
Vision, Modeling, and Visualization (2010)
Reinhard Koch, Andreas Kolb, Christof Rezk-Salama (Eds.)

Adaptive Image-space Stereo View Synthesis

Piotr Didyk1 Tobias Ritschel2,3 Elmar Eisemann2,3 Karol Myszkowski1 Hans-Peter Seidel1

1MPI Informatik, Saarbrücken 2Télécom ParisTech / CNRS, Paris 3Intel Visual Computing Lab, Saarbrücken

Abstract
Stereo vision is becoming increasingly popular in feature films, visualization and interactive applications such as
computer games. However, computation costs are doubled when rendering an individual image for each eye. In
this work, we propose to only render a single image, together with a depth buffer and use image-based techniques
to generate two individual images for the left and right eye. The resulting method computes a high-quality stereo
pair for roughly half the cost of the traditional methods. We achieve this result via an adaptive-grid warping that
also involves information from previous frames to avoid artifacts.

1. Introduction

Recently, stereo vision has received much attention due to
its high success in feature films, visualization and interac-
tive applications such as computer games. However, 3D vi-
sion does not come for free and often implies that two im-
ages need to be rendered instead of a single one, as for stan-
dard rendering. This can have a high impact on performance
which is an issue for real-time applications. In this work, we
propose to create only a single view of the scene, together
with its depth buffer and use image-based techniques to gen-
erate two individual images for the left and the right eye.

The resulting stereo effect is of a high quality, but our ap-
proach avoids the cost of rendering two individual frames.
In this context, we address two major challenges. First, our
stereo view-synthesis should show a performance behavior
that approaches the rendering time for a single view. Sec-
ond, as-few-as-possible artifacts should be introduced into
the stereo image pair. Our solution addresses both issues via
an adaptive algorithm that respects depth disparity, exploits
temporal and spatial consistency, and maps well to the GPU.

This paper is structured as follows: After reviewing pre-
vious work in Section 2, we propose our algorithm in Sec-

c© The Eurographics Association 2010.

Didyk et al. / Adaptive Image-space Stereo View Synthesis

tion 3, for which results are presented in Section 4. Strengths
and limitations are discussed in Section 5, before we con-
clude in Section 6.

2. Previous Work

In this section, we review previous work, which addressed
the synthesis of stereo images as well as the perception of
stereo.

Depth perception The effect of stereopsis of image pairs
is known since the mid-nineteenth century [Whe38]. It was
also noted early, how 3D computer graphics is an excellent
means to generate stereo images [Mor76], simply by render-
ing two individual views: one for each eye. The main draw-
back of such a stereo-view creation is that rendering time is
also doubled. Nonetheless, this naïve approach will serve us
as a reference to compare to when evaluating our stereo view
synthesis approach that relies on a single rendered view.

Stereo View-synthesis A surprisingly simple form of stereo
view synthesis was proposed as early as 1974 by Ross
[Ros74]. Assuming a horizontal moving camera, previous
frames look similar to the one eye’s view and future frames
look similar to the other eye’s view. Therefore, playing a
video stream with different delays for left and right eyes
gives a stereo impression. This approach however is limited
to horizontal movements and requires knowledge of the fu-
ture or introduces delay, which is both unwanted for inter-
action in virtual worlds. Still, the observation that a previous
rendering for one eye can serve as a source for the other eye’s
view serves as an inspiration to our approach.

Warping Deforming one image into another one is called
warping, a technique with many applications, as detailed in
Wolberg’s survey [Wol98]. Warping can be used to synthe-
size new views [CW93] such as stereo image pairs from
single [KKS08] or multiple [ZKU∗04] images, in-between
frames for video streams of low refresh rates [SLW∗08,
MHM∗09, DER∗10].

Image stabilization [LGJA09] makes use of similar strate-
gies, but such optimized deformations are not suitable for
stereo upsampling because they would alter the depth dispar-
ity for both views, changing the overall stereo impression.

Many methods, such as Stich et al. [SLW∗08] and Ma-
hajan et al. [MHM∗09], are offline approaches and rely on
future frames. In stereo, we cannot exploit such information
(it would correspond to “more-left” and “more-right” im-
ages to synthesize new views). For interactive applications,
we further want the synthesis to run at high refresh rates in
the order of just a few milliseconds to improve significantly
upon rendering a second view.

The method of Didyk et al. [DER∗10] can compute such
novel views without knowledge of future frames by exploit-
ing information directly extracted from the 3D scene, where

data such as depth is a by-product of the current rendering
process. Their original work targets synthesis in time, while
we extend their framework to synthesize stereo image pairs.

Knorr et al.’s [KKS08] approach uses structure from mo-
tion [HZ00] to generate a dense depth map from a video,
which is then used to synthesize new views by reprojection.
A strength of their method is, that it can work for images
without depth information if they exhibit sufficient features.
No performance data is given, but sorting and projecting in-
coherent, individual points remounts to data scatter which
has lower quality and is inferior to gathering when used for
warping [DER∗10].

Usually pixel projection found application in up-
sampling schemes for 3D interactive applications.
Mark et al. [MMB97] re-use of shaded samples based
on depth buffer information. Such approaches are also the
basis of the Render Cache [WDP99] which is effective, e. g.,
in global illumination where samples are very expensive.
More recently Nehab et al. [NSL∗07] proposed a new
caching scheme, exchanging forward for reverse mapping.

Some methods only investigate reduced resolu-
tions [SGH∗01], and such a reduction is particularly
interesting if subsets of pixels are used to render subsets
of views. This fits well to ray-tracing and volume-
rendering [DEF∗07]. In our method we avoid such
interleaving which typically reduces the potential resolution
of the output. Our stereo disparity is approximated by
warping full resolution frames. Hereby, we preserve high
frequencies such as in textures.

Recently, Zhang and co-workers [ZHQ∗07] even avoid
the construction of a depth map altogether and produce a
stereo image by recasting it as an optimization of the paral-
lax effect. Such optimizations are computationally intensive,
and are applied to many (also future) frames.

3. Our Approach

In this section, we propose a pipeline (cf. Sec. 3.2) to turn a
rendered image with depth into a stereo image pair as shown
in the teaser. To this end, we construct a disparity mapping
(cf. Sec. 3.1) from an image location in one eye to the im-
age location of the other eye. We observe that this mapping
is piecewise smooth, and exploit this fact to efficiently cre-
ate a high-quality stereo image pair using an adaptive ap-
proach (cf. Sec. 3.3). Finally, we discuss how to improve
the result further by warping not only between the left and
right eye, but also between the current and previous frames
(cf. Sec. 3.4). In particular, this modification also ensures
convergence (cf. Sec. 3.5) to the reference in the case of a
static scenes and a decelerating camera.

3.1. Disparity

Let y ∈ R3 be a point in world space and xleft ∈ R2 its
projection into the left eye’s view as well as xright ∈ R2

c© The Eurographics Association 2010.

Didyk et al. / Adaptive Image-space Stereo View Synthesis

Figure 1: Our image-based stereo view synthesis pipeline from left to right: We assume a rendered image with depth buffer,
as well as a disparity map as the input of our method. If desired, the disparity map can be computed from the input depth
image. Next, we build a warp field of this disparity mapping. This field is discretized adaptively: Areas with similar disparity
are warped as large blocks, areas of different disparity are warped as small blocks. Finally, the input image and the new warped
image are used as a stereo image pair, here, presented in anaglyph stereo.

it’s projection into the right eye’s view. We call the map-
ping f : R2 → R2 which maps every left image position
xleft to its right image position xright the disparity map-
ping from left to right. Further, we simply call the distance
‖xleft−xright‖ ∈ R+ the disparity of y.

The human visual system uses – besides several other
mechanisms [Pal99, MIS04] – the disparity of image fea-
ture locations xleft and xright to infer the depth of y. Ex-
ploiting this principle, stereo displays achieve spatial vision
by presenting two images with non-zero disparity which is
then perceived as corresponding depths. There are various
technologies to display individual images to each eye (shut-
ter glasses, polarization filters, and others [MIS04]), but our
work is independent of such display mechanisms.

Given a depth buffer, the simplest method to generate a
disparity map is to apply a scale and bias to all values. In
the case of a rendered scene, the depth can be directly out-
put by the GPU, but our method does not rely on this par-
ticular feature and would support alternatively determined
depth/disparity. While more complex approaches exist, scale
and bias is easier to control and physical exactness is often
less important than comfortable viewing.

We use a simple fragment program that applies a scale
and bias to the depth in order to derive a disparity map. We
adjusted our results in such a way, that both negative and
positive parallax is present, as preferred by most viewers.

3.2. Pipeline

Our basic approach follows the pipeline depicted in Fig. 1.
In order to facilitate the explanations, we will focus on how
to produce a right image out of a given left image. Later in
Section 3.5, we will extend this setting. We assume that the
disparity mapping f is an input to this process and use it to
convert a single image with depth information Ileft(x), into a
pair of stereo images Ileft(x) and Iright(x) = Ileft(f (x)).

Simply applying f in a pixel-wise fashion as done in pre-

vious approaches, can lead to holes and is not efficient to
compute on a GPU, as it involves data scattering. Therefore,
we represent f as a quad grid, i. e. a mapping from areas to
areas instead of points to points [DER∗10]. By doing so, we
avoid holes and allow a parallel computation based on gath-
ering instead of scattering, which is preferred for GPUs. We
follow Didyk’s [DER∗10] approach: We start with a regular
grid much coarser than the screen resolution and sample f at
every vertex, we then warp this grid as textured quads into
Iright and use Ileft as a texture. While a grid-based approach
avoids many holes, special considerations are required for
the case of occlusions and discoclusions.

Occlusions occur when multiple locations x in Ileft map to
the same location in Iright. This happens for example, when
a nearby object with a strong disparity covers a background
object with low disparity in Iright. Indeed f might not have a
unique inverse for some locations. However, such ambigui-
ties can be resolved completely by using the depth informa-
tion from Ileft(x): Whenever a pixel is written to Iright(x), we
compare its depth to the depth in Iright(x) and omit the writ-
ing if its depth is bigger. In practice, this can be achieved
using standard GPU depth buffering [DER∗10].

Contrary to occlusions, disocclusions lead to holes be-
cause the originally hidden information is missing, but
needed. Using the described grid warping, such holes are es-
sentially filled with content from the input image [DER∗10]
by stretching the grid. A better solution, using multiple-
image warping, is discussed in Section 3.4.

3.3. Adaptive Grid

While the previous approach succeeds in producing stereo
image pairs (cf. the “Results” Section 4), it has two main
drawbacks. First, if the image has many details in depth,
a regular, coarse grid representation of f leads to under-
sampling and aliasing problems, i. e. low quality (cf. Fig. 7,
Sec. 4). Second, just increasing the grid resolution (or keep-
ing any fixed resolution), wastes an excessive amount of grid

c© The Eurographics Association 2010.

Didyk et al. / Adaptive Image-space Stereo View Synthesis

vertices in areas which are essentially simple to warp using a
low number of vertices, i. e. achieving low performance. We
will now alleviate these two shortcomings by introducing an
adaptive discretization of f .

As f is smooth over large areas, except at a few disconti-
nuities, we construct a grid that adapts to the structure of f .
We start from an initially regular grid (in practice, we start
with a 32× 32 grid to achieve enough parallelism, in the-
ory one could start with 1×1 as well). The grid’s quads are
stored as a list of quad centers in an OpenGL vertex buffer
object. A geometry shader traverses all these quads in paral-

Figure 2: Multiple quads (horizontal) subdivided in paral-
lel using multiple steps (vertical). In every step, every thread
produces either a single quad (1-to-1, blue) or four (1-to-4,
red) new quads. In the next step, each quad is again pro-
cessed in parallel. We repeat this until quads are pixel-sized.

lel, and either outputs the same quad/center again, or refines
this quad into four new quads/centers (cf. Fig. 2). This pro-
cess is iterated until all quads are sufficiently refined and the
structure well reflects the discontinuities in f .

The decision whether a subdivision should be applied
is based on the difference between minimal and maximal
disparity inside the quad. If this difference is larger than
some threshold four subquads are produced, else the quad
is left unchanged. The output is captured in a second ver-
tex buffer object using the OpenGL transform feedback ex-
tension. This subdivision process is iterated until the level
0 of 1×1-pixel-sized quads is reached in the regions where
needed (hence, the number of steps depends logarithmically
on the resolution of the input frame).

An alternative approach would be to directly refine a quad
to many subquads, without recursion and without transform
feedback. This leads to strongly varying output sizes (be-
tween one and several hundred vertices) which is not rec-
ommend for the geometry shader. Distributing the work
amongst as-many-as-possible new threads after each subdi-
vision is the preferred approach and allows for much more
parallelism [MESD09].

Finally, when the subdivision is finished, we transform the
vertex buffer object (VBO) quad centers back into a grid. For
this, we use a second geometry shader that consumes quad

centers and produces quads. f is evaluated for each corner of
a quad and each quad is drawn to Iright using Ileft as a texture,
as described in the previous Section 3.2.

In order to avoid holes when disocclusions occur, it is im-
portant to realize that the grid vertices always fall on loca-
tions between two pixels (i. e. at level 0, a 1× 1 quad maps
to the corner of a pixel). We select the preferred pixel to
fetch f and Ileft based on its depth. That is, we fetch all four
adjacent pixels around a vertex in Ileft and use depth and dis-
parity from the pixel with the smallest depth. By doing so,
vertices adjacent to disocclusions effectively stretch across
disocclusions and we can avoid holes across all levels.

3.3.1. Implementation Details

The position and level information for each quad is packed
into an 8-bit RGB texture (10+10-bit position, 4-bit level).

To efficiently bound the amount of difference between
minimal and maximal disparity inside a quad we use a
min/max MIP-map. This map is similar to a common MIP-
map, alas instead of storing the average, it stores the mini-
mum and the maximum of all pixels below a pixel on higher
levels. Such a map can efficiently be constructed in a parallel
recursive fashion. Starting from level 0 at full resolution, a
fragment program visits every pixel of the next-lower level
and stores the minimum and the maximum of the four pixels
from the lower level. This process is repeated until arriving
at a single-pixel image, which, in our case, would store the
minimum and maximum of all disparity values.

We set the subdivision threshold to 3 pixels which basi-
cally leaves only a low number of spurious single-pixel holes
due to T-junctions, which occur if one quad is neighbor to a
quad that is subdivided more. While a T-junction removal
method could fix such problems, it usually generates again a
higher and varying number of output vertices form the geom-
etry shader. Doing so would significantly lower the geometry
shader throughput, which is the bottleneck in our computa-
tion. We found the most efficient and simplest solution is, to
just fill the undefined pixel via inpainting. In practice one can
chose a random neighbor pixel in image space (cf. Fig. 3).

Before hole filling After hole filling

Figure 3: We stop subdividing before reaching a pixel exact
result (left) and fill the few remaining holes (right). Note,
that this is an inset and pixel-sized holes are proportionally
much smaller in multi-megapixel images.

c© The Eurographics Association 2010.

Didyk et al. / Adaptive Image-space Stereo View Synthesis

3.4. Using multiple images

Changing from a regular grid to an adaptive grid results in
speed and quality improvements. Disocclusions remain the
only visible artifact. By stretching the grid quads, the arti-
facts become less visible, but they can be perceived in certain
configurations.

While disocclusions can ultimately not be solved without
re-rendering, in this section, we will discuss how to use mul-
tiple images and multiple mappings to produce an improved
stereo image pair.

Figure 4: Using multiple images to reduce disocclusions
and improve quality. Consider the two eyes (red and cyan
circle) of a moving observer in a virtual world (arrow).
Ground truth would produce two images in each frame. In-
stead, we produce one frame only (green), warp (magenta)
from the past and the other eye, and merge (yellow) accord-
ing to the one with the lower error. To achieve convergence
when slowing down or halting, we alternate the rendered
and the synthesized image.

We will use a previously rendered image Iold together with
a mapping g which maps from the past view into the current
view of the same eye (cf. Fig. 4). While f was defined to be
a disparity mapping, g is not. Nonetheless, it is a mapping
from R2 to R2 as well. g is also constructed rapidly via a
fragment program which is executed on all depth-buffer pix-
els in parallel. These are unprojected from the old view and
re-projected into the new view. The resulting 2D displace-
ment is stored. As for f , g is not defined everywhere, for
example if a location in the current frame was clipped in the
previous frame.

We can now produce an alternative right stereo image
Iright(x) = Iold(g(x)). Iold should be used whenever a dis-
occlusion is present. To get the best result of both we care-

fully choose between the two sources. In practice, we use the
stretching difference inside a quad: If a quad undergoes vary-
ing stretching, it is likely to cause a disocclusion (it “tears
up” the space) and should therefore not be used. Precisely,
we use a preference operator w, arriving at

Iright(x) =
w(f)(x) · Ileft(f (x))+w(g)(x) · Iold(g(x))

w(f)(x)+g(f)(x)
,

with

w(h)(x) : (R2→ R2)→ (R2→ R).

The operator w turns the (disparity) mapping h into a spa-
tially varying preference for that mapping.

Although there is no guarantee, that all occlusions will be
resolved. This strategy performs rather well because a dis-
occlusion in one mapping will often not be a disocclusion
in another. Following the same strategy, we can also avoid
the T-junction holes nearly completely. Only such holes that
are present in both images remain holes, which is never the
case in practice when relying on a three pixel threshold in a
multi-megapixel image.

3.5. Convergence

One final step can further improve the result: Instead of al-
ways rendering the left eye view and creating a right eye
view, we can swap the eye roles and either warp from left to
right or right to left. Swapping eyes in every frame does not
lead to a strong improvement as long as the viewer is mov-
ing, nonetheless, also no temporal artifacts are introduced.
However, already in this setting, if the speed of the motion
decreases, w will prefer the past image, and ultimately, when
no animation is present, w will always pick the past right eye
for the current right eye and the past left eye for the current
left eye, i. e. the result converges to the static reference.

In order to further improve the quality in the case the cam-
era is moving, instead of toggling, it is best to choose the
most distant eye view from the previously rendered. In such
a way we minimize the potential disocclusion. In order to
visualize the advantage of this choice, one can imagine a
constant panning movement. If the left eye always falls on
the old position of the right eye, a toggling would be harm-
ful, as it would lead to the same view being rendered twice.
Choosing the most distance view eases the handling of dis-
occlusion. In this particular case, in combination with the
operator w, our algorithm even produces the reference result,
although the camera is no longer static.

4. Results

In this section we evaluate quality and performance of our
approach. We used an NVIDIA Quadro FX 5800.

To test our approach, we have chosen mostly architectural
models because they represent an excellent stress test with

c© The Eurographics Association 2010.

Didyk et al. / Adaptive Image-space Stereo View Synthesis

many occlusions, disocclusions and fine details. All mod-
els are rendered using shadow mapping, per-pixel deferred
shading, fog, depth of field and screen-space ambient occlu-
sion. With such a set-up it takes around 40 ms to produce a
frame. We excluded the computation of the disparity from
all timings as we assume it to be an input of our method.

We compare our method to three other approaches. First,
straightforward mapping of a 1×1 grid, including handling
of occlusions in the same way as this paper does. This ap-
proach is our reference solution in terms of speed. Using our
method by morphing only one image we can only approach
the quality of such solution. An improvement is possible us-
ing more views as described in Sec. 3.4. Second, we show
that our method produces better results in terms of speed and
quality than using pixel-wise re-projection. We also compare
our method to Didyk et al.’s [DER∗10] approach for tempo-
ral upsampling. Their method addressed viewpoint synthesis
in time, using a carefully optimized GPU implementation as
well. It is significantly faster than the reference approach,
but has lower quality. We will substantially improve upon
this method in terms of quality, and in some cases even in
terms of speed.

Quality and Performance To show the importance of us-
ing an adaptive approach we compared our one view mor-
phing method to the naïve, reference solution. Although we
cannot improve the quality, we can bound an error by setting
the subdivision threshold properly. Doing so, the solutions of
both methods become indistinguishable but due to the adap-
tivity, our solution is several times faster.

In Fig. 7 we compare the performance and the quality of
our approaches as well as Didyk et al.’s method to ground
truth rendering. First, we see how our approach speeds up the
process of producing stereo content compared to rendering
two frames. On average, for all scenes used for our experi-
ments, the morphing of one frame in resolution 2048× 1024
takes around 7 ms.

Second, our method achieves quality similar to the ground
truth, while Didyk et al.’s approach falls short in doing so for
complex details (spikes, ghosting). In particular, when com-
paring to the trivial approach (Fig. 8) of mapping individual
pixels and filling the holes using pull-push, the quality is
worse and the performance is three times lower. This is easy
to see, as warping a grid of vertices which form a small sub-
set of all pixels in the image is obviously faster than warp-
ing all pixels. This performance difference underlines the
importance of supporting modern fine grained parallelism
(i. e. gathering) over straightforward approaches which re-
quire scattering.

Third, we see how the use of multiple images avoids dis-
occlusions and improves the quality by comparing the two
rightmost columns. This is most visible for the “Antenna”
scene in the second row, where the thin features are stretched
across disocclusions when using only a single image. As our

approach is orthogonal to the used surface representation,
we can apply our technique also directly to iso-surface ray-
casting [Lev88] (last row).

Adaptation Quality Further, we seek to illustrate the influ-
ence of the subdivision threshold by keeping all parameters
fixed and varying only this threshold. In Fig. 5, we show

1 px 2 px 5 px

Figure 5: Decreasing (resp. increasing) the threshold gen-
erates a higher (resp. lower) grid resolution, therefore lower
(resp. higher) speed but also higher (resp. lower) quality.

high, medium and low-quality thresholds, the respective sub-
division, as well as some details that represent typical prob-
lems also encountered with a trivial approach (Fig. 8).

Analysis In Fig. 6, the variation of performance over time
for the reference, Didyk et al.’s and our method is plotted
for the “Crane” scene. We see, how our method has varying
efficiency over time. This is because the adaptation creates a
varying number of quads in our grid. However, it is almost
never slower than previous work, at much higher quality, as
discussed in the previous paragraph. Tighter bounding of this
time interval is desirable in interactive applications such as
games and remains future work.

0 ms

4 ms

8 ms

12 ms

16 ms
Reference (2048x1024)
Didyk's (2x2 grid) (2048x1024)
Our (2048x1024)
Reference (1024x512)
Didyk's (4x4 grid) (2048x1024)
Our (1024x512)
Didyk's (2x2 grid) (1024x512)
Didyk's (4x4 grid) (1024x512)

time

Figure 6: Variation of performance over time for several
different strategies. Although our performance varies due to
the adaptivity, it is nearly as high as for Didyk’s approach
but at a quality comparable to the reference solution.

5. Discussion and Limitations

Similar to many other upsampling methods, our approach is
limited to non-transparent surfaces. We do not account for
view dependent-effects such as specular highlights.

The improvement when using previous frames (Sec. 3.4)
depends on the camera path. In case of camera movement

c© The Eurographics Association 2010.

Didyk et al. / Adaptive Image-space Stereo View Synthesis

Figure 7: Results produced by our algorithm (Left) for different scenes in resolution 2048× 1024, presented in anaglyph
stereo. On the right, we show scene details computed using four different approaches: Ground truth; Didyk et al.’s method;
Ours using only single images; Ours using multiple images. We achieve similar quality to ground truth at a performance
similar to Didyk et al.’s method (see the fps insets).

in the plane to which the eye axis is normal, no additional
information is won, but such movements are less likely than
e. g. human walking animations. Put in another way, human
eyes are placed horizontal to each other and not vertically
because of the movements performed by humans [Ros74].

In future work, more advanced view selection techniques are
worth investigating.

Lacking a suitable output device, we were not able to
test our method for generating more than two views out of

c© The Eurographics Association 2010.

Didyk et al. / Adaptive Image-space Stereo View Synthesis

Figure 8: Using pixel-wise re-projection (trivial approach, below-reference) results in many holes, that have to be filled using
pull-push which leads to blur. At the same time, the performance is approximately three times lower than for our approach.

one. However, the time-benefit of image-based upsampling
would be even more pronounced. Also, we envision upsam-
pling in time as well as in stereo and other image-based re-
use e. g. for anti-aliasing or motion blur.

6. Conclusion and Future Work

This work described an approach to upsample a stream of
monocular images with depth information to a pair of stereo
images streams, exploiting modern GPUs and human per-
ception. We demonstrate its application to a number of prob-
lems, in which the approach drastically reduces the render-
ing time compared to rendering an image pair. The approach
is independent of the underlying surface representation and
can be easily integrated into existing software as a post-
process to deliver high-quality stereo-image pairs.

References
[CW93] CHEN S. E., WILLIAMS L.: View interpolation for im-

age synthesis. In Proc. SIGGRAPH (1993), pp. 279–288.

[DEF∗07] DOMONKOS B., EGRI A., FÓRIS T., SZIRMAY-
KALOS L., TAMÁS J.: Isosurface ray-casting for autostereo-
scopic displays. In WSCG, Short Papers (2007).

[DER∗10] DIDYK P., EISEMANN E., RITSCHEL T.,
MYSZKOWSKI K., SEIDEL H.-P.: Perceptually-motivated
real-time temporal upsampling of 3D content for high-refresh-
rate displays. Comput. Graph. Forum (Proc. Eurographics) 29,
2 (2010), 713–722.

[HZ00] HARTLEY R. I., ZISSERMAN A.: Multiple View Geome-
try in Computer Vision. Cambridge University Press, 2000.

[KKS08] KNORR S., KUNTER M., SIKORA T.: Stereoscopic 3D
from 2D video with super-resolution capability. Signal Process-
ing: Image Communication Vol. 23, 9 (Oct. 2008), 665–676.

[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE
Comput. Graph. Appl. 8, 3 (1988), 29–37.

[LGJA09] LIU F., GLEICHER M., JIN H., AGARWALA A.:
Content-preserving warps for 3D video stabilization. ACM Trans.
Graph (Proc. SIGGRAPH) 28 (2009), 44:1–44:9.

[MESD09] MEYER Q., EISENACHER C., STAMMINGER M.,
DACHSBACHER C.: Data-parallel hierarchical link creation for
radiosity. In Proc. EPGV (2009), pp. 65–69.

[MHM∗09] MAHAJAN D., HUANG F.-C., MATUSIK W., RA-
MAMOORTHI R., BELHUMEUR P.: Moving gradients: A path-
based method for plausible image interpolation. ACM Trans.
Graph. (Proc. SIGGRAPH) 28, 3 (2009), 42:1–42:11.

[MIS04] MEESTERS L., IJSSELSTEIJN W., SEUNTIENS P.: A
survey of perceptual evaluations and requirements of three-
dimensional TV. IEEE Trans. Circuits and Systems for Video
Technology 14, 3 (March 2004), 381–391.

[MMB97] MARK W. R., MCMILLAN L., BISHOP G.: Post-
rendering 3D warping. In Proc. ACM I3D (1997), pp. 7–16.

[Mor76] MORLAND D. V.: Computer-generated stereograms: a
new dimension for the graphic arts. SIGGRAPH Comput. Graph.
10, 2 (1976), 19–24.

[NSL∗07] NEHAB D. F., SANDER P. V., LAWRENCE J.,
TATARCHUK N., ISIDORO J.: Accelerating real-time shading
with reverse reprojection caching. In Proc. Graphics Hardware
(2007), pp. 25–35.

[Pal99] PALMER S. E.: Vision science : Photons to phenomenol-
ogy. MIT Press, Cambridge, Mass., 1999.

[Ros74] ROSS J.: Stereopsis by binocular delay. Nature 248
(March 1974), 363–364.

[SGH∗01] SAWHNEY H. S., GUO Y., HANNA K., KUMAR R.,
ADKINS S., ZHOU S.: Hybrid stereo camera: An IBR ap-
proach for synthesis of very high resolution stereoscopic image
sequences. In Proc. SIGGRAPH (2001), pp. 451–460.

[SLW∗08] STICH T., LINZ C., WALLRAVEN C., CUNNINGHAM
D., MAGNOR M.: Perception-motivated interpolation of image
sequences. In Proc. APGV (2008), pp. 97–106.

[WDP99] WALTER B., DRETTAKIS G., PARKER S.: Interactive
rendering using render cache. In Proc. EGSR (1999), pp. 19–30.

[Whe38] On some remarkable, and hitherto unobserved, phenom-
ena of binocular vision. Roy. Soc. London Phil. Trans. (1838).

[Wol98] WOLBERG G.: Image morphing: A survey. The Visual
Computer 14, 8 (1998), 360–372.

[ZHQ∗07] ZHANG G., HUA W., QIN X., WONG T.-T., BAO
H.: Stereoscopic video synthesis from a monocular video. IEEE
Trans. Visualization and Comput. Graph. 13, 4 (2007), 686–696.

[ZKU∗04] ZITNICK C. L., KANG S. B., UYTTENDAELE M.,
WINDER S., SZELISKI R.: High-quality video view interpola-
tion using a layered representation. In Proc. SIGGRAPH (2004),
pp. 600–608.

c© The Eurographics Association 2010.

