mm3 to [2.5 × 2.5 × 2.5]mm3 or [3 × 3 × 3]mm3
increases SNR with a factor 1.95 and 3.37, respectively
(if other parameters, particularly 𝑁

𝑦
and 𝑇

𝑠
are held

constant).

(ii) Increasing the number of averaged repetitions of the
entire sequence increases SNR at the cost of increased
imaging time. Acquiring 2, 3, or 4 averages increases
SNR with a factor 1.41, 1.73, and 2, respectively (if the
patient does not move between acquisitions).

(iii) Decreasing readout bandwidth increases the SNR
at the cost of spatial resolution (due to T2∗-decay-
related blurring) and increased susceptibility related
distortions and dropout. In principle, however, the
SNR gain can be partially compensated by increased
TE with a longer readout train.

(iv) Increasing the number of phase-encoding steps
(equivalently: the number of readouts) increases the
SNR when all else is held constant. However, this
increases the readout train length and TE, which
can compensate the SNR gain. In practice, 𝑁

𝑦
is

almost routinely decreased, by employing either par-
tial Fourier sampling or accelerated (parallel) imaging
along the phase encoded direction (or both), allowing
a decrease in TE. The shorter readout trains also
decrease susceptibility related distortions along the
phase-encoded direction. In addition to the factor
𝑁
𝑦
, parallel imaging further decreases the SNR by a

spatially varying factor 𝑔(𝑥, 𝑦) which depends on the
coil array geometry and acceleration factor used.

Finally, SNR crucially depends on the type and performance
of the employed coil array for RF signal reception. A phased-
array coil design can give considerable SNR advantages over
a single circularly polarized birdcage design. However, the
signal sensitivity for a phased array decreases quadratically
with distance from the coil array, towards the center of the
head, thus showing considerable spatial inhomogeneity of
the SNR. A phased array of 8 coils can have a typical SNR
advantage of 100% (6 dB) at the peripheral levels of the
brain (gray matter) compared to a birdcage coil of similar
dimensions but only 10% more signal-to-noise in the central
white matter. Finally, a phased array coil will enable parallel
imaging, with the additional SNR trade-off discussed above.
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