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Indoor Scene Reconstruction Using Near-Light
Photometric Stereo

Jingtang Liao, Bert Buchholz, Jean-Marc Thiery, Pablo Bauszat, and Elmar Eisemann

Abstract— We propose a novel framework for photometric
stereo (PS) under low-light conditions using uncalibrated near-
light illumination. It operates on free-form video sequences cap-
tured with a minimalistic and affordable setup. We address issues
such as albedo variations, shadowing, perspective projections,
and camera noise. Our method uses specular spheres detected
with a perspective-correcting Hough transform to robustly trian-
gulate light positions in the presence of outliers via a least-squares
approach. Furthermore, we propose an iterative reweighting
scheme in combination with an � p-norm minimizer to robustly
solve the calibrated near-light PS problem. In contrast to other
approaches, our framework reconstructs depth, albedo (relative
to light source intensity), and normals simultaneously and is
demonstrated on synthetic and real-world scenes.

Index Terms— Image processing, photometric stereo, near-
light, sphere detection, light calibration, normal, depth, albedo.

I. INTRODUCTION

PHOTOMETRIC stereo (PS) [1] is a technique to deter-
mine surface orientation from two or more images with a

fixed viewpoint but differing lighting conditions. It is widely
used in computer vision and graphics, e.g., for 3D scene
reconstruction or geometry-based image relighting.

Current PS approaches impose a significant number of
restricting constraints on the scene and illumination, such
as a uniform albedo, orthographic projection, or absence of
shadows. An often employed assumption is that light arrives
from a distant source (i. e., parallel light rays), leading to the
same incident light direction and radiance for each scene point.
Such a constraint usually forces the scene to be small-scale,
as the assumption does not hold if the distance to the light
source is not significantly larger than the scene dimensions.
Furthermore, generalized bas-relief (GBR) [2] coupled with
the constraint of integrability can solve only up to three scene
parameters and leaves room for geometric ambiguity.

In contrast, near-light PS models can reconstruct entire
indoor scenes, but typically require careful light calibration to
be successful. This step often involves specialized equipment
and complex setups. An advantage is that the added illumina-
tion even makes a capture in badly lit environments possible,
where pure stereo reconstructions can fail.
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In this paper, we propose a new approach to PS that aims
at relaxing as many of the previously-mentioned assumptions
as possible and recovers scene parameters (depth, albedo, and
normal) simultaneously involving a cheap, uncalibrated, and
simple setup.

Our framework reconstructs indoor scenes by solving the
near-light PS problem from a sequence of images extracted
from a captured video. During the capture, a light source
is moved through the scene while the camera’s viewpoint
is kept fixed. Several reflective spheres are arbitrarily placed
in the scene beforehand for a robust, yet effortless light
calibration. While this setup has been employed before in
several existing approaches [3]–[5], it typically suffers from
two issues. First, the unknown locations of the spheres have
to be robustly estimated from the input images and even
small deviations can lead to significant errors in the light
triangulation. Second, highlights on spheres can potentially
be reflected in other spheres and are assumed to come from
a perfect point light, which is not true in practice where
the light source typically has area. Our framework addresses
these issues and improves the robustness of traditional light
calibration approaches by several means. By acquiring a
video, we can choose a reliable set of frames to make a
robust estimate possible. Similarly, by testing multiple light
configurations in combination with a trimmed least-squares
approach, we can successfully triangulate its position and
obtain the light’s center with a significantly-reduced recon-
struction error. Additionally, we propose to use a novel sphere
detection approach based on a cone model which incorporates
perspective projections and provides higher accuracy than
when treating the sphere projections as circles. Finally, we
can solve for various scene parameters (normal, albedo and
depth) simultaneously by using an energy formulation derived
from the calibrated near-light PS model.

Overall, our work on the near-light PS problem considering
perspective projection and light attenuation makes the follow-
ing technical contributions:

An efficient minimization of our weighted �p-norm
energy more robust to noise and outliers compared to
the traditional �2-norm;
A robust sphere position estimation based on the
Hough transform to handle perspective projections.
A simple light calibration setup using uncalibrated
specular spheres with unknown positions.

II. RELATED WORK

We will first briefly discuss related work for sphere detection
and light calibration, as well as near-light photometric stereo.
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A. Sphere Detection

It is crucial to estimate the positions of the reference
spheres in the scene from the input images to reconstruct
the light position. Unfortunately, a simple circle detection is
not accurate, because the projections of the spheres onto the
image plane are affected by the perspective projection leading
to ellipsoids. A general method to detect ellipses has been
proposed by Ballard [6], which uses a Hough transform into a
5-dimensional parameter space. However, using five parame-
ters is computationally expensive and various modifications
were proposed to maintain robustness and reduce compu-
tational complexity by exploiting ellipse symmetry [7], [8],
randomization [9], special acceleration techniques [10],
or reduction to a one-dimensional parametric space [11].
Additionally, directly estimating the sphere’s center from the
orientation point of its ellipsoid projection is inaccurate and,
hence, these approaches are not directly suitable candidates for
the required 3D sphere reconstruction. We propose a modified
Hough transformation, which robustly computes the sphere’s
location and incorporates perspective projections, but only
requires a 3-dimensional parameter space (Sec. IV-A).

B. Light Calibration

Light calibration often requires specialized non-portable
equipment [12], [13] or relies on constraints regarding the
varying light positions; such as fully controlled light paths [14]
or restricted locations (e.g., a roughly hemispherical pattern,
for which the light position can be determined by dimen-
sionality reduction [15]). For general light positions, reference
spheres can be used for the localization process. Nayar [3] pro-
posed the Sphereo method which triangulates the position of
the light based on its reflection in two reflective spheres and
has been used in several recent approaches [4], [5]. While the
detection of the light reflection is eased with a calibrated setup
(including known sphere positions and geometry) [16], in prac-
tice, highlight detection is prone to noise and interreflection,
in particular when relying on low-dynamic range imagery,
which is typically acquired in a video setup. Ackermann et.
al’s general light-calibration method minimizes the image-
space error of highlights reflected off specular spheres [17],
however, their method requires high-dynamic range images.
Masselus et al. [18] presented the Free-form Light Stage,
which uses the shading patterns on four diffuse spheres to
estimate the illumination direction following Lambert’s cosine
law. However, their approach focuses on computing only the
dominant light direction and cannot accurately estimate the
light position.

In our setup, we use multiple, simple reflective spheres
with unknown position. Still, we robustly reconstruct the light
location even in the presence of outliers and partial occlusion
of the spheres.

C. Near-Light Photometric Stereo

Traditional photometric stereo algorithms use a distant
light model, with lots of efforts having been made to cope
with perspective projection [19], albedo variations [20], [21],

shadows [22], [23] and non-Lambertian corruptions such as
specularities and noise [24]. Chandraker et al. [25] present
a comprehensive theory of photometric surface reconstruction
from image derivatives in the presence of general, unknown
isotropic BRDFs. However, the motion of the light source is
constrained to circular motion around the camera axis and
requires a specific acquisition setup. Recent studies [26], [27]
attempted PS reconstruction on outdoor data using the sun
light for which the distant light source assumption holds.
Nonetheless, a distant light model makes geometry reconstruc-
tion ambiguous.

To tackle this problem, Iwahori et al. [28] introduced
a near-light PS model to better recover depth details.
However, their approach assumed a calibrated setup and
perfectly uniform diffuse surfaces. It was later improved by
detecting diffused maxima regions [4], but still ignored light
attenuation. Uncalibrated near-light PS models often suffer
from artifacts due to shadows in the input images [29] or
restricting C0-surface assumptions [30], making it impos-
sible to deal with depth discontinuities and varying object
albedo. A calibrated nearlight PS model proposed by
Mecca et al. [31], [32] pays special attention to faithfully
model perspective projection, the point light source and shad-
owing by exploiting the image ratios. However, they use
a special setup to constrain the light positions, require the
surfaces to be connected, and the existence of at least one
reference point per surface. Some issues of near-light PS
can be overcome by using multi-view PS [33], however, this
requires a more costly and complex acquisition setup and is
out of the scope of this paper.

Compared with state-of-the-art methods for near-light PS,
our approach has clear distinctions. First, we do not require
any special setup and light sources are not constrained to
move on restricted paths. Second, we use a large number of
input frames and let our algorithm choose the observations
that mostly correspond to diffuse reflectance, which allows
us to estimate the result even in the presence of specularities
and shadows. The selection is done automatically by, among
others, minimizing a sparsity-inducing �p norm. Third, our
model recovers the scene parameters (normal, depth, and
albedo) simultaneously. Fourth, we use dedicated strategies
to enforce local albedo and geometry smoothness.

III. OVERVIEW

Our approach is illustrated in Fig. 1. In a (not necessarily)
dark room, the camera is placed at a fixed view point and
reference spheres are distributed throughout the scene for
calibrating the light position. Then the video acquisition starts.
In the beginning of the recording, i.e., before the light bulb
is turned on, we record a few seconds to solely capture the
ambient lighting. Using the average of these initial frames of
the captured video clip, the constant ambient lighting map of
the scene can be estimated and subtracted from the remaining
frames. Then the light bulb is turned on and the user walks
through the scene, illuminating it by waving the light bulb
and covering as many light positions as possible. Only the
frames in which the light bulb is turned on are used as input
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Fig. 1. From left to right: We first capture a free-form video using a minimal setup consisting only of a regular camera and light bulb, as well as a set
of reference spheres. We extract frames from the captured video (second image) and estimate the reference spheres’ positions (third image) to calculate the
light position for each input frame using the light’s reflection (fourth image). Finally, the scene parameters for normal, albedo, and depth are computed by
solving the calibrated near-light photometric stereo problem using a robust reweighting scheme.

for the light calibration and scene reconstruction. Besides a
gamma correction (response linearization) and subtraction of
the ambient lighting, no further processing is applied to the
frames.

We seek to recover the scene parameters including normal,
albedo and depth for a given scene. To this extent, we first
estimate the reference spheres’ position once via a perspective-
correcting Hough transform cone detection (Sec. IV-A).
We triangulate the light position for each frame using the rays
reflected towards the light from its reflection on the reference
spheres. To handle wrongly detected or distorted highlights
on the spheres robustly, we compute the light positions
via a trimmed linear least-squares optimization (Sec. IV-B).
Finally, we recover the scene parameters by extracting a subset
of reliable observations for each pixel and employing an
�p-norm minimizer combined with a reweighting scheme that
is designed to robustly handle noise and occlusions (Sec. V).
We will demonstrate our approach on rendered scenes
(to have access to a reference reconstruction), recorded
real-world scenes, and compare our solution to existing
work (Sec. VI).

IV. LIGHT CALIBRATION

Our goal is to estimate the light positions for each input
frame based on the reference spheres in the scene. The spheres
can be placed arbitrarily, but should be well distributed around
the acquisition area, as this has been proven to work well in
existing calibration setups.

We will first discuss the detection of the reference spheres
without any prior knowledge about their position. The only
user input is the world radius r of these spheres to fix the
absolute scale of the scene. Later, we will show how to
robustly triangulate the light position for each frame using
the highlights (the light’s reflections) on the spheres.

A. Sphere Position Estimation

We aim at reconstructing the positions of the spheres in
world coordinates (with the camera at the origin) using all
input frames. By detecting the shape of the sphere’s projection
in the image plane, we derive its position using the projected
center and known sphere extent. We use a Hough transform
for the shape detection, which finds the most likely parameters
for the shape model. Typically, the parameter space of the
shape model (e.g., for circle detection, one would use the

Fig. 2. Robust edge detection using all frames. (a) The median gradient image
over all input frames. (b) Edge detection result computed by thresholding the
median gradient image.

2D center and radius) is subdivided into candidate bins.
For each candidate bin, the corresponding shape is tested
against the detected edges of the input image. The candidate
with the most (normalized) edge-pixel consistency on the
shape’s boundary is assumed to be the best parameter estimate.
Consequently, a robust edge detection in the input image is
a key component. Directly applying a Canny edge detection
on a randomly chosen input frame leads to unreliable results,
because edges often are ignored (due to low-illumination
regions and occlusions) or introduced by cast shadows. There-
fore, we propose to first estimate the gradient images of all
input frames separately, and then compute the median of the
gradients for each pixel, which is a robust estimate that can
be used as input to the edge detection (Fig. 2). To additionally
avoid the rare case that almost all observations of a pixel are
shadowed or over-saturated, we perform the median gradient
calculation on a per-pixel level and exclude too bright or too
dark observations. In practice, we exclude the brightest 20% of
the brightest pixel (each channel) and 10% of the darkest pixel
observations, which is a reasonable assumption for roughly
uniform illumination directions. In all examples, 0.2 and 0.5
are used for the Canny edge detection double thresholding.

In our situation, using a Hough circle detection is not
suitable. The projection of a sphere onto the image plane
corresponds to an intersection of a plane and a cone with
apex at the view point and defined by the sphere’s silhouette,
which is generally a conic section (Fig. 3). Only if the
sphere’s center projects to the very center of the image plane,
we obtain a sphere. In most PS algorithms with reference
spheres [4], [15], the projection is inaccurately considered to
be a circle, resulting in errors when the sphere is placed in
image corners where the elliptical shape is most pronounced.
Although traditional ellipse-detection methods could be used
to account for perspective distortions, the resulting ellipses
cannot be used directly to estimate the sphere position because
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Fig. 3. Conic intersection between a sphere and the image plane.
A sphere’s projection on the image plane only resembles a circle at the very
center of the image plane (Sphere 1) and is typically an ellipse (Sphere 2) due
to perspective distortion. Using the orientation point (blue dot) of the ellipse
is not an accurate estimate of the sphere’s world center, since it does typically
not correspond to the intersection point between a view ray from the camera
to the sphere’s center (red dot).

the projected sphere’s center is typically not the orientation
point of the ellipse.

In consequence, we propose a novel parameter model
which correctly takes the perspective distortion into account.
We parameterize a cone using the half opening angle θ and
the image coordinates (u, v) for the intersection between
the cone’s axis and the image plane (Fig. 4). Assuming the
camera focal length f , the sensor size ws , hs and image
resolution w, h are known, it is possible to construct the
cone in world coordinates, as its axis orientation is given by
Ai := (u − w/2, v − h/2, f h/hs). Note that this defines a
3-dimensional parameter space. We discretize the parameter
space and define uniform bins Buvθ , each representing a
possible cone candidate. Each detected edge pixel Pj :=
(x j , y j ) will increase a counter in all bins (ui , vi , θi j ) whose
corresponding candidate shape contains Pj on its boundary
(Fig. 4). In this setup, (ui , vi ) is the center of the candidate
cone and θi j is the opening angle of the candidate cone
(the angle between the rays going through (ui , vi ) and Pj ).
After treating all edge pixels, we normalize the bins by the
circumference of the represented ellipse and for n spheres in
the scene, we choose the n bins with the highest votes to
retrieve their location. Having determined a candidate, the
position of the corresponding sphere can be computed by
c = a r

sin θ where a is the normalized camera ray pointing from
the camera to the intersection point and r the world radius of
the sphere. To avoid a bias towards small spheres (e.g., with
size of a single pixel) or wrongly detected sphere-like objects
in the scene, we ask the user to provide a rough size interval.
Alternatively, a user can also drag bounding boxes around the
spheres to indicate their rough locations in the image, further
accelerating the detection process. A precise indication of the
spheres is not needed.

B. Light Position Estimation

Once the locations of the spheres (which are constant over
all frames) are known, the world position of the light source
can be estimated for each input frame. By using the light’s
reflection on the spheres (specular highlights), rays from the
eye reflected off the spheres and towards the light source can

be computed. The light position is then defined as the point
closest to the reflected rays. Note that each frame is only
required to have at least two spheres with a reflective highlight.
Frames which do not meet this requirement are discarded.

The first step is to detect the light’s reflection on each
reference sphere in image space. For low-dynamic range
images, we consider the pixels whose intensity is above 95%
as highlights. Since the light source is not a perfect point
light in practice, its reflection is typically an irregularly shaped
highlight. A standard solution is to calculate the averaged pixel
position within the highlight blob as the light reflection on
the spheres [4]. However, it is potentially inaccurate since
a discrepancy of one or two pixels can immediately lead
to larger errors for the light-ray reconstruction. Instead, our
approach uses all pixels associated with highlights during
reconstruction as candidates. We will later show how to prune
this set. Moreover, our method is able to consider sub-pixel
level precision to reduce the influence of the limited image
resolution.

A candidate light ray for a pixel representing a high-
light can directly be constructed from its coordinates. Given
the i -th sphere with center ci and radius r , and the pixel
coordinate (hlx , hl y), the 3D point on the sphere phl is simply
given by phl = λhla where a is the unit vector pointing from
the camera to the highlight and λhl is the camera distance to
the point. By verifying ||λhla−ci||2 = r2, the camera distance
can be written as λhl = a · ci −

√
(a · ci)2 + r2 − ||ci||2. The

sphere normal nhl at this point is −−→ciphl/||−−→ciphl||, which finally
leads to the reflected ray direction l = a − 2(a · nhl)nhl.

1) Trimmed Least-Squares Approach: Given a set of N can-
didate light rays, we will derive the light source position b as
the closest point to the actual reflected rays. One problem
for light calibration in real-world scenes is that spheres inter-
reflect among each other leading to wrong highlight assump-
tions. Hence, we first discard light rays, which intersect with
other reference spheres. Still, even the remaining candidate
rays are not all reliable due to noise (or extended highlights)
and we propose a weighted trimmed least-squares approach to
address this problem. Initially, an estimate of the light position
is found using regular least-squares fitting using all rays.
In the next step, we perform multiple refinement iterations,
each time removing one or more rays with the largest residual
error for each sphere, until k rays remain (k is the number of
spheres with rays). The least-squares problem for the set of
rays r = (r0, r1, . . . , rN ), is defined via an energy function
consisting of the sum of squared distances to these rays:

C(b) =
N∑

i=1

ωi d(b, ri)
2,

where d(b, ri)
2 is the squared distance between the light

position and the ray. One can see that d(b, ri)
2 is a quadric1

with respect to b, and therefore C(b) is also a quadric with
respect to b and can be minimized efficiently. The weighting
factor ωi defines the reliability of the ray ri. Since the normal

1d(b, (qi ; �vi )))
2 = bt · Ai

t · Ai · b− 2Bi
t · b+ const, with

Ai := I − �vi · �vi
t , Bi := Ai

t · Ai · qi , where �vi is the unit direction of the
ray and qi is its basis 3D point.
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Fig. 4. An overview of the cone-based Hough transform model. (a)-(b) Each image pixel (ui , vi ) is considered as potential candidate and for each edge
pixel, the cone angle θi j is computed and the bin (ui , vi , θi j ) in the Hough parameter space is increased. (c)-(d) A 3D visualization and a θ -u slice of the
filled parameter space (u,v ,θ ) show that the most-likely candidates (color-coded with blue to red) lie in the red dashed region.

Fig. 5. The near-light photometric stereo model describes the color of a
pixel i as the light arriving from a scene point given by the pixel’s λi and
the view ray ai with normal ni . The point is assumed to be illuminated by a
point-light source at b j which varies through all input frames.

variation towards the edge of a projected sphere is larger than
in its center, we regard highlights closer to the center as more
reliable. Small errors in highlight position estimation have a
significantly higher impact close to the edge. Therefore, we use
the angle θi between the ray from the camera to the sphere
center, and the ray from the highlight to the sphere center to
weigh the ray’s contribution. When more than one highlight
(and therefore ray) is detected for one sphere, we further weigh
the ray by the total number of rays for that sphere, denoted
by M . The weight for a ray ri is thus given by wi = cos θi

M .

V. VIRTUAL SCENE RECONSTRUCTION

After the light positions have been estimated for each frame,
our goal is now to recover the scene parameters using the near-
light PS model. The near-light PS model (Fig. 5) relates albedo
ρi, normal ni , and depth λi for each pixel i and is defined as

mij = ρi
(
ni · (b j − λi ai)

)

‖b j − λi ai‖3
where mij is the observation (color) for pixel i in frame j ,
b j the light position at frame j , and ai the normalized vector
pointing from the camera to the pixel’s 3D position, which is
λi ai (compare to Sec. IV-A). Note that the given formulation
of the near-light PS model respects perspective projection
and light attenuation. While the model does only account for
diffuse material, we can still obtain a robust reconstruction
in the presence of specular materials with a simple strategy
that chooses input frames which are more likely to represent
a diffuse response, which is the advantage of having a large set
of input frames available. The scene parameters are typically
found using energy minimization, where the energy is defined

as the difference between the current near-light model’s state
and the observed pixel color. The input to our reconstruction
approach is the set of pixel observations (mi1, mi2, . . . , mij)
for each of the 1 . . . j video frames with corresponding
light positions (b1, b2, . . . , bj). We first perform a pixel-
based frame selection to exclude observations that are outliers
due to specularities, over-saturation, and shadowing. Then,
we formulate the problem of recovering the scene parame-
ters as an �p-norm optimization problem combined with a
reweighting scheme based on different characteristics of the
data set. Although, an �p-norm optimization is known to be
computationally involved, it can be efficiently solved using an
iterative Newton procedure. Further, we add three extensions,
which relax the assumption of a fully local reconstruction;
exploiting spatial coherence for improved convergence, a
smoother albedo reconstruction, and a robust handling of
pixels with insufficient observations. Finally, we show how to
iteratively refine the light positions obtained in Sec. IV using
the reconstructed scene parameters results.

A. Pixel-Based Frame Selection

Since some pixel observations correspond to outliers and
should be ignored during reconstruction (e.g., occlusion due to
the person moving the light, cast shadows, specular reflections,
and over-saturation), we select a reliable subset of observations
for each pixel as a first step. Specularities and over-saturations
are usually sparse, but appear significantly brighter when
the light source is situated along the reflection direction and
usually share the light’s white color. In order to reconstruct
the scene, we opt at eliminating such outliers, obtaining an
observed diffuse behavior. We apply a two-step process. First,
we exclude observations that are too bright or too dark in the
same way as for the computation of the median gradient image
(Sec. IV-A). The purpose of this approach is solely to remove
strong outliers defined by the range of LDR images and thus,
the thresholds are robust to small changes. In a second step,
we remove observations that are smaller than 70% of the
median value of the remaining observations after the first step.
While the first step removes outliers at absolute boundaries,
the second step defines outliers relative to the remaining pixel
observations.

B. Reweighted Optimization Using the �p-Norm

With a large number of observations and a few unknowns,
we have an overdetermined problem, which we cast into an
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Fig. 6. Energy error profiles using the �2-norm (on the left) and the �p -
norm (on the right) with p = 0.5 for a single pixel with varying depth and
albedo. The optimum in the �p -norm is more pronounced.

energy minimization problem and first solve for each pixel
independently. Additionally, we propose to use an iterative
scheme [34] to change the influence of certain observations
based on the current solution, exploiting observed intensities,
as well as the known geometric distribution of the light. In the
following, we detail the reconstruction.

Unfortunately, the energy function can still be distorted by
wrong observations (e.g., from camera noise). To provide a
robust reconstruction in the presence of outliers, we employ
the �p-norm [35] with p <= 1 instead of the �2-norm, this
choice is known to robustly handle significant amounts of
noise. Fig. 6 compares the energy profile of a single pixel
with changing depth and albedo, while keeping the normal
fixed, using the �2-norm and �p-norm (with p = 0.5). This
example is typical and illustrates intuitively why the minimizer
is easier to identify using a sparsity-inducing norm such as the
�p-norm, even if this energy function is not convex. We use
p = 0.5 for all examples.

The energy function of a pixel i is given by

Fi (ni , λi , ρi) =
∑

j

ωi j Ei j (ni , λi , ρi), (1)

where the error function Eij is based on the near-light PS
model and is defined as

Eij (ni , λi , ρi) :=
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
mij − ρi

(
ni · (b j − λi ai)

)

‖b j − λi ai‖3
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

p

. (2)

Each observation is multiplied by a weight ωi j , which is
composed of three individual weights, and addresses further
outlier handling, non-uniform light distributions, and geomet-
ric properties of the current reconstruction state:

ωi j = ωld
i j · ωoutl

i j · ωhs
i j .

1) Light-Distribution Weight (ωld
i j ): The distribution of light

positions over a scene point is an important factor for ensuring
convergence. E.g., lights distributed along a line in direction
of a scene point, would only lead to attenuation changes at
this location, which is insufficient. Furthermore, depending
on the movement of the light source, some directions poten-
tially receive significantly more observations than others. For
instance, Fig. 7 (left) illustrates an exemplary non-uniform
light distribution over a hemisphere of a scene point and it can
be observed that area A and B exhibit a dense light sampling.
We propose to balance the importance of the directional
sampling by setting ωld

i j to be the inverse of the light’s density.

Fig. 7. The distribution over spherical directions can be non-uniform
depending on the captured light positions (e.g., area A and B are more densely
sampled). Using HEALPix, the density is approximately described by a set
of discrete equally-sized regions. The observations are then reweighted with
the inverse of the density to simulate a uniform light distribution.

Fig. 8. Motivation of the half-plane weight. Blue (resp. orange) dots
correspond to frames which were discarded (resp. kept) by our pixel-based
frame selection technique (Sec.V-A). The half-space weight can help further
discard observations which are in strong global illumination, though the lights
are in the opposite side of the plane defined by a point’s normal.

Since the input is a discrete set of observations, we estimate
an approximate density by subdividing the directional sphere
around a scene point in equally-sized regions. For this task,
we employ HEALPix (Hierarchical Equal Area iso-Latitude
Pixelization) [36], which is a suitable approach to discretize
the surrounding sphere into Ns equal areas with similar shape
(Fig. 7). In our implementation, we use Ns = 30, which gives
satisfying results.

2) Outlier Weight (ωoutl
i j ): Even after the initial pixel-based

frame selection, some pixel observations might still correspond
to outliers and should be ignored during scene reconstruction.
When an observation has a significantly larger error compared
to the average error of all observations, we assume that this
observation is an outlier and reduce its importance. For pixel
i at frame j , we compute the outlier weight as a relation of
its error Eij to the mean error Ei for all observations in i and

set ωoutl
i j := e−

Ei j
Emean .

3) Half-Space Weight (ωhs
i j ): When a light is in the opposite

side of the plane defined by a point’s normal, it implies
that the dot product of the normal and the vector from
the point towards the light is negative, hence, it cannot
contribute to the points illumination. In this case, we want
to set the observation’s weight to 0 (otherwise to 1). The-
oretically, as shown in Fig. 8, frames for which a pixel is
in shadow (Fig. 8, middle) are excluded by our pixel-based
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Algorithm 1 Virtual Scene Reconstruction Algorithm
1: for each pixel point i do
2: Initialize X := (ρri , ρgi , ρbi , θi , φi , λi )
3: end for
4: for each pixel point i do
5: for each iteration do
6: Update ωhs

i j ω
outl
i j ωld

i j
7: Compute gradient g and Hessian matrix H.
8: X ← X − (H+ εI)−1 · g (Gaussian elimination)
9: if (ni (θi , φi ) · ai) > 0 then

10: θi = −θi

11: end if
12: end for
13: end for

frame-selection technique (Sec.V-A) and only the ones for
which the light source illuminates the pixel are kept (Fig. 8,
left). However, in practice, due to light reflections, some
frames might be kept, even though the light source does
not illuminate the corresponding point directly (Fig. 8, right).
The "half-space weight" penalizes light positions behind the
plane described by the pixel’s position and normal (in this
configuration, the light cannot illuminate the pixel directly).

Although we rely on a rough estimate of the normal and
could potentially ignore valid observations, the initial solution
and the large amount of frames prove sufficient in practice.
An alternative would be to use the half-space weight only
after a certain number of iterations when the normal estimate
is more stable.

C. Numerical Solving

To solve the energy function in Eq. 1, we employ a Newton
procedure (Alg. 1). The six scene parameters can be divided
into two categories, the color parameters (ρri , ρgi , ρbi ) and the
geometric parameters (θi , φi , λi ). Here, we express the normal
ni using spherical coordinates (θi , φi ) in a local frame based
on the camera ray ai to reduce the number of parameters.
To create local frames that vary smoothly across the image,
we define the two vectors orthogonal to ai as ei1 := ai × t
and ei2 := ai × ei1 with t = (0, 1, 0).

For each image point, we first initialize the parameters
(line 1-3) by setting the albedo to [1, 1, 1] and the normal
to [0, 0] (expressed in the local coordinate frame and, hence,
aligned with the camera view). For the depth parameters,
we use the average depth of the reference spheres detected
during the light calibration process. For each iteration, we
update the weights (line 6) and compute the 6 × 6 Hessian
matrix H (line 7). The inverse matrix of H is computed by
solving the system of 6 × 6 linear equations using Gaussian
elimination (line 8). At the end of each iteration, we constrain
the normals to face towards the camera (line 9-11). We iterate
this process around 200 iterations, which usually ensures a
good convergence as shown in Fig.15.

1) Newton Method in �p-Norm: Since the function f (x) =
x p is non-differentiable in 0 (∂x f (x) = px p−1) for p < 2,
standard Newton and gradient-descent methods are usually

not suitable, and often an alternating direction method of
multipliers is used instead. Instead, we chose to reformulate
the Newton method by approximating the first and second
order of the function f p : X �→ |F |p (which we rewrite as

f p : X �→ (|F |2)(p/2)
) in Eq. 2 as

∂x f p ≈ p

2
|F+ε|p−2∂x F

∂2
xy f p ≈ p

2

p − 2

2
|F+ε|p−4∂x F∂y F + p

2
|F+ε|p−2∂xy F

This approach delivers stability and maps efficiently to graph-
ics hardware.

D. Spatial Coherence Extensions

Instead of simply iterating the Newton process, we can
use partially-derived results to guide the convergence process.
Typically, natural images consist of several patches, which
are mostly consistent or only vary slowly. We exploit this
property in several ways. We frequently check neighboring-
pixel parameters during the Newton procedure for faster con-
vergence and we derive consistent albedo patches to regularize
the optimization. Further, we improve depth parameters for
pixels with insufficient numbers of observations by normal
integration [37].

Specifically, for each pixel, we test if the use of their
parameters for neighboring pixels leads to a reduced error
(and vice versa), in which case the values are copied over.
This does not affect the optimization in a mathematical way,
but is merely used to improve convergence. We test four differ-
ent parameter-transfer combinations regarding error reduction;
with or without using the color parameters, and with or without
using the geometric parameters. To exploit albedo consistence,
the process is slightly more involved. We observe that albedo
changes will exhibit strong gradients in the median gradient
image. In consequence, we define the energy for optimization
with albedo constraints as

Fi (ni , λi , ρi) =
∑

j

ωi j Ei j (ni , λi , ρi)+ γ
∑

k∈Ni

ωik Aik(ρi)

where ωik is set to 0 or 1 depending on the edge image
obtained in Sec. V-B, Ni is a 3 × 3 patch centered around
pixel i , and Aik(ρi) is the albedo difference between a pixel
i and a neighboring pixel k:

Aik(ρi) := ||ρk − ρi||p.
Note that, the �p-norm is again used for measuring the
difference. The user parameter γ can be used to control
the influence of the regularization (increasing γ leads to a
smoother albedo). Since the value range of the regularizer
depends on the light source power, γ should be adjusted
accordingly. In our case, we use γ = 0.01 for all our real-
world data sets. For faster convergence, we first solve an
initial solution without regularization and use the result as an
initialization for the regularized problem.

Finally, depth is known to require more observations due
to its non-linearity and weaker influence on the error term
than the other parameters. In consequence, if noise is present,
it first manifests itself in the depth values. In all examples,



1096 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 3, MARCH 2017

Algorithm 2 Light position Refinement Algorithm
1: for each frame j do
2: Initialize b j := brecon

3: end for
4: for each frame j do
5: for each iteration do
6: Compute gradient ∇b j L j from valid pixels
7: Compute Hessian matrix Hb|b| from valid pixels
8: b j ← b j−(Hb|b|+εI)−1·∇b j L j

9: end for
10: end for

Fig. 9. Comparison of the 3D distance (error) w.r.t. reference for sphere
detection between traditional circle detection (blue) and our method using
the cone-based model (orange). The diameter of the spheres in world-space is
0.46 for MONKEY scene (10×10×8) and 0.2 for KITCHEN scene (4×4×3).
It can be seen that our approach accurately detects spheres which are closer
to the image border and exhibit perspective distortions.

Fig. 10. 3D error of light position w.r.t. reference for light calibration in
MONKEY scene (10 × 10 × 8) using blob centers only (mean error: 0.086)
and our approach (mean error: 0.058).

we recompute the depth of 20% of the pixels having the lowest
number of used observations via normal integration [37], using
the remaining depth values as constraints. Note that depth and
normal are indeed linked: the normal is the cross product
of gradients of the depth map in smooth regions. However,
the scenes we handle feature many objects, producing depth
discontinuities and occlusions. This situation prevents us from
robustly recovering the geometry from normal integration
alone (which would, additionally, require knowledge of one
depth value per smooth region). Our approach estimates both
depth and normal based on shading, finds consistencies in the
reconstructed data automatically, and detects depth disconti-
nuities otherwise.

E. Light Position Optimization

The light and scene estimation are both estimation processes
but should lead to a consistent result. In consequence, the light
positions obtained in Sec. IV can be refined using the scene

Fig. 11. 3D error of light position w.r.t. reference for alternating between
light optimization and scene reconstruction in MONKEY scene (10× 10× 8).
It can be seen that for most frames the estimated light position gets more
accurate.

Fig. 12. Median angular error (in degrees) for the full normal map and two
selected regions (shown on the left) in the MONKEY scene after various light
position refinement steps. Overall, the error continuously decreases with each
iteration.

Fig. 13. Median angular error (in degrees) using different values of p for
the �p -norm minimizer. Using an �p -norm minimizer (p <= 1.0) achieves
smaller errors.

reconstruction result (ρi, ni , λi ) and vice versa. By alternating
the two optimization steps, we can refine the solution. The
light position of a frame j can be optimized by minimizing
the energy

L j (b j ) =
∑

i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
mij − ρi

(
ni · (b j − λi ai )

)

‖b j − λi ai‖3
p
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
.

While the frame j is fixed, the sum iterates over the pixels
and we only consider the valid observations used in the scene
parameter reconstruction.

Again, we solve the problem using the Newton
method (Alg. 2). In the beginning, the light positions of all
frames are directly initialized from the light calibration. For
each iteration, we compute the light position gradient ∇b j L j

and Hessian matrix Hb|b| . Finally, the light position is
updated until a local minimum is reached.

VI. RESULTS

We have implemented our framework in OpenGL/C++ on
a desktop computer with an Intel Core i7 3.7 GHz CPU
and a GeForce GTX TITAN GPU. The scene parameter
reconstruction was implemented in parallel on the GPU, while
the light calibration and optimization was implemented on the
CPU. In the following, we evaluate our framework on synthetic
data sets as well as real-world captures.
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Fig. 14. Comparing the convergence of the median angular error (in degrees) using an �2-norm and �p-norm minimizer. The use of �p -norm minimizer
allows for faster and better convergence.

Fig. 15. Convergence of median energy value, median angular error (in degrees), and median depth error using gradient descent and Newton method for
both synthetic scenes. Our modified Newton method provides faster and better convergence than the gradient descent.

Fig. 16. Scene parameters reconstruction of two synthetic data sets with dimensions of about 10× 10× 8 (top) and 4× 4× 3 (bottom) using our approach
comparing against ground truth: Our approach recovers the normal map, albedo (relative to light source) map, and absolute depth map of a given scene
simultaneously. Overall, we achieve a low median angular error and rel. median depth errors (w.r.t. the maximum z-extent of the scene). Smaller artifacts can
occur from insufficient observations (green dashed areas) and surfaces with almost black albedo (purple dashed areas).

A. Evaluation on Synthetic Datasets

We evaluate our method on synthetic datasets (generated
in Blender 2.73 Cycles) enabling a ground-truth comparison.

Our first experimental scene MONKEY is a compilation of
several objects with different properties: a set of planes, a
pyramid and sphere with uniform albedo, and a cube as well
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Fig. 17. Comparison (normal map) of our approach with the two state-of-the-art near-light PS algorithms from Ahmad et al. [4] and Mecca et al. [32] for
the MONKEY scene. Please note that shadows and discontinuities in our input makes the data already unsuitable for these algorithms, hence it is obvious that
their reconstructions fail for most parts.

Fig. 18. Median angular error (in degrees) for the full normal map and two
selected regions (shown on the left) in the KITCHEN scene for different levels
of artificially additive Gaussian white noise. Even when the input is corrupted
with strong noise our approach faithfully reconstructs the scene parameters.

Fig. 19. Comparing the reconstructed albedo without (top row) and with
(bottom row) smoothness constraints. Optimizing with constraints leads to
overall smoother albedo results.

as the Blender Suzanne monkey head model with varying
albedo from textures. We added five reflective spheres for
light calibration and generated different illumination situations
for 150 randomly-chosen light positions. Our second scene
KITCHEN is a more complex synthetic indoor scene with
several objects of different albedo and shape. Four reflective
spheres are placed for light calibration and 199 light positions
are chosen following a spiral-like path. The dimensions of
scene MONKEY and KITCHEN are about 10 × 10 × 8 and
4× 4× 3, respectively.

1) Sphere Detection: We first evaluate our sphere detection
method and compare it to the traditional approaches based
on circle detection. In Fig. 9 (top images), we visualize the
projection of the reconstructed spheres for both methods.
Overall, our approach is more accurate and detects spheres
further away from the image center more robustly. E.g., the
spheres marked 1 in the MONKEY scene and marked 2 in
the KITCHEN scene are clearly misclassified if perspective
distortion is not considered. The increased accuracy of our
solution is also evident when comparing the world distances
of both approaches to the ground truth (Fig. 9, bar plots).

2) Light Calibration: We compare in Fig. 10 our light
calibration method to the standard method, which shoots a
ray from the blob center only. Our method results in smaller
average error, and, as mentioned in Sec. IV, can locate the
highlight on sub-pixel level. Furthermore, no parameters are

Fig. 20. Visualization (in world-space coordinates centered at the camera
position) of the captured light positions in the office scene. We map the depth
minimum and maximum value from blue to red. Our capture setup allows the
user to move the light source arbitrarily.

needed to tweak the blob-center detection. On the other hand,
we evaluate the robustness of our light-position estimation in
Fig. 11 for the first 10% of the frames of the MONKEY scene.
We show results for the initial light calibration as well as two
further optimizations alternating with the scene reconstruction.
It can be seen that the light positions are improved for most
frames that are not already close to ground truth. For the other
frames, which are already estimated well during the initial
calibration, only small fluctuations occur.

We investigate the influence of the alternating optimization
of the light positions in more detail in Fig. 12. The table shows
the median angular error for the reconstructed normal map
and two insets in the MONKEY scene for up to three light
refinement iterations. It can be seen that the error is constantly
reduced by each iteration. In practice, typically 1-2 iterations
are sufficient, which provides a reasonable trade-off between
computation time and resulting error.

3) Scene Reconstruction: We first investigate different val-
ues of p for the �p-norm minimizer. The result is shown in
Fig. 13. The �p-norm minimizer (p <= 1.0) converges better
and also faster than the �2-norm minimizer as it can be seen
in Fig. 14. The convergence of the energy error, normal, and
depth during the optimization is illustrated in Fig. 15.

Fig. 16 shows the reconstructed scene parameters (normal,
albedo, and depth) for the MONKEY and the KITCHEN scene.
Our method achieves accurate results with small median angu-
lar errors and rel. median depth errors (w.r.t. the maximum
z-extent of the scene) after around 100 iterations. A single
iteration in the MONKEY scene (150 frames, resolution of
960 × 540) requires 2.22 seconds, and 2.34 seconds in the
KITCHEN scene (199 frames, resolution of 720 × 405). Our
approach scales linearly with respect to the resolution as well
as the number of frames of the video.
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Fig. 21. Reconstruction results of the scene parameters for a complex, large scale real-world data set of an office work space. While a few artifacts occur
in areas which are barely lit (red) or feature very dark materials (blue), most parts are truthfully reconstructed by our method.

Fig. 22. Near-light photometric stereo results of our approach on various real-world datasets. Even with a minimalistic setup our framework reconstructs
the normal, albedo, and depth scene parameters truthfully.

We compare our method with the near-light PS algorithms
from Ahmad et al. [4] and Mecca et al. [32]. The first approach
computes object distances from local diffused maxima regions
from which they derive the per-pixel light vectors. However,
they rely on the assumption that all objects of interest are
roughly in the same distance plane, which does not hold for
larger scenes with large depth discontinuities, as the ones we
address. This limitation results in artifacts for our test scenes
(Fig. 17, first image). The approach from Mecca et al. is
more closely related to our approach and formulates the near-
light PS problem globally. However, they do not consider
shadows, leading to unpleasant artifacts in regions, which
are partially shadowed over the video sequence (Fig. 17,
second image). Further, both algorithms do not recover the
albedo of the scene. In comparison, our method can achieve a
robust scene reconstructions in the presence of large disconti-
nuities and shadowed regions (Fig. 17, third image.)

To illustrate robustness against noise, we generate another
three data sets by contaminating the input frames with different
levels of additive Gaussian white noise with zero mean. The
used standard deviations are 0.01, 0.02 and 0.04 respectively.
The results in Fig. 18 (shown exemplarily for the normal map)
illustrate that our method can ensure robust reconstruction with
small median angular errors even for noise levels, which are
typical of low-cost camera systems.

We also evaluate the influence of constraining the albedo
values. As shown in Fig. 19, the constraint optimization
outperforms the unconstrained one for the textured objects
in the MONKEY and leads to an overall smoother albedo
appearance.

Our approach is not without limitations, but in the virtual
data set, reconstruction failures mostly arose from an insuf-
ficient number of observations. Parts like the bottom of the
sphere and a part of the monkey head’s ear, as illustrated in the

green dashed area in Fig. 16, are problematic because of being
almost always in shadow. In a real-world scenario, it implies
that a user should take special care to exhibit all parts of the
scene to the light source well enough to avoid reconstruction
issues. Additionally, objects with black or very dark albedo
need special treatment or can otherwise introduce localized
artifacts in the reconstruction (Fig. 16, purple dashed area).

B. Evaluation on Real-World Scene Dataset

We reconstructed five real-world scenes including a com-
plex and large-scale office scene (2 × 2 × 2 meter) and
four small scale object scenes with different shapes and
colors using our framework. Since our goal was to support
a cheap and minimal capturing setup, we used four customary
Christmas balls of radius 5.0 cm (big) or 2.0 cm (small)
including clear imperfections as our reference spheres. For
the light source, we used a hand-held standard light bulb
attached to a stick to ease the light movement as illustrated
in Fig 1. After setting up the scene, we recorded a video
using a Cannon 5D II camera, while the user walked around
in the scene moving the light source arbitrarily. Fig. 20
demonstrates (for the office scene) that the light positions
can be arbitrarily distributed, which makes the data capture
convenient for the user. No post-processing was applied to
the captured video before reconstruction and our framework
automatically handles frames where the light source and/or
the user accidentally appear. Fig. 21 illustrates the robust
reconstruction of an office scene using our approach. It is
worth noticing again that artifacts occur mainly in areas
with black material, such as the black adjusting handle of
the chair (blue dashed area) and the parts that light hardly
illuminates, e.g., the background behind the computer and
the area behind the chair (red dashed area). More results
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are provided in Fig. 22, showing that our approach is able
to truthfully recover all scene parameters of the tested real-
world scenes. Please note that the scenes in Fig. 22 contain
strong depth discontinuities. These discontinuities might be
less visible in the 3D rendering, as the rendering process we
chose considers a height field.

VII. CONCLUSION

We presented a framework for indoor scene reconstruction
that solves the near-light PS problem from a set of video
frames exhibiting multiple illumination conditions. The cap-
turing setup is cheap and convenient for users, and only
depends on a few uncalibrated reflective spheres. We proposed
a novel light calibration approach that uses a cone-based
Hough transform to find the spheres in the scene and triangu-
lates the light position accurately via a trimmed least-squares
approach. A benefit of our light calibration is that it can
handle irregular highlights as well as inter-reflections between
reference spheres, which both occur frequently in real-world
scenarios. We introduced an �p-minimizer and reweighting
scheme to robustly reconstruct the scene’s normal, albedo, and
depth parameters in an optimization framework based on the
near-light PS model. Our method was demonstrated on both
synthetic and real-world datasets. Hereby, we demonstrated
that our method is able to handle perspective projection, noise,
and albedo variations. Our approach shows that near-light
photometric stereo is a feasible option for uncalibrated scene
reconstruction.

Several interesting extensions could be investigated in the
future. The temporal consistency of the light movement could
be exploited during the light calibration. Further, the placement
and number of reference spheres is an interesting problem.
Nonetheless, our approach does integrate multiple spheres
robustly and handles outliers carefully, making a precise
placement less crucial.
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