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Abstract

We propose a novel construction of subspaces for real-time deformation-based modeling and shape interpolation. The scheme
constructs a subspace that optimally approximates the manifold of deformations relevant for a specific modeling or interpolation
problem. The idea is to automatically sample the deformation manifold and construct the subspace that best-approximates these
snapshots. This is realized by writing the shape modeling and interpolation problems as parametrized optimization problems with
few parameters. The snapshots are generated by sampling the parameter domain and computing the corresponding minimizers.
Finally, the optimized subspaces are constructed using a mass-dependent principle component analysis. The optimality provided by
this scheme contrasts it from alternative approaches, which aim at constructing spaces containing low-frequency deformations. The
benefit of this construction is that compared to alternative approaches a similar approximation quality is achieved with subspaces
of significantly smaller dimension. This is crucial because the run-times and memory requirements of the real-time shape modeling
and interpolation schemes mainly depend on the dimensions of the subspaces.
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1. Introduction

Creating digital geometric content is an important task for
applications in various areas including digital manufacturing,
computer animation, and virtual reality. Acquisition tech-
nologies, like 3D-scanning, allow for creating accurate digital
copies of detailed real-world objects. Therefore, methods for
modeling a single shape and for synthesizing new ones from a
collection of shapes are essential for customizing digital content
to the demands of users and applications. Here we consider two
such methods: deformation-based modeling and shape interpo-
lation. Deformation-based modeling tools provide a user with
simple and intuitive interfaces for modifying a digital shape.
For example, a user can translate and rotate parts of the object,
so-called handles, and the rest of the shape follows automati-
cally. Physical models of deformable objects are used to pro-
duce deformations that match the users intuition. For shape in-
terpolation, we consider a set of example shapes, e.g., different
poses of one character. Shape interpolation allows for creating
new “in-between shapes” and is a crucial module of schemes
for tasks like morphing, deformation transfer, example-based
shape editing, example-based materials for controlling simula-
tions, and shape exaggeration.

A fundamental problem for both methods, modeling and
interpolation, is that on the one hand, processing tools need
to solve high-dimensional non-linear optimization problems to
compute the deformed shapes, and, on the other hand, users
expect fast or even interactive responses. Therefore, it is es-
sential to design efficient approximation algorithms for these
problems. Subspace methods proved to be very effective. The
principle is to construct a low-dimensional approximation of
the complex problem in a preprocess (offline phase) and to

solve only the low-dimensional system in the interactive (on-
line) phase. Different schemes for constructing subspaces for
deformation-based modeling have been introduced based on
space deformations, radial basis functions, bi-harmonic prob-
lems, low-frequency Laplace–Beltrami eigenfunctions or vibra-
tion modes. The common goal of these methods is to construct
subspaces containing low-frequency deformations. An alter-
native approach is to learn the subspaces from observations.
Methods following this idea, such as the method of snapshots,
are prominent for the reduction of physical simulations.

In this work, we introduce constructions of subspaces that
are optimized for deformation-based shape modeling and shape
interpolation tasks. The constructions involve the following
technical contributions. We formulate general frameworks for
shape modeling and interpolation as parameterized optimiza-
tion problems with low-dimensional compact parameter do-
mains. Then, observations of the shape modeling or interpo-
lation tasks can be obtained by samplings the solution space of
the optimization problem. This in turn can be done by sam-
pling the parameter domain of the optimization problem and
computing the corresponding deformations. For shape inter-
polation, the parameters are the interpolation weights. Since
the interpolation weights are positive and sum to one, the set
of weights forms a simplex, whose dimension is one less than
the number of example shapes to be interpolated. To generate
the snapshots for the interpolation problem, we sample the sim-
plex and compute the corresponding interpolating shapes. For
deformation-based modeling, we consider deformation handles
that can be translated and rotated in space. To obtain a com-
pact parameter domain, we introduce a maximum translation
for the handles, e.g., the length of the objects bounding box di-
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agonal, and parametrize the rotations using Euler angles. Then
the parameter domain is a rectangular box (cuboid) of dimen-
sion 6(h − 1), where h is the number of handles. A sample
point in this box specifies locations in R3 for all handles. To
generate the snapshots for deformation-based shape modeling,
we sample the box and for every sample point, we compute
the deformation corresponding to the handle locations. Once
the snapshots for a specific modeling or interpolation task have
been generated, the subspaces that optimally approximate the
snapshots are constructed. A mass-orthonormal basis of a such
a subspace can be obtained by a mass-weighted principle com-
ponent analysis (PCA) of the snapshots.

Our approach contrast from alternative subspace construc-
tion for deform-based modeling. Whereas our approach yields
low-dimensional subspaces that are optimized for containing
good approximations of the deformations that are relevant for a
specific setting (e.g., a set of handles defined on shape or a set
of example shapes to be interpolated), alternative approaches
aim at spaces containing low-frequency deformations. We an-
alyze the quality of the resulting subspaces in experiments
and comparisons to alternative approaches. In particular, we
demonstrate that the proposed construction results in more effi-
cient subspaces that achieve a comparable approximation qual-
ity with significantly smaller dimension. This is crucial because
the computational cost for solving the reduced problems mainly
depends on the dimension of the subspace.

2. Related Work

Deformation-based shape modeling and interpolation have
received much attention in recent years. We can distinguish
between linear and non-linear frameworks. For an in-depth dis-
cussion of linear schemes, which are not in the focus of this
paper, we refer to the survey [1]. Examples of non-linear frame-
works are co-rotated iterative Laplacian editing schemes [2, 3],
PriMo [4] and As-Rigid-As-Possible [5, 6].

Dimensional reduction proved to be a powerful concept for
designing computational schemes for (non-linear) deformation-
based shape modeling that run at interactive or real-time rates.
Such schemes construct a subspace of the search space of
all possible deformations and restrict the optimization prob-
lems to these subspaces. Ideally, such a subspace is low-
dimensional and contains good approximations of the desired
deformations. Different approaches that aim at constructing
subspaces of “low-frequency” deformations have been pro-
posed. To construct low-frequency deformations in the signal
theoretic sense, eigenfunctions of the Laplace–Beltrami oper-
ator have been used [7, 8, 9, 10]. An alternative is to use the
low-frequency vibration modes of the deformable object to con-
struct subspaces. To allow for larger deformations, these sub-
spaces are augmented with modal derivatives [11, 12] or vectors
obtained by transformations of the modes [13].

Subspaces can also be constructed by subsampling the sur-
face and propagating displacements of the sample points to dis-
placements of the vertices via a linear map [3, 14, 15, 16]. To
construct this map radial basis functions with local support cen-
tered at the sample points are used. As a result the displace-

ments of a single sample point only affect a local neighbor-
hood of the surface. The resulting spaces contain only low-
frequency deformations since localized deformations can only
be represented up to the sampling density. Alternative to ra-
dial basis functions, bi-Laplacian systems on the volume en-
closed by the surface are used to create the map from the sam-
ples to the mesh vertices. To ensure positive correlation of dis-
placements of the samples and the vertices, the bounded bi-
harmonic maps [17] impose a non-negativity constraint on the
solutions of the bi-Laplace systems. In [18] the non-negativity
constraints is dropped and the sampling-based approach is aug-
mented with affine deformations of the handles. Though this
approach considers deformations of the handles, the idea is or-
thogonal to the scheme we propose. While we consider the non-
linear deformations of the shape induced by rigid deformations
of handles to obtain snapshots, these consider affine deforma-
tions of the handle regions only and are directly added to the
subspace basis. For the deformation of articulated characters,
where the mesh describing the skin is attached to a skeleton,
a dimensional reduction based on rotational regression was in-
troduced in [19]. In [20], a scheme for context-aware skeletal
shape deformation that uses example poses (provided by the
user) was introduced.

The principle of space-deformation schemes is to deform the
ambient space around the shape and thus implicitly the shape,
as well. The deformations of the space are typically controlled
by a cage [21, 22, 23, 24, 25]. The map from displacements of
the cage to displacements of the mesh is linear. Hence, the cage
implicitly defines a subspace. However, it is not efficient to ex-
plicitly construct the basis of the resulting subspace because the
spaces are too high-dimensional. In [26], the set of shape de-
formations provided by the user is used to reduce the number of
control points that influence the vertices, which helps localizing
the influence of the control vertices.

The method we propose is the first subspace construction
from snapshots for deformation-based modeling and shape in-
terpolation. Still, constructing subspaces from snapshots an es-
tablished approach and methods following this principle have
been used, for example, for the reduction of simulations of de-
formable objects [11], character skinning [27] and for creat-
ing and animating human shape models [28]. Principle compo-
nent analysis has also been applied for the construction of blend
shape models, which are used for facial animation [29].

To get interactive or real-time rates for larger meshes, in
addition to the dimensional reduction, a scheme for efficient
evaluation of the reduced deformation energy and its gradient
are needed. Different schemes have been proposed, some use
the specific structure of a particular deformation energy, others
are more general. For iterative Laplacian editing, the reduced
Laplace matrix can be precomputed and prefactored. Then the
linear systems, which must be solved in every iteration, can di-
rectly be solved in reduced coordinates. For fast evaluation of
the As-Rigid-As-Possible energy and its gradient, the precom-
putation of the reduced Laplace matrix is combined with a clus-
tering scheme for fast estimation the rotational parts of the de-
formation gradients [30]. Finite element discretizations of lin-
ear materials (St. Venant–Kirchhoff materials) yield a deforma-
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tion energy that is a fourth-order polynomial. The coefficients
of these polynomials can be precomputed [11], which yields
exact evaluation of the reduced energy and forces at costs de-
pending only on the subspace dimension. The optimized cuba-
ture [31, 13, 32] can be applied for approximating the reduced
energy and forces of more general materials. An alternative is
the mesh coarsening approach proposed in [12].

Linearized deformation models have also been used for
shape interpolation. An example is Poisson shape interpola-
tion [33]. Due to the linearization this scheme develops artifacts
when interpolating between large deformations. Examples and
a discussion of this effect can be found in [34]. Interpolation
schemes based on non-linear deformation models have been
proposed in [35] for implicitly defined shapes in 2D and 3D im-
ages, in [36] for planar shapes, and in [34, 37, 38, 39, 40, 41, 42]
for meshes. To compute one interpolating shape, a non-linear
optimization problem has to be solved. Even with multi-grid
solvers the computation of an interpolated shape for meshes
with 20-50k vertices requires several seconds on a regular desk-
top computer. In recent work efficient approximation algo-
rithms have been proposed. In [37], a combination of mesh
coarsening and deformation-transfer has been used to speed-
up the computation of interpolated shapes. In [41] an ef-
ficient block-coordinate descent scheme has been introduced
to speed-up the as-isometric-as-possible shape interpolation
scheme. These schemes can achieve interactive rates (one or
two interpolated shape per second for meshes with 20-50k ver-
tices on a regular desktop computer). In [38], the mesh is em-
bedded in a coarser mesh and example shapes of the coarse
mesh are constructed. To speed-up the shape interpolation, only
the coarse meshes are interpolated and the deformations of the
coarse mesh are propagated to the finer mesh. A subspace ap-
proach that yields real-time computation rates even for larger
meshes has been proposed in [42]. A major difference to the
proposed scheme is that in [42] the subspace are constructed
solely using forces and Hessians of the example shapes and the
computation of samples is avoided. This lowers the computa-
tional effort for the subspace construction, but does not provide
the optimality the proposed scheme offers.

Shape spaces encode individual shapes as points. The
spaces of meshes can be equipped with Riemannian met-
rics [43, 44]. The shortest curve connecting two shapes is a
geodesic. Traversing such a geodesic, provides a way of inter-
polating shapes. In [45], shape interpolation is used for smooth-
ing curves in shape space. Based on shape interpolation, they
introduce a curve shortening flow that evolves curves towards
geodesics in shape space.

3. Parametrized Optimization Problems in Shape Defor-
mation

Computing optimal deformations of shapes is important for
many applications in geometry processing. Here, we consider
optimization problems that are controlled by few parameters.
This means, we are looking at problems of the form

arg min
x∈Rn

F(x, ω), (1)

where x ∈ Rn is the search space, ω ∈ Ω ⊂ Rm is a vec-
tor listing the parameters, and we assume that n is large and
m is small. We specifically address two applications, namely
deformation-based shape modeling and interpolation. Before
discussing these two problems, we first briefly discuss defor-
mation energies.

3.1. Deformation energies
We are considering a flexible discrete shape that has n de-

grees of freedom. For example, a triangle or tetrahedral mesh
with n/3 vertices. In this case, the coordinates of the vertices
are the degrees of freedom. One ingredient to variational shape
deformation problems in geometry processing is a deformation
energy. This is a functional E : Rn → R≥0 on the space of
configurations of the shape which vanishes for the neutral con-
figuration x̄. In terms of continuum mechanics, the shape repre-
sents a deformable object consisting of a hyperelastic material.
A material is elastic if the forces acting on the object depend
only on the actual configuration x and is independent of the
deformation path and speed. This means that forces can be de-
scribed by a vector field on the space of configurations of the
object. The material is hyperelastic if this field is conservative.
Then, the deformation energy (or potential) E(x) is the function
(determined up to a constant) whose negative gradient equals
the force. It measures the energy stored in the object when it is
deformed to the configuration x.

There are various deformation energies that have been used
in geometry processing. Examples are PriMo [4], As-Rigid-
As-Possible [5, 6], and Discrete Shells [46] for surface meshes
and finite elements discretizations of elastic solids with differ-
ent hyperelastic materials for tetrahedral meshes [47]. The ap-
proach we are presenting can be applied to various deformation
energies and discrete shape representations including triangle
and tetrahedral meshes as well as spline type representations or
point clouds. For our experiments, we used tetrahedral meshes
and a finite elements discretization of St. Venant–Kirchhoff ma-
terials for elastic solids.

3.2. Deformation-based shape modeling
The general idea of deformation-based shape modeling is to

consider the shape as a deformable object and to allow the user
to define constraints on the mesh to model it. Different user-
interfaces for specifying these have been introduced. One ef-
fective approach is the handle-based interface: the user defines
regions of the object to be handles. Then in the modeling phase,
rigid transformations of the handles are specified, which define
prescribed positions for the handles’ constituent vertices. Ex-
plicitly, we include this interface to the objective by adding a
quadratic penalization term:

µ
∑

Hi

∑
v j∈Hi

m̄ j

∥∥∥v j − Riv̄ j + ti
∥∥∥2
, (2)

where Hi denotes the handles, v j, v̄ j ∈ R3 the vertices in the
deformed and neutral configuration, and Ri and ti the rotation
and translation of the ith handle, i.e., the user parameters. The
contribution of each vertex is weighted with the mass m̄i of
v̄i, (a fourth of the combined volume of all tetrahedra adjacent
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Figure 1: Large deformations of the dragon model with 2 handles (hind legs and forelegs plus head) and 6 non-rigid degrees of freedom computed in a 40 dimensional
subspace.

to v̄i) to make the energy robust against remeshing and mesh
coarsening. The parameter µ is a global multiplier weighting
the penalization term against the elastic potential.

This constraint term can be written as a parameter-dependent
function on Rn. A rigid transformation can be specified by six
parameters, three for the translations and three for the rotations
(e.g., using Euler angles). Let ω be a vector listing the six pa-
rameters and x the vector listing the vertex coordinates of all
vertices, then the potential (2) is a function EH(x, ω) depending
on x and ω.

The deformations we want to compute are the minimizers
of the sum of the two energies. This means, for modeling the
shape, we need to solve optimization problems of the form (1),
where the objective functional is

F(x, ω) = E(x) + EH(x, ω). (3)

Since the deformation energy E is invariant under rigid motion,
applying the same rigid transformation to all handles means that
the minimizers are transformed with the same rigid transforma-
tion. Therefore, m + 1 handles effectively lead to 6 m parame-
ters.

3.3. Shape interpolation

For shape interpolation, we consider a set of m + 1 meshes
with the same connectivity but different vertex positions x̄k ∈
Rn. This setting naturally arises when the shapes are m+1 poses
of a character, m + 1 deformations of an object, or the shapes
have the same texture. For a general set of shapes, the require-
ment that all shapes have the same connectivity means that there
is a consistent set of correspondences between the shapes given
and the interpolation will respect the correspondences. For an
overview of methods for establishing correspondences between
meshes, we refer to the recent survey [48].

Our goal is to compute shapes that interpolate between the
m + 1 example shapes. Analogous to barycentric interpolation,
a positive weight ωi is assigned to every shape such that the
weights sum to one. For every vector of m + 1 weights, an

interpolated shape can be computed. If one of the weights takes
the value one, the interpolated shape equals the corresponding
example shape. The mean shape is the interpolated shape we
obtain if all weights are 1/(m + 1). For any choice of weights,
the corresponding interpolated shape is computed by solving
an optimization problem. To model this problem, we consider
m + 1 deformation energies Ek. The kth energy has the shape x̄k

as its neutral configuration. Since all m + 1 example shape have
the same connectivity, one vector x ∈ Rn (listing coordinates
of all vertices) specifies deformed configurations for all m + 1
example shapes. Then, the Ek(x) measure the energy stored in
the material if it is deformed from its neutral configuration x̄k

to x. The interpolating shape corresponding to a weight vector
ω = (ω0, ω1, ...ωm) is the configuration x that minimizes the
weighted sum of the deformation energies Ek. This means to
compute an interpolating shape, an optimization problem of the
form (1) must be solved, where the objective functional is

F(x, ω) =
∑

k

ωkEk(x).

For a continuous formulation and properties of the shape inter-
polation, we refer to [35, 42]. Since the weights sum to one, the
optimization problem has m independent parameters.

4. Sampling the Space of Solutions

Before we consider the construction of optimized subspaces
in the next section, we look at strategies for sampling the solu-
tion space of the optimization problems. A reasonable approach
is to sample the parameter domain following a particular distri-
bution and compute minimizers of the samples. In this section,
we first discuss the sampling of the parameter domains for mod-
eling and interpolation, then the efficient computation of min-
imizers for lifting the sampling from the parameter domain to
the solution space, and, finally, rigid registration of the samples
for shape interpolation.
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Figure 2: Shapes that interpolate between two poses (left and right) of a lion computed in a subspace of only 6 dimensions.

Figure 3: Example showing local deformation computed using our subspace
approach.

4.1. Parameter sampling

The parameter domain of the shape interpolation problem is
compact by construction due to the constraints that the weights
are positive and sum to one. Explicitly, the domain forms an
m-dimensional simplex. It is a natural idea to draw samples
uniformly distributed on this domain.

The parameter space for deformation-based editing con-
sists of rigid transformations of the handles. Explicitly, we
parametrize the rotational part by extrinsic Euler rotations about
a coordinate system fixed at the handle’s center, which allows
to describe any orientation in space and the translation part as
some offset to the neutral configuration. To obtain a compact
parameter domain, we specify a maximum for each of the Eu-
ler angles and translations in the coordinate directions. The re-
sulting set is rectangular box in the parameter domain that we
sample following a uniform distribution. It is noteworthy that
this approach gives a significantly different training set com-
pared to a sampling with a normal distribution around the neu-
tral configuration. While neither choice has a natural justifi-

cation, a normal distribution would favor small deviations re-
sulting in an undesired emphasis towards small displacements.
Furthermore, we want to remark that instead of Euler angles,
other parametrizations of the rotation group could be used. This
would potentially alter the resulting sampling because we are
not compensating for the distortion introduced by the parame-
terization.

Based on these distributions, we tested different ways to gen-
erate the sample set, which are sampling on a uniform grid, ran-
dom sampling, and Sobol sequences [49], a quasi-Monte Carlo
(QMC) sampling method. However, we did not notice a sig-
nificant difference in the performance of the whole subspace
construction when altering the construction of the sample set in
our experiments. Therefore, we used the simplest strategy, the
random sampling, for producing the results shown in the paper.

4.2. Numerical solver for generating the samples

The first step for constructing an optimized subspace is to
compute a number of snapshots of the unreduced optimization
problem. For this we use Newton’s method. Since the de-
formation energies are not convex, the Hessian is, in general,
not positive definite. This can be rectified by applying some
scheme to force positive-definiteness by either explicitly or im-
plicitly modifying the eigenvalues of the Hessian [50]. Explicit
modification of the Hessian is generally costly as it requires
eigendecomposition of the large matrix. A method for Hes-
sian modification that is specifically tailored for our problem
are the so-called invertible finite elements, which were intro-
duced in [51]. The technique uses the fact that the Hessian
of the deformation energy is assembled from contributions of
the tetrahedral elements. Instead of decomposing the whole
Hessian, it modifies the elemental contributions of the individ-
ual tetrahedra by computing a modified singular value decom-
position (SVD) UΣV of the deformation gradient. The stan-
dard SVD is altered in the sense that U,V are chosen such that
det(U) = det(V) = 1. Hence, negative singular values are al-
lowed and a negative value indicates that the tetrahedron is in
an inverted state. For the computation of an element’s contribu-
tion, these values are clamped at some threshold and the contri-
bution is computed for this clamped state. This provides a tool
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Figure 4: Shapes that interpolate between a cylinder and a helix computed in a
20 dimensional subspace.

to modify the Hessian. The choice of the clamping threshold is
heuristic and depends on the configuration of the mesh. Setting
all singular values to one means to always use the Hessian at
the reference shape, which is a minimizer of the elastic energy
and, hence, guarantees positive definiteness of the contribution
to the Hessian. To generate the samples for our experiments,
the threshold was chosen between 0.5 and 0.8.

The number of steps the Newton solver requires to converge
depends on the choice of the initial estimate. Since many so-
lutions are computed to generate the samples, their locality can
be exploited. To achieve a good initial guess, we choose from
the computed samples the closest point (in parameter space) to
the next sample.

4.3. Rigid registration of the samples
For shape interpolation, an additional step is required to ob-

tain a meaningful training set. The deformation energies are
invariant to rigid transformation of both the neutral and the
deformed configuration. As a consequence, the interpolated
shapes are only defined up to rigid motion. However, the sub-
space construction is not invariant to rigid motion of the sam-
ples. Therefore, we apply a rigid registration to the samples and
the example shapes before the subspace construction. For each
of the shapes, we determine the rigid motion that minimizes the
squared distance to one selected reference shape (e.g., the mean
shape). Determining the optimal rotation amounts to comput-
ing an SVD, see [52] for details. For measuring the distance
between two shapes, we use the L2-norm (or mass weighted
norm), which we introduce in equation (5) of the following sec-
tion.

In constrast to shape inerpolation, the objective function used
for deformation-based shape modeling is not invariant under
rigid motion as the handle positions are fixed. Therefore no
registration is needed. The fact that applying the same rigid
motion to all the handles only rigidly transforms the minimizer
is considered during the sampling of the parameter domain by
fixing the location and orientation of one handle.

5. Subspace Construction

In this section, we discuss the dimensional reduction of the
optimization problem (1). The motivation is that the optimiza-

tion problem is controlled by only a few parameters (rigid mo-
tions of handles for deformation and weights for the interpo-
lation), which means that in the solution space the n degrees
of freedom of the shape (e.g., the vertex positions) are corre-
lated. In other words, the solution space of the optimization
problem is a low-dimensional object in Rn. The idea is to con-
struct a low-dimensional (affine) subspace of Rn that approx-
imates the solution space and restrict the optimization to the
subspace. Since the solution space is non-linear, the dimension
of the affine space will be higher than the set of parameters of
the optimization problem. The fidelity of the reduction of the
problem depends on how well the subspace can approximate
the solution space.

In this section, we introduce a technique for constructing sub-
spaces that are optimized for providing good approximations.
Since checking how well a subspace approximates the whole
solution space is infeasible, we first sample the solution space
(as described in Section 4) and then optimize for the approxi-
mation of the sampling.

An affine subspace S of Rn can be represented as a linear
subspace of Rn that is attached to a reference point τ ∈ Rn. Let
U ∈ Rn×d be a matrix whose columns are the basis vectors of
the linear space. Then the affine space is

S = {Uq + τ | q ∈ Rd}. (4)

For any point x = Uq+τ in S , we call q the reduced coordinates
(w.r.t. U and τ).

For the construction of the subspace for deformation-based
modeling, we want the neutral pose x̄ to be an element of the
subspace. Therefore, we set τ to be the neutral pose and con-
struct only the linear subspace that we attach to this point. For
the interpolation problem, we proceed similarly and set τ to be
the mean shape of the example shapes.

5.1. Optimal approximation of the samples

Let {ỹ j}i∈{1,2,...,ns} ⊂ Rn be the samples of the solution space of
the optimization problem (1). For the computation, it is conve-
nient to describe them as displacements y j of the shape τ, i.e.,
y j = ỹi−τ. To measure the distance of a sample from a subspace
of Rn, we use the scalar product on Rn induced by the mass ma-
trix M of the shape τ (hence the neutral shape for deformation
and the mean shape for interpolation), which is a numerical dis-
cretization of the L2-scalar product on the displacement fields
on the shape. For the explicit formulae for the entries of the
mass matrix for tetrahedral meshes, we refer to [53, 54]. Using
the mass matrix allows to measure the distance of a sample to a
subspace in a manner that is robust against remeshing, coarsen-
ing or refining of the meshes. We denote the scalar product and
norm by

〈x, y〉M = xT My and ‖x‖M =
√
〈x, x〉M . (5)

and create the optimized subspace by PCA. Specifically, we
construct the basis matrix U that minimizes the approximation
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of the samples as

arg min
{ui}i∈{1,...,d}

ns∑
j=1

∥∥∥∥∥∥∥y j −
d∑

i=1

〈
y j, ui

〉
M

ui

∥∥∥∥∥∥∥
2

M

(6)

subject to
〈
ui, u j

〉
M

= δi j.

with (mass)-orthonormal columns {ui}i∈{1,2,..,d} of U.

5.2. Method of snapshots

There are different ways for solving (6). In our case, where
the number ns of samples is small compared to the dimension
n of the search space, the following technique, which is often
called the method of snapshots, is efficient. For a proof that the
resulting basis solves the problem (6), we refer to [55].

The first step is to construct the symmetric positive-definite
matrix YT MY , where the vectors yi form the columns of Y . This
is a dense matrix of size ns. Then, the first d eigenvectors φi (in
order of descending eigenvalue) solving the problem

YT MYφi = λiφi

are computed. The PCA basis ui is obtained by multiplication
of the eigenvectors with the matrix Y and normalization (w.r.t.
‖·‖M ) of the result. This can be done by setting

ui =
1√
λi

Yφi.

The approximation error achieved by the PCA basis with d ele-
ments can be expressed in terms of the eigenvalues λi∑ns

i=d+1λi.

Instead of computing the basis with a given number of ele-
ments, one can compute a basis that satisfies a prescribed ap-
proximation goal. Such a goal should be chosen such that∑d

i=1λi∑ns
i=1λi

is close to one. However, this only guarantees the approxima-
tion of the set of samples. The approximation of the solution
manifold additionally depends on how well the sampling ap-
proximates the solution space.

6. The Reduced Optimization Problem

After the subspace has been constructed, we restrict the op-
timization problem to this space. This means, we consider the
reduced objective function

F̂(q, ω) = F(Uq + τ, ω)

and instead of (1) and solve the reduced problem

arg min
q∈Rd

F̂(q, ω).

Our goal is to construct the reduced optimization problem such
that the cost for solving it depends only on the subspace dimen-
sion and the number of parameters of the optimization problem.
In particular, it should be independent of the resolution of the
shapes to be edited or interpolated. To achieve this goal, we
need a strategy for evaluating the reduced objective functional
(and its derivatives) at costs independent of the resolution of the
shapes.

6.1. Evaluation of the reduced functional and gradient

St. Venant–Kirchhoff materials have the property that the cor-
responding deformation energy is a quartic polynomial in the
coordinates of a particular displacement. By substituting x in
(1) for Uq + τ and grouping the terms by the entries of q one
obtains a quartic polynomial in Rd, for which the coefficients
can be precomputed. This yields a scheme for exact evaluation
of the reduced deformation energy at a computational costs de-
pending only on d. For details, we refer to [11].

For deformation-based modeling, the objective functional
additionally comprises the energy EH . This energy depends on
the vertex positions of the deformed mesh, i.e., the unknowns
of the optimization process, and the rigid transformations of the
handles, i.e., the user constraints, which change regularly (as
opposed to the rest pose vertices v̄i in (2)). To turn this energy
into a quadratic form, which we can easily reduce, we extend
the domain and allow for arbitrary affine, instead of rigid, trans-
formations of the handles. It is easy to see that the extended
energy depends quadratically on both, the vertex positions and
the 3× 4 transformation matrices Ai specifying the affine trans-
formations of the handles Hi. By substituting x for Uq + τ in
EH and grouping for the entries of q and the Ai’s one obtains
a quadratic polynomial in d + 12 · h unknowns, where h is the
number of handles. Thus, one obtains a scheme for which the
computational effort depends on the subspace dimension and
the number of handles, but is independent of both the number of
vertices of the mesh and the number of vertices in each handle.
We want to emphasize that this yields an exact evaluation of the
energy EH . Though the reduced energy could be queried with
arbitrary affine transformations, we consider only rigid transfor-
mations of the handles both in the offline phase (random rigid
transformations of the handles are generated for sampling) and
in the online phase (user specifies rigid transformations using
the mouse).

Alternatives to the exact evaluation are the optimized cuba-
ture [31, 13], mesh coarsening [12], and rotation clustering [30]
(the latter is only applicable for the as-rigid-as-possible defor-
mation energy). All these schemes approximate the reduced
functional and gradient. We want to mention that compared to
the approximation schemes, the exact evaluation comes at ad-
ditional computational costs in the offline and the online phase.
We still used the exact evaluation in our experiments because
this focuses the evaluation on the subspace quality (since the
quality of the force approximation does not influence the re-
sults).
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Figure 5: Shape interpolation of multiple reference shapes of the dog in a 10 dimensional subspace. The interpolated shape was recorded with a weight of 0 for
the sitting reference pose. Hence, the bending of the hind legs is not present.

Model Preprocess Online

Name V T Sample Count Sample Generation Iterations Subspace Size Coefficients BFGS Iterations

Shape Interpolation

Lion 13k 65k 4 26 s 28 6 1.18 s 0.057 ms 7
Helix 1k 2.5k 30 27 s 13 20 5.88 s 0.6 ms 3
Dog 32k 122k 20 477 s 13 10 25 s 0.6 ms 3

Centaur 16k 54k 40 561 s 17 24 726 s 1.16 ms 6

Deformation-based Shape Editing

Dinosaur 27k 107k 50 2099s 12 40 2124 s 1 ms 10
Dragon 32k 121k 300 8121s 19 40 5162 s 1.1 ms 9

Elephant 24k 82k 200 3608s 12 45 5663 s 2.63 ms 8
Dog 32k 122k 200 4862s 25 17 380 s 0.25 ms 8

Table 1: Performance statistics measured on an quad-core Intel Core i7-4820K running at 3.7GHz. From left to right: the number of vertices, number of tetrahedra,
recorded samples, total time to generate the samples, average number of Newton iterations per sample point, subspace dimension, the construction time for the basis
including the polynomial coefficient computation, average time for one BFGS iteration in the reduced model, and average number of iterations required. The online
results have been recorded in a live-modeling session.

6.2. Solving the reduced optimization problem

After the reduction, we have to solve a low-dimensional non-
linear optimization problem for computing a deformed or inter-
polated shape. Since this is done during the online phase the
performance of the solver is of particular interest.

Using Newton’s method yields the same problem as dis-
cussed for the unreduced case. Namely, that the Hessian may
not be positive definite. In contrast to the unreduced case, the
invertible finite elements are not applicable here since we do
not construct the Hessian by computing the contributions of the
individual tets, but evaluate the precomputed polynomials. In
our experiments, we found it preferable to use a quasi-Newton
method instead. The scheme constructs and updates a symmet-
ric positive-definite approximation of the Hessian during the
optimization. In our experiments, we found the BFGS method
to be effective. This scheme maintains an approximation of the
inverse of the Hessian. Hence in every iteration not only the
time for setting up the Hessian is saved, but also the time re-
quired for computing the descent direction is reduced. For a
in-depth discussion of the BFGS scheme including a formula
of the update rule, we refer to [50]. The default initialization of
the inverse Hessian approximation is the identity matrix. How-

ever, the performance can be improved by initializing with a
better approximation of the true inverse Hessian. We found us-
ing the inverse of the Hessian of the neutral and mean shape for
shape modeling and interpolation effective in our experiments.

The termination criterion we use follows the framework dis-
cussed in [56]. It decides whether to stop based on the change
of the objective value F, the convergence of the sequence xk

and the necessary condition ‖ ∇ Ek‖ = 0 and is given by

Ek−1 − Ek < ε(1 + |Ek |)
‖xk−1 − xk‖ <

√
ε(1 + ‖xk‖)

‖ ∇ Ek‖ ≤ 3
√
ε(1 + |Ek |)

where ε ≥ 0 is the convergence tolerance. At optimization time,
a value between 10−3 and 10−7 is picked.

7. Results and Discussion

The supplementary video shows examples of real-time shape
modeling and interpolation performed with our implementation
of the proposed framework. In all the shown examples, we use
very low-dimensional subspaces (6-60 dim.) and demonstrate
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Figure 6: Comparison of results produced in different subspaces. From left to right: Unreduced reference solution, our construction, spaces of the same dimension
constructed using vibration modes and modal derivatives, same construction with higher dimension. In a subspace created by our method, the handle constraints
specified by the user (blue regions) match the positions of the full optimization much closer. This allows a more fine-grained positioning of local parts while
retaining a plausible elastic behavior of the whole object.

that large deformations including twists can be represented.
One example, is the interpolation between a cylindrical shape
and a twisted helix, shown in Figure 4. The example nicely
illustrates the high-quality of the shape interpolation resulting
from the physically-based problem modeling. The fact that the
whole sequence of shapes lies in a 20-dimensional subspace,
which has been computed using the proposed scheme, illus-
trates effectiveness of the subspace construction. Further ex-
amples of shape modeling and interpolation that include large
deformations are the dragon, the dogs, and the lion shown in
Figs. 1, 5, and 2. Figure 3 shows an example in which the
subspace method is used to perform local modeling operations
(modeling of the tongue of the dog).

Comparison with Biharmonic Coordinates and Radial Basis
Functions. We compare our subspace construction method to
Biharmonic Coordinates (BC) Wang et al. [18] and radial ba-
sis functions (RBF). For the comparison, we use the Chinese
Dragon model with a St. Venant–Kirchhoff material (both Lamé
parameters equal 1) and a weight of µ = 1000 for the handle
constraints and the Armadillo model with the Lamé parameters
set to 1 and µ = 1. For computing the deformation in all cases,
we initialize the Newton scheme with the mass-orthogonal pro-
jection of the result derived from a full optimization to the re-
spective subspace and iterate until convergence with a tolerance
of ε = 10−7.

Model Subspace L2-Distance

Name V Construction d (Std. Dev.)

Dragon 32k
Our 40 0.042 (0.013)

VM+MD 40 0.151 (0.058)
130 0.045 (0.022)

Elephant 24k
Our 45 0.009 (0.008)

VM+MD 45 0.101 (0.040)
93 0.056 (0.045)

Helix 1k

Our 20 0.002 (0.002)

VM+MD
20 0.263 (0.074)

100 0.083 (0.015)
260 0.004 (0.001)

Table 2: Comparison of the relative L2 error of our subspace construction meth-
ods to a space obtained from vibration modes and modal derivatives.

Both, BC and RBF require a point sampling of the
shape, for which we use farthest point sampling on the
mesh vertices. Starting with this sampling, we construct
the BC subspace by generating the weights with libigl’s
biharmonic coordinates implementation, then, construct-
ing three degrees of freedom (x,y,z movement) from each scalar
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Figure 7: Visual comparison of a subspace created from sampling of the solution space (ours) vs. the subspace construction from [18] (Biharmonic Coordinates),
and a spatial sampling followed by a reconstruction of the displacement field using radial basis functions. The degrees of freedom can be roughly an order of
magnitude less, when sampling the solution space.
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Figure 8: Visual comparison of a subspace created from sampling of the solution space (ours) vs. the subspace construction from [18] (Biharmonic Coordinates),
and a spatial sampling followed by a reconstruction of the displacement field using radial basis functions.

weight. For radial basis functions, a number of choices exist,
which include isotropic Gaussians [57, 58] and various kinds
of piecewise defined polynomials [15, 59, 60]. We opt for
isotropic Gaussians and compute the weights by using the dis-
tances in the embedding space.

Table 3 lists objective value and gradient magnitude (mea-
sured in the unreduced space) for the respective shapes for a
different subspace dimensions. Note that these additionally de-
pend on the total volume, which is 19.1 for the dragon and
234741 for the armadillo. The subspace dimension d depicts
all independent degrees of freedom; for a direct comparison
with the number h reported in [18], it must be divided by three
(e.g., d = 384 corresponds to 2 handles and 120 additional
points). Fig. 7 and 8 depict visual comparisons. The table
shows that, from a deformation energy perspective, our sub-
space yields states comparable to RBF and BC subspaces with
up to 20× the number of DoFs. This is a crucial advantage
since the computation time required for solving the reduced op-
timization problems mainly depends on the dimension of the
reduced space. The order of the dependency varies with the
method used for energy and gradient approximation. The exact
evaluation of the reduced energy gradients by polynomial re-
duction, we used here, yields a force evaluation cost of O(d4).
Faster schemes that approximate the energy gradients, like the

optimized cubature, yield a cost of O(d2).

Method Chinese Dragon (Fig. 7) Armadillo (Fig. 8)

d Objective Gradient d Objective Gradient
Full Optimization – 4.37 · 10−1 8.51 · 10−3 – 1.42 · 103 3.48 · 101

Ours 40 1.03 · 100 1.24 · 100 60 9.12 · 103 9.03 · 103

Wang et al. [18]

69 1.43 · 102 5.87 · 102 138 2.33 · 106 5.02 · 105

114 6.15 · 101 1.31 · 102 228 4.44 · 104 8.24 · 104

204 5.99 · 101 7.85 · 101 408 1.09 · 104 3.27 · 103

384 6.12 · 100 1.06 · 101 768 8.54 · 103 7.59 · 102

744 1.33 · 100 4.40 · 100

RBF

69 2.46 · 103 8.15 · 103 138 1.29 · 106 9.42 · 105

114 7.49 · 102 3.73 · 103 228 3.75 · 105 1.58 · 105

204 1.94 · 102 9.18 · 102 408 5.11 · 104 4.40 · 104

384 1.83 · 101 2.43 · 102 768 9.89 · 103 8.00 · 103

744 2.22 · 100 3.72 · 101

Table 3: Quantititive comparison of our construction to BC and RBF subspaces.
We list objective values and gradients of a full optimization evaluated at the
respective results of a reduced optimization.

Comparison with vibration modes and modal derivatives. We
compare the subspaces computed with our scheme to the ones
spanned by vibration modes and modal derivatives (VB & MD),
which have been used for deformation-based modeling in [12].
This approach constructs the subspace from eigenvectors of
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the deformation energy’s Hessian at the model’s rest pose, i.e.,
derivatives of E in (3). Fig. 6 shows a visual comparison of
solutions that include large deformations (rotations of the han-
dles). Like our method, the use of VB & MD exhibits smooth
and plausible, elastic deformations of the model; it favors de-
formations of low change of elastic potential to be included in
the degrees of freedom of the subspace. However, this con-
struction scheme does not account for the constraints, which
limits how precise the local parts of the model can be placed
by the user. In order to compensate, new degrees of freedom
need to be included in the subspace. Our scheme can represent
very vivid deformations with roughly half as many dimensions
(see also the dinosaur and dragon model in the accompanying
video). For interpolation between two shapes, we compare with
subspaces spanned by vibration modes and modal derivatives of
both example shapes. We compare the results for the interpola-
tion between a cylinder and a helix—a very large deformation.
Approximation errors compared to the unreduced solutions are
given in Table 2. Fig. 3 demonstrates that the adaption of our
scheme to the constraints can easily be exploited for local defor-
mations. In this example the influence region of the deforma-
tion is limited to the head of the dog model. The interpolation
of the helix and the cylinder shows that for very large deforma-
tions, our approach performs much better than the construction
of subspaces only from derivatives of the example shapes. Ta-
ble 2 shows that in order to obtain a comparable approximation
quality to our 20-dimensional subspaces, the construction us-
ing modes and modal derivatives of the example shapes needs
a 260-dimensional subspace.

Computation times. The computational effort for generating
the samples is driven by three factors. The first is the num-
ber of samples that is to be computed. The second one is the
number of iterations needed to find a sample solution. Thanks
to better initial estimates that are sourced from the previous so-
lutions, the average of this number usually decreases the more
samples are to be generated. The third factor is the time spent
in one iteration of the iterative solver. This mostly depends on
the number of tetrahedra and, for shape interpolation, it also
depends on the number of example shapes. Table 1 lists details
and timing for these operations. Since we use the exact eval-
uation of the reduced forces, the preprocess also includes the
precomputation of the polynomial coefficients of the reduced
deformation energy. In particular, for the shape interpolation
(where polynomials coefficients for all example shapes must
be precomputed), this computation is costly. Switching to al-
ternative approaches, like optimized cubature [31] or rotation
clustering for the ARAP energy [30], would speed-up this com-
putation, and, additionally, the evaluation costs at runtime. We
still used the exact force evaluation to focus on the experimen-
tal evaluation on the subspaces (and eliminate the influence of
force approximation).

Sample Size and Convergence. We tested the robustness of the
subspace construction in the shape interpolation setting. Gen-
erally speaking, the generation of a linear subspace from a sam-
pling of the shape space, i.e., the solution space of (1), is prone

to overfitting. We evaluated how well the subspaces generalize
for different sample sizes computed for 6 poses of the Centaur
model (see also accompanying video). Fig. 9 shows the results
of leave-one-out cross-validation on different sample sizes and
fixed dimensions; the measured quantity (summarized by mean
and standard deviation) is the relative L2 error when approxi-
mating one interpolated shape in a subspace constructed from
the remaining samples.

The results show that the choice of sampling points has a
relatively low influence and even small sample sizes give us-
able degrees of freedom for finding solutions in the reduced
problem. The observation that a small number of DOFs suf-
fices agrees with [42], who used 64 DOFs – roughly 3 times as
many as we – to interpolate 5 shapes of the Centaur. Note that
the numbers are not directly comparable, as [42] used triangle
meshes and discrete shell energies.

20 40 60 80 100
0

1

2

3

·10−3

d = 18
d = 24

Figure 9: Mean L2 error and variance on subspaces of fixed size r created
from various sample sizes (horizontal axis). One nicely sees that the number of
samples needed is roughly the same as the desired dimension of the subspace.
The 18 dimensional subspace is sufficient to smoothly interpolate between 6
poses of the Centaur model, which is presented in the accompaniyng video.

8. Conclusion

We present a novel subspace construction for deformation-
based shape modeling and interpolation. In contrast to previous
approaches, our construction produces subspaces that are ex-
plicitly optimized for approximation of the deformations reach-
able with a specific user interface. With this method very low-
dimensional subspace for modeling and interpolation can be
produced. Comparisons to alternative approaches illustrate the
benefits of subspace optimization. These spaces are well-suited
for real-time shape modeling and interpolation.

8.1. Limitations and challenges

The price to pay for the optimization is that samples have
to be generated. This process is automatic but requires com-
putational effort. Since all samples could be computed inde-
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pendently, computation times could be greatly reduced by par-
allelization. A consequence of the optimization to a specific
setting (e.g., choice of handles) is that when the handle set is
modified the spaces loose their optimality. Strictly speaking,
new samples have to generated and a new space must be set up.

We are planning to integrate the subspace construction to a
real-time template-based capture system. We are convinced that
the combination of non-linear and physically-based deforma-
tion and real-time responses has potential for this area. Further-
more, it would be interesting to integrate shape analysis into the
subspace construction process. For example, it may be possible
to use symmetries of a shape to further reduce the size of the
subspaces.
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[6] Chao I, Pinkall U, Sanan P, Schröder P. A simple geometric model for
elastic deformations. ACM Trans Graph 2010;29:38:1–38:6.

[7] Rong G, Cao Y, Guo X. Spectral mesh deformation. Visual Computer
2008;24(7-9):787–796.

[8] Rustamov RM. On mesh editing, manifold learning, and diffusion
wavelets. IMA International Conference on Mathematics of Surfaces XIII
2009;:307–321.

[9] Dey T, Ranjan P, Wang Y. Eigen deformation of 3d models. Visual
Computer 2012;28(6-8):585–595.

[10] Wu Y, Au OKC, Taic CL, Lu T. Hirm: A handle-independent reduced
model for incremental mesh editing. Geometric Modeling and Processing
2015;.
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[37] Fröhlich S, Botsch M. Example-driven deformations based on discrete
shells. Comp Graph Forum 2011;30(8):2246–2257.

[38] Martin S, Thomaszewski B, Grinspun E, Gross M. Example-based elastic
materials. ACM Trans Graph 2011;30(4):72:1–72:8.

[39] Marras S, Cashman TJ, Hormann K. Efficient interpolation of artic-
ulated shapes using mixed shape spaces. Computer Graphics Forum
2013;32(8):258–270.

[40] Levi Z, Gotsman C. Smooth rotation enhanced as-rigid-as-possible mesh
animation. IEEE Trans Vis Comput Graph 2015;21(2):264–277.

[41] Zhang Z, Li G, Lu H, Ouyang Y, Yin M, Xian C. Fast as-isometric-as-
possible shape interpolation. Computers & Graphics 2015;46:244 – 256.
Shape Modeling International 2014.

[42] von Tycowicz C, Schulz C, Seidel HP, Hildebrandt K. Real-time nonlin-
ear shape interpolation. ACM Trans Graph 2015;34(3).

[43] Kilian M, Mitra NJ, Pottmann H. Geometric modeling in shape space.
ACM Transactions on Graphics 2007;26(3):64:1–64:8.

[44] Heeren B, Rumpf M, Wardetzky M, Wirth B. Time-discrete geodesics in
the space of shells. Computer Graphics Forum 2012;31(5):1755–1764.

[45] Brandt C, von Tycowicz C, Hildebrandt K. Geometric flows of curves
in shape space for processing motion of deformable objects. Computer
Graphics Forum 2016;35(2).

[46] Grinspun E, Hirani AN, Desbrun M, Schröder P. Discrete Shells. Sym-
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