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Abstract
A diffusion tensor imaging group study consists of a collection of volumetric diffusion tensor datasets (i.e., an ensemble) ac-
quired from a group of subjects. The multivariate nature of the diffusion tensor imposes challenges on the analysis and the
visualization. These challenges are commonly tackled by reducing the diffusion tensors to scalar-valued quantities that can be
analyzed with common statistical tools. However, reducing tensors to scalars poses the risk of losing intrinsic information about
the tensor. Visualization of tensor ensemble data without loss of information is still a largely unsolved problem. In this work,
we propose an overview + detail visualization to facilitate the tensor ensemble exploration. We define an ensemble represen-
tative tensor and variations in terms of the three intrinsic tensor properties (i.e., scale, shape, and orientation) separately. The
ensemble summary information is visually encoded into the newly designed aggregate tensor glyph which, in a spatial layout,
functions as the overview. The aggregate tensor glyph guides the analyst to interesting areas that would need further detailed
inspection. The detail views reveal the original information that is lost during aggregation. It helps the analyst to further un-
derstand the sources of variation and formulate hypotheses. To illustrate the applicability of our prototype, we compare with
most relevant previous work through a user study and we present a case study on the analysis of a brain diffusion tensor dataset
ensemble from healthy volunteers.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: —Curve, surface, solid, and object
representations I.3.8 [Computer Graphics]: Applications—

1. Introduction

Diffusion Tensor Imaging [BML94] (DTI) is an imaging modality
that models water diffusion as a second-order positive-definite ten-
sor. It enables the characterization of anatomical fibrous structures.
DTI is extensively used by neuroscientists to study the structural
connectivity of the brain. Nowadays, studies are often carried out
using multiple, registered DTI datasets, also called cohorts or en-
sembles [SPB07, WWHT07, DJB∗11, MBW∗11], for example, in
order to locate variations in the datasets between subjects that might
be caused by anatomical variation or pathology.

However, due to the complexity of multivariate statistical analy-
sis of tensors, most of the existing approaches are based on derived
scalar quantities, such as fractional anisotropy [BP96] (FA), rather
than the multivariate diffusion tensor itself. The analysis of derived
scalar quantities provides merely one facet of the full information
that a diffusion tensor contains. Simultaneous visual inspection of
several scalar quantities is possible, for example, with side-by-side
views, but meaningful relationships are hard to identify in such a
setting. The few available approaches that focus on the diffusion
tensor as a whole [BP03, BP07, AWHS16] assume a normal distri-
bution of tensors within the ensemble. However, the normal distri-

bution assumption is not always valid, and the statistical summary
(i.e., fourth-order covariance tensor) is difficult to interpret.

In this paper, we make the concept of the intrinsic properties
(i.e., scale, shape, and orientation) of diffusion tensors available
for the analysis and visualization of DTI ensembles to facilitate
their interpretation. A major challenge for this approach is to deal
appropriately with the inherently coupled relation between shape
and orientation. The main contribution of this work is an integrated
overview + detail visual analysis framework for the exploration of
DTI ensembles that does not assume any specific distribution of the
underlying data.

• We propose a representative tensor that is derived by separately
aggregating the intrinsic properties, instead of using the Eu-
clidean mean that treats these properties collectively.

• Variation within the tensor ensemble is defined based on the
pair-wise difference measures of the three tensor intrinsic prop-
erties [ZSL∗16].

• We extend two existing glyph-based visualizations [Kin04,
PPvA∗09] to encode variation uncovered in the ensemble.

• We present a detail visualization that enables intuitive explo-
ration of the tensor ensemble, separately for the tensor intrinsic
properties, without assuming a specific distribution.
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2. Related Work

Glyph-based Visualization for Diffusion MRI. A diffusion ten-
sor (i.e., a 3×3 symmetric positive-definite matrix) is a multivariate
physical quantity. Glyph-based visualization is a natural choice for
displaying the full tensor information at discrete locations due to its
ability to effectively encode multivariate attributes. Multiple glyph
designs (e.g., ellipsoids [PB96], composite shapes [WMK∗99], su-
perquadrics [Kin04]) are introduced for the visualization of a single
tensor. Overlaying glyphs is a commonly used strategy to compare
two tensors [AWHS16, MVB∗17]. For the same purpose, Zhang
et al. [ZSL∗16] propose a checkerboard-style superquadrics-based
glyph to facilitate the comparison. For an ensemble of tensors,
Jones et al. [JGA∗02] simply overlay multiple glyphs while Ab-
basloo et al. [AWHS16] employ animation of glyphs.

Another diffusion MRI modeling technique is high angular res-
olution diffusion imaging (HARDI). Unlike DTI, it enables the re-
construction of multiple major diffusion directions. HARDI data
represents the diffusion orientation distribution function (dODF),
i.e., the probability that a water molecule moves in a given di-
rection after a given amount of time. Several glyph designs are
introduced for this data. Peeters et al. [PPvA∗09] render HARDI
data as a deformed sphere by GPU-based ray-casting. Schultz and
Kindlmann [SK10a] present the higher-order maximum enhancing
(HOME) glyph for HARDI data by generalizing tensor ellipsoid.

In our work, we extend the glyph designs of Kindlmann [Kin04]
and Peeters et al. [PPvA∗09] to additionally encode the variation
information of diffusion tensor ensembles.

Ensemble/Uncertainty Visualization. Ensembles are commonly
used for assessing uncertainty and variability, for instance, in
weather forecasting [SZD∗10]. Ensemble visualization and uncer-
tainty visualization are often discussed together [LPK05, BHJ∗14].
For scalar fields, uncertainty information is often presented as
the variation of isocontours, such as the spaghetti plot [PWB∗09]
or contour boxplot [WMK13], or as isosurfaces as presented by
Pöthkow et al. [PH11, PWH11] and Pfaffelmoser et al. [PRW11].
Djurcilov et al. [DKLP01] directly visualize scalar field uncer-
tainty in direct volume rendering. For vector fields, curve box-
plots [MWK14] and streamline variability plots [FBW16] focus
on the variation of features extracted from the field, rather than
the field itself. Botchen et. al. [BWE05] use a 3D noise texture of
different frequencies to visualize vector uncertainty in flow fields.
Otto et al. [OGT11] analyze the global uncertainty in the 3D vector
fields by a topological approach. For the visual analysis of an en-
semble of ODFs, Jiao et al. [JPGJ12] use direct volume rendering
based on the so-called shape inclusion probability function.

Glyphs are commonly used to visualize multivariate local at-
tributes of ensemble data. Potter et al. [PKRJ10] present a new
hybrid summary plot that incorporates descriptive statistics. Höllt
et al. [HMZ∗14] use a glyph, based on the violin plot, to indicate
variation in multiple ensemble variables for time series visualiza-
tion. Pfaffelmoser et al. [PMW13] present uncertainty in gradi-
ent orientation within scalar-field ensembles using circular glyphs.
Hlawatsch et al. [HLNW11] introduce the flow radar glyph to dis-
play possible ranges of flow directions. Jarema et al. [JDKW15]

use glyphs to show modality information of circular distributions
in 2D vector fields ensemble.

The methods presented in this subsection can be used for visu-
alizing the variation of tensor-derived features (e.g., principle dif-
fusion direction or FA). However, we focus on the visualization of
the full diffusion tensor information without information reduction.

Visual Analysis of Diffusion Tensor Ensembles. There is a lim-
ited amount of work that focuses on the visual analysis of ensem-
bles of diffusion tensors in its entirety. In order to aggregate the en-
semble information, multivariate statistics can be used. Basser and
Pajevic [BP03, BP07] propose the use of the fourth-order covari-
ance tensor based on the assumption that the set of diffusion tensors
follows a multivariate normal distribution. The fourth-order covari-
ance tensor represents deviations from the mean tensor, which is
built by component-wise averaging. High-order tensors can be pro-
jected onto a unit sphere via tensor contraction and thus visualized
as a deformed sphere, referred to as radial glyph [BP07]. Basser
and Pajevic [BP07] use radial glyphs to visualize the fourth-order
tensor and its six orthogonal second-order eigentensors or eigen-
modes. The six mutual orthogonal eigentensors represent all modes
of tensor variation. However, this visual encoding is difficult to in-
terpret. In recent work, Abbasloo et al. [AWHS16] combine slice
views, volume rendering, and superquadric glyphs [Kin04] to vi-
sualize the fourth-order covariance tensor at multiple levels of de-
tail. In order to facilitate the interpretation of the covariance tensor,
they use the decomposition framework proposed by Kindlmann et
al. [KEWW07]. The framework is based on the gradients of mean-
ingful tensor invariants. They visualize the six orthogonal eigen-
tensors, which contain a mixture of different tensor intrinsic prop-
erties, through animation. Eigentensors allow the identification of
correlations but also provide potentially misleading interpretations
in some situations (e.g., in the cases shown in Section 8.1).

Our work enriches this area by aggregating tensor ensembles to a
representative mean tensor and variations based on the three tensor
intrinsic properties without resorting to the fourth-order covariance
tensor. Our extended tensor glyph design enables a clear interpre-
tation of the mean tensor and its variations, even though it does
not allow for detection of potential correlations between the ten-
sor intrinsic properties. We also design visual analysis strategies
to explore the ensemble elements in detail in terms of the intrinsic
properties and discover their potential correlations.

3. Summary Statistics for Diffusion Tensor Ensembles

In order to aggregate or summarize an ensemble of diffusion ten-
sors, we resort to statistical tools. In this section, we introduce and
motivate our statistical analysis approaches.

We define the space of symmetric tensors in R3 as Sym3 and
the corresponding tensor field as F : R3→ Sym3. An ensemble of
n diffusion tensor fields is denoted by {Fi}n

i=1. Since our focus is
voxel-wise analysis, the main object of interest is a set of tensors
at a specific location x within the field, denoted by {Fi (x)}n

i=1. For
simplicity, we denote the set as {Di}n

i=1, and refer to it as a tensor
ensemble. Notice that most of the solutions presented in this paper
are also valid for ensembles of any second-order positive-definite
tensors independent of their origins.
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3.1. Diffusion Tensor Decomposition

The exact way of decomposing a tensor is dependent on the appli-
cation. For diffusion tensors, an informative and intuitive decom-
position consists of three intrinsic properties (i.e., scale, shape, and
orientation). Each of these properties carries a specific interpreta-
tion about the underlying fiber structures. Decomposition into these
three intrinsic properties is well studied [EK06, ZSL∗16]. Hence,
we briefly introduce the decomposition as proposed by Zhang et
al. [ZSL∗16] here.

A symmetric and positive-definite diffusion tensor D can be
eigen-decomposed into three sorted real eigenvalues λ1 ≥ λ2 ≥
λ3 ≥ 0 where λ1 is often referred to as the main or major
eigenvalue. The orthonormal eigenvectors are ordered accordingly
(e1,e2,e3). The tensor trace, tr(D), is defined as the sum of
the eigenvalues tr(D) = ∑

3
j=1 λ j, and is proportional to a com-

monly used tensor invariant called mean diffusivity [BP96]. Fi-
nally, the sorted normalized eigenvalues

(
λ̃1, λ̃2, λ̃3

)
are given by

(λ1,λ2,λ3)/tr(D).

A diffusion tensor has six degrees-of-freedom (DOFs) in to-
tal. Tensor scale, one DOF, can be represented by the trace tr(D)
and has a range of [0,∞). It indicates the overall amount of diffu-
sion. There is more diffusion in regions without fibers (e.g., ven-
tricle) than with fibers (e.g., corpus callosum). Tensor shape, two
DOFs, can be represented by the sorted normalized eigenvalues(

λ̃1, λ̃2, λ̃3

)
with range [0,1], reflecting the underlying fiber con-

figurations (e.g., a single fiber population or two crossing fiber
populations). Tensor orientation is given by the set of eigenvectors
(e1,e2,e3). The major eigenvector e1 is empirically assumed to be
aligned with the underlying fiber pathways. Shape and orientation
are inherently coupled. For example, if the tensor shape is isotropic
(i.e., three equal eigenvalues), the orientation is completely unde-
fined. This fact complicates the decomposition and the subsequent
statistical analysis.

3.2. Diffusion Tensor Ensemble Aggregation

We characterize a tensor ensemble by separately deriving the mean
and standard deviation for scale, shape, and orientation. Given its
special characteristics, we also propose an alternative that does not
rely on the mean and standard deviation of the orientation. Instead,
we estimate the diffusion orientation distribution function (dODF)
according to the normal distributions implied by each tensor of the
ensemble. This approach enables the depiction of multiple orienta-
tions within the ensemble.

3.2.1. Tensor Ensemble Mean

We first consider the special case of calculating the mean on an
ensemble consisting of just two tensors. Here, the mean tensor
can simply be viewed as an interpolation between two tensors.
Kindlmann et al. [KSJEN∗07] illustrate that Euclidean as well
as Log-Euclidean interpolation cannot guarantee a monotonic in-
terpolation of the tensor shape invariants, and as such can intro-
duce spurious tensor shapes. Extending the Euclidean mean to
more than two ensemble members corresponds to computing a
component-wise average. Although it has been used in previous

work [BP03,AWHS16], the Euclidean mean has undesired proper-
ties [KSJEN∗07]. Let us consider an ensemble of linear anisotropic
tensors with exactly the same eigenvalues but different eigenvec-
tors, as shown in Figure 1a. It can be observed that the Euclidean
mean tensor (Figure 1b) has a spurious shape that is not present
in the original ensemble. Such a shape can mislead the analyst to
make false assumptions about the underlying ensemble. Therefore,
we propose to derive the mean tensor by computing the average of
the three intrinsic properties separately and then combine them to
form the mean tensor. Therefore, the characteristics are preserved
and can be analyzed in the mean tensor. We denote this new mean
tensor as D.

The trace of D is defined as the average of individual tensor
traces,

tr
(
D
)
=

1
n

n

∑
i=1

tr(Di). (1)

Note that tr
(
D
)

is identical to the trace of the Euclidean mean.

Because of the normalization and sorting, all possible eigenvalue
tuples

(
λ̃1, λ̃2, λ̃3

)
, representing the shape, form a plane in R3 (see

Figure 2). Therefore, the shape of D is defined as

(
λ̃1, λ̃2, λ̃3

)D
=

1
n

n

∑
i=1

(
λ̃1, λ̃2, λ̃3

)Di
. (2)

The superscript indicates the corresponding tensor from which the
normalized eigenvalues are derived. Our idea is similar to Gahm
et al. [GWK∗12], but we aim at summarizing the tensor ensemble
members while they focus on pair-wise tensor interpolation. Fur-
thermore, we work directly with the eigenvalues instead of specific
tensor invariants.

So far we have defined scale and shape of the mean tensor,
which represent the mean diffusion amount and mean diffusion
shape, respectively. However, the definition of the mean orienta-
tion is not as straightforward as the mean scale and shape because
the eigenvectors are not always well-defined (i.e., in the case of
two or three equal eigenvalues), and do not have a unique sign. In
order to construct the complete mean tensor, a set of eigenvectors
(e1,e2,e3)

D is required to orient the mean tensor in the 3D domain.
Here, we use the eigenvectors of the Euclidean mean (e1,e2,e3)

Eu

as the eigenvectors of our mean tensor, as suggested by Gahm et
al. [GWK∗12]. The orientation of the mean tensor can provide

(a) (b) (c)

Figure 1: Two types of mean tensors for (a) 10 linear anisotropic
tensors with the same eigenvalues (0.7,0.15,0.15) but different
eigenvectors. (b) is the Euclidean mean and (c) is the ensemble
mean calculated according to Equation (3).
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Figure 2: Tensor shape space is defined by the sorted and nor-
malized eigenvalues λ̃ j. Three glyphs are placed at the corners as
reference, colored according to their λ̃ j.

anatomical reference that is relevant for the understanding of the
context. However, strongly diverging orientations in the ensemble
can get lost. Therefore, the orientation has to be analyzed with care.

Finally, the separate components are assembled into the mean
tensor as,

D := tr
(
D
) 3

∑
j=1

λ̃
D
j eD

j ⊗ eD
j . (3)

By separately handling scale, shape, and orientation, we effectively
avoid the introduction of tensor intrinsic properties that are not
present in the tensor ensemble into the mean tensor. Figure 1c
shows the mean tensor of the ensemble introduced in Figure 1a,
calculated according to Equation (3). This new mean tensor pre-
serves the shape of the tensors in the ensemble.

However, (e1,e2,e3)
Eu can be ill-defined and do not give a

good representation of the underlying ensemble orientation. For
example, consider a second ensemble of linear tensors, consist-
ing of orthogonal pairs in Figure 3a. The Euclidean mean in Fig-
ure 3b of this ensemble has a planar shape. Thus its eigenvectors
(e1,e2,e3)

Eu cannot be uniquely defined. The mean tensor, accord-
ing to Equation (3), will have a clear linear shape, but an arbitrary
and meaningless orientation.

Alternatively, we propose to summarize the orientation based on
the diffusion orientation distribution function (dODF) that can be
analytically expressed [ALS∗10] as

p(r) =
1

(2π)
3
2 |D| 12

e−
1
2 rTD−1r,

dODF(u) =
∫

∞

0
P(ru)r2dr =

1

4π|D| 12
(
uTD−1u

) 3
2
.

(4)

(a) (b)

Figure 3: (a) A group of linear tensors with two distinct orienta-
tions. (b) The Euclidean mean tensor. A mean tensor generated ac-
cording to Equation (3) would comprise the same scale and shape
as the tensors in a) but with a random orientation (thus not shown).

p(r) is the probability density function of a 3D normal displace-
ment distribution, which is the fundamental assumption underlying
DTI. It represents the probability of a water molecule ending up
with displacement vector r after a certain amount of time. dODF
is the radial integral of the normal distribution along a given direc-
tion u (i.e., the unit vector). Furthermore, |D| is the determinant and
D−1 is the tensor inverse. The dODF integrates to one over the unit
sphere S2, i.e.,

∫
S2 dODF(u) du = 1. It is dimensionless, and in-

variant with respect to |D| [ALS∗10]. Note that dODF responds to
the tensor orientation as well as the tensor shape. The mean dODF,
denoted dODF, is defined as the average of individual dODFs,

dODF(u) =
1
n

n

∑
i=1

dODFi (u) . (5)

Similar to HARDI, which models multiple diffusion orientations
for the case that a single voxel contains multiple fiber orientations
(e.g., fiber crossing), the dODF models multiple orientations within
the ensemble, and as such provides a faithful representation of the
actual diffusion directions. Figure 4a shows the dODF glyph for the
tensor ensemble presented in Figure 3a, preserving the two major
orientations.

3.2.2. Tensor Ensemble Variations

To quantify the variation in the ensemble separately for scale,
shape, and orientation, we generalize the standard deviation σ

to the pair-wise tensor difference measures [ZSL∗16], denoted as
dscale, dshape, and dorientation, respectively. The pair-wise difference
measures have several desirable properties, especially in relation
to the link between shape and orientation. The orientation dif-
ference measure dorientation is designed to smoothly converge to
zero as one of the compared tensors becomes isotropic, ensur-
ing continuity. Furthermore, the difference measures are consid-
erably faster to compute, compared to the geodesic-loxodromes ap-
proach [KSJEN∗07]. Using the pair-wise differences, the standard
deviation for each of the intrinsic tensor properties is defined as

σp =

√
1

n−1

n

∑
i=1

(
dp
(
D,Di

))2
, (6)

where p is one of the three intrinsic properties {scale, shape, orien-
tation}. The statistical summary contains a mean tensor and three

(a) (b) (c)

Figure 4: (a) The corresponding dODF glyph for the tensor en-
semble in Figure 3a. A conventional direction-encoded colormap is
used. (b) The glyph with the threshold set to 60% of the maximum
variation. (c) The glyph of (b) min-max normalized to enhance the
direction with a large diffusion probability density.
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scalar-valued quantities that represent the variation within each in-
dividual property. Although conceptually similar to the aggregate
covariance measures proposed by Kindlmann et al. [KEWW07],
the {scale, shape, orientation} variations are defined indepen-
dently of the covariance tensor. Furthermore, since both dshape
and dorientation are bounded [ZSL∗16], the corresponding variations
σshape and σorientation are also bounded.

The standard deviation for dODFs, describing the variation in the
diffusion probability density in a given direction u, is then given by

σdODF (u) =

√
1

n−1

n

∑
i=1

(
dODF(u)−dODFi (u)

)2
. (7)

While conceptually similar to the variance in Apparent Diffusion
Coefficient (Equation (13) in Abbasloo et al. [AWHS16]), σdODF
provides a direct interpretation compared to the covariance tensor.

Both dODF and σdODF are functions defined on the unit sphere
S2. Hence, dODF and σdODF can be approximated with spherical
harmonics of up to fourth-order [HMH∗06], resulting in two sets
of spherical harmonics coefficients per voxel, each containing 15
coefficients. Higher-order approximation would provide more ac-
curate results but at increased computational complexity. For the
purpose of numerical computation, an icosahedron-based fourth-
order tessellation is employed to discretize dODF and σdODF.

4. Visual Design Requirement Analysis

Following Shneidermans mantra “Overview first, zoom and filter,
then details on demand" [Shn96], we propose a two-level overview
+ detail visualization. The overview is used to present the aggregate
information on the ensemble, presented in Section 3.2. The detail
views allow the exploration of the original tensor data.

The goal of the overview visualization is to enable the analyst
to inspect the aggregate ensemble information (i.e., mean and vari-
ation) at discrete locations in the domain, as well as to reveal po-
tential large-scale coherent patterns. Therefore, we define three re-
quirements for the overview visualization:

O1 It shall show the mean tensor and tensor variations simultane-
ously in the 3D domain through a single view, to avoid attention
shifts and reduce reliance on memory during visual exploration.

O2 The mean and variations in each of the three intrinsic properties
should be separable and, therefore, individually identifiable.

O3 When no variation is present in the ensemble, the visual rep-
resentation shall converge to a well-known base representation,
such as a glyph-based visualization for a single DTI dataset, to
decrease the entry burden for analysts.

To identify how variations in the ensemble arise and to inspect
tensors for different ensemble members, we define the following
requirements for the detail visualization:

D1 It shall show the complete tensor ensemble for voxels of interest
without assumptions on the ensemble distribution.

D2 It shall allow direct access to the three intrinsic properties sepa-
rately and facilitate interpretations.

D3 It shall allow to identify correlations between the different intrin-
sic properties.

5. Glyph-based Overview Visualization

Glyphs principally allow the simultaneous visualization of multi-
ple attributes. Therefore, it is a natural choice to employ glyphs
to encode the multivariate summary information (O1). Well stud-
ied glyph representations (e.g., [Kin04] for DTI, [PPvA∗09] for
HARDI) form the basis to which our new design should gracefully
reduce in case no variation is present in the ensemble (O3).

5.1. Tensor-based Glyph Design

Superquadric tensor glyphs are commonly employed as base ge-
ometry for their ability to reduce ambiguity and preserve continu-
ity [Kin04, SK10b, SK16]. A glyph G is constructed following

G(D) = s(tr(D))R Λ̃B
(

λ̃ j

)
, (8)

where the superquadric base geometry B
(

λ̃ j

)
is determined ac-

cording to the sorted normalized eigenvalues. Λ̃ is a diagonal ma-
trix composed of the normalized eigenvalues for scaling the base
geometry. R is a rotation matrix, defined by the column matrix
of the eigenvectors [e1,e2,e3]. s is an overall scaling function,
which takes the tensor trace tr(D) as input. Unlike the previous
work [SK10b, SK16], we can use tr(D) instead of the Frobenius
norm ||D|| because we normalize eigenvalues with respect to ten-
sor trace as presented in Section 3.1.

We indicate the major diffusion direction by the conventional
spherical colormap [PP99], determined by the absolute values of
the components of the major eigenvector e1. The color is desatu-
rated according to the tensor invariant cl [WMK∗99]. Unless noted
otherwise, we use this colormap throughout the paper. In the fol-
lowing, we extend the superquadric glyph to incorporate the tensor
variation information based on the fundamental construction rule
Equation (8).

Scale Variation. The mapping of data attributes into visual chan-
nels of glyphs should be semantic [BKC∗13], thus easing the learn-
ing process. The influence of the tensor scale on the glyph appear-
ance is reflected in the scaling part s(tr(D)) of Equation (8). There-
fore, we decide to encode the tensor scale variation into glyph ha-
los, similar to [SK10b, ZSL∗16]. The larger the scale variation, the
thicker is the halo (Figure 5a). Extra benefits brought by halos are
the enhancement of depth perception, which is especially impor-
tant in the context of orthographic projections, and identification of
individual glyphs [LKH09]. The halos are generated by rendering
the same glyph with a larger scaling factor, by adding the standard
deviation to the trace, s(tr(D)+σscale).

Shape Variation. Shape perception is roughly based on two fac-
tors, the underlying geometry, reflected in Λ̃B

(
λ̃ j

)
of Equa-

tion (8), and the shading information [War13]. A way to show ten-
sor shape variation would be distorting the geometry and/or shad-
ing. However, introducing additional, irregular geometry would
lead to a deviation from the commonly used glyphs. Thus it would
potentially increase the learning burden. Instead we encode σshape
by introducing a texture on top of the geometry. We propose two
different approaches with distinct advantages and disadvantages,
and allow the user to select one, depending on the use case.

© 2017 The Author(s)
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Figure 5: Visualization of the same mean tensor with different
types/extents of variations (a): scale, (b&c): shape with Perline
noise and halftone pattern, (d): orientation, (e): all combined. The
variation gradually increases from left to right.

The first approach adds Perlin noise of increasing frequency
to indicate increasing σshape in object space, similar to previous
work [BWE05, HdMRHH16], as shown in Figure 5b. Glyphs en-
coding large variations will show strong luminance contrast, to
which the human visual system is sensitive [War13]. The resulting
texture will be invisible for σshape = 0 and, therefore, resembles the
appearance of the glyph for a single dataset. The second approach
employs a screen-space halftone pattern [SLK∗17], as shown in
Figure 5c. Here, σshape is encoded into the distances between
neighboring dots on the glyph surface. The distance is inversely
proportional to σshape. Smaller variations result in much larger dis-
tances while higher variations result in more densely packed dots.

The halftone pattern provides a more precise estimation of tensor
shape variations, however, at the expense of artifacts during interac-
tion, due to its screen space nature. The Perlin noise does not suffer
from these artifacts, but is harder to interpret and quantify due to
its irregularity. A downside for both techniques is their interference
with color, which means that properties encoded by the color (e.g.,
the major eigenvector or FA) will become less legible.

Orientation Variation. The orientation information is reflected
in the rotation matrix R of Equation (8). One option to visualize
σorientation is to superimpose several glyphs with perturbed rota-
tions [JGA∗02]. However, this is likely to cause strong occlusions.
Instead, we explicitly show σorientation with a sector as shown in
Figure 5d. Since there is no inherent orientation for the 2D sectors
in the 3D domain, we align them with the view direction [LKH09]
to maintain optimal visibility. The orientation variation σorientation
is then encoded into the angle of the sector by the same mapping
function as introduced in our previous work [ZSL∗16], with larger
sectors indicating larger σorientation.

x

y

z

(a) (b) (c)

Figure 6: Three dODF-based glyphs for (a) an ensemble with grad-
ually varying shape and orientation and two ensembles of linear
tensors with crossing angle of (b) 60 ° and (c) 45 °, respectively.
The variation threshold is set to 60% of the maximum variation.
The ensembles are illustrated by the small black icons on top.

As shown in Figure 5, the halo, the surface texture, and the sec-
tor, visually encoding tensor variations in scale, shape, and orienta-
tion, respectively, are individually recognizable (O2). Furthermore,
our design converges to the original superquadric glyph represen-
tation when no variation is present (O3, left column of Figure 5).

5.2. dODF-based Glyph Design

We use the conventional spherical plot, which is commonly used to
visualize HARDI data [PPvA∗09], to visualize dODF. The glyph
geometry represents the average diffusion probability density for
each direction. Additionally, to emphasize the directional informa-
tion, the de facto direction-coded colormap is used. This colormap
can influence the shape perception [BT07], however, it is familiar to
the the target users. In order to incorporate the variation informa-
tion, we employ a threshold-based method. Directional variation
is encoded into neutral gray if it is greater than the user-specified
threshold. We choose a neutral gray, with lightness value 0.5 in the
CIE Lab color space, which has similar lightness as, but is not part
of the direction-coded colormap to minimize the interference with
the perception of the directional and shape information. Figure 4b
shows the dODF glyph with the variations incorporated, derived
from the ensemble of linear tensors in Figure 3a. This representa-
tion preserves the two major diffusion orientations that are present
in the ensemble and the large variation is visible at the four lobes.
Moreover, min-max normalization [PPvA∗09] is used to enhance
the visual perception of directional maxima (e.g., see Figure 4c).
The extended dODF glyph meets the requirements O2 and O3.
Figure 6 further illustrates the dODF glyph representation for three
different ensembles.

5.3. Spatial Overview

To fulfill requirement O1, glyphs are laid out according to their lo-
cation in the data in a spatial view. We construct the tensor glyph
(Section 5.1) and the dODF glyph (Section 5.2) for each voxel. Dis-
playing both simultaneously would result in occlusion and visual
clutter. Therefore, we show only a single, user selected glyph type
at a time. The distinct properties of the two glyphs make them suit-
able for different tasks. If the analyst is interested in variations in
individual tensor properties, the tensor glyph is the best choice; for
detailed information on the orientation variation the dODF glyph is
more suitable.
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(a)

(d)(c)(b)

Figure 7: Our framework for the linked detail views. (a) shows a direct visualization of a synthetic set of tensors containing one isotropic
tensor and two planar-anisotropic tensors, similar to small multiples. (b) shows the shape space view, (c) the scale space view, and (d) the
orientation dissimilarity matrix view with a perceptually linear magma colormap for all the tensors in (a).

6. Detail Visualization

Based on the overview glyphs, the analyst can identify regions of
interest and select few individual voxels for detail inspection of
the ensemble. For further inspection of selected voxels, we pro-
vide linked detail views. A straightforward way to display all ten-
sors (D1) within the ensemble are small multiples. However, sim-
ply placing the glyphs next to each, e.g. ordered by their id in the
ensemble, hardly brings usable insights, as shown in Figure 7a.
For effective comparison, data visualized as small multiples need
to be ordered. Due to their multivariate nature, however, the ten-
sor glyphs presented above have no intrinsic order, and imposing
an arbitrary order violates the representation invariance princi-
ple [KS14]. Following the idea of separating the intrinsic prop-
erties, we propose to show scale, shape, and orientation in three
linked views, as shown in Figure 7. The separation fulfills D2. Fur-
thermore, linking these views fulfills D3. To facilitate quantitative
analysis, we also display all the statistical information (e.g., σshape)
via graphical user interfaces.

6.1. Tensor Scale Visualization

Visualizing the scalar-valued tensor scale is straightforward. We es-
timate the probability density function of the tensor scales within
the ensemble using a 1D kernel density estimate. The function is
visualized directly in a 1D line plot. The exemplary plot in Fig-
ure 7c clearly shows the distribution of scale within the ensemble
in Figure 7a.

6.2. Tensor Shape Space Visualization

Figure 7b shows the proposed shape space visualization using the
ensemble presented in Figure 7a. The tensor shape space is two di-
mensional and maps to a right triangle in R3 in Figure 2. We show

the triangle in the background and draw the three interpretable ex-
treme glyphs on the corners of the triangle. Additionally we show
the iso-contours of other tensor invariants (e.g., FA) for contextual
information, as the curved lines shown in Figure 7b. In principal
the shape space visualization is a scatterplot. However, a mental re-
construction of the actual shape, just from the position and the ex-
treme glyphs, is challenging. Therefore, we show the glyphs with
unit scale and identical orientation to represent the tensor shape in-
formation in the plot. To reduce clutter, the size of the glyphs is
adjustable. In the smallest setting, the shape space visualization be-
comes a standard scatterplot. Finally, the color channel is left for
encoding additional information such as the age of the individuals.

6.3. Orientation Dissimilarity Matrix Visualization

The tensor orientation, given by the rotation matrix [e1,e2,e3],
is an element of the manifold of the group SO(3), and as such,
has three dimensions. However, if a tensor has equal eigenvalues
its eigenvectors are ill-defined. For example, the orientation of an
isotropic tensor is undefined. Due to this coupling of shape and
orientation, it is not straightforward to define a space to show the
distribution of tensor orientations. To sidestep this problem, we
propose to compute pair-wise differences of the orientation using
dorientation [ZSL∗16]. We visualize the pair-wise differences as a
dissimilarity matrix, as shown in Figure 7d, which would allow us
to identify patterns in the orientation behavior. A good ordering is
essential to identify clusters of tensors with similar orientations.
Thus we arrange the rows and columns of the matrix view using
hierarchical clustering [BBHR∗16].

The orientation difference measure dorientation is not a metric. For
example, a planar tensor has no orientation difference with any ten-
sor that has the same minor eigenvector e3. We refer to such a ten-
sor Doc, where dorientation (Doc,Di) = 0 for i = 1 . . .n, as an ori-
centric tensor. Considering the orientation differences dorientation
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only, oricentric tensors have no inherent order and, hence, can
be placed at random positions during ordered hierarchical cluster-
ing [GW72]. Therefore, we propose a custom, top-down hierarchi-
cal clustering approach. We first divide the ensemble into oricen-
tric and non-oricentric tensors. The oricentric tensors are clustered
according to dshape, which is a metric, using hierarchical cluster-
ing with complete-linkage. The group of non-oricentric tensors is
then bisected, using the k-medoids algorithm [KR87] with k = 2,
based on dorientation. The bisection can cause tensors that were non-
oricentric in relation to the complete ensemble to be oricentric in
relation to the new subsets. Therefore, we recursively apply the sep-
aration into non-oricentric and oricentric subsets, followed by the
bisection of the non-oricentric subset, until non-oricentric subset
contains at most one or two tensors.

As suggested by Gruvae and Wainer [GW72], we concatenate
two subsets such that elements on the edge of different subsets that
are most similar are placed next to each other to show the rela-
tion between subsets. To concatenate two non-oricentric subsets,
we choose the pair of edge elements with the smallest orientation
difference while for a non-oricentric subset and an oricentric sub-
set, we choose the pair with the smallest shape difference.

6.4. Linked Brushing

Each of the three views presents only one aspect of the tensor
properties in the ensemble. We use linked brushing to connect all
the three views and to reveal correlations between different tensor
properties (D3). Therefore, we propagate selections defined in one
view to the other linked views. Thus, all the selected tensors in all
the three views will be red highlighted. We also provide the option
to render only the silhouettes of glyphs that are not selected in order
to reduce occlusions.

7. Implementation

Our prototype is implemented in C++, combining VTK and
OpenGL/GLSL for visualization. We use Qt for the GUI and
Teem (teem.sourceforge.net) for tensor data processing.

The glyph rendering is implemented by computing base geome-
tries and storing them in GPU memory, as proposed by Schultz
and Kindlmann [SK10b]. We use three renderpasses to render the
glyphs and corresponding variation information. In the first pass
we draw the mean tensor glyph, including the texture indicating the
shape variation. We linearly scale

[
0,σshape

]
to [0,1]. Since the the-

oretical maximum of tensor shape difference dshape is
√

2/3, which
corresponds to the length of the hypotenuse of the right triangle in
Figure 2, typical σshape values are significantly smaller than 1 and
therefore require the scaling. We render the Perlin noise texture by
first assigning a random value rand between −1.0 and 1.0 to every
fragment, with the fragments’ object space coordinates and σshape
as the input for the Perlin noise generator. To guarantee that the
color-encoded information is legible to some extent, we only apply
the texture to fragments with |rand|<

(
1−σshape

)
. We darken the

fragments with negative sign while we brighten those with positive
sign. We then render the halos by redrawing the geometry with in-
creased size in black in the second pass, and finally the sectors in
the third pass.

The dODF-based glyphs are rendered via ray casting [PPvA∗09].
After determining the intersection point p of the ray with the glyph,
we use the unit directional vector, u = v/‖v‖ with v = p− cglyph
and the glyph center cglyph, to compute the diffusion probability
density variation according to Equation 7.

8. Evaluation and Application

In this section, we compare our design to the work of Abbasloo et.
al. [AWHS16], which is the closest to our work. We consider that
domain knowledge is essential to understand the presented visual
analysis. Unfortunately, this limits the number of possible partici-
pants. Here, we present a qualitative user study with two neurosci-
entists. We also present a case study illustrating the potential of our
prototype with a real-world ensemble of 46 DTI datasets.

8.1. Method Comparison

Abbasloo et al. [AWHS16] use small multiples for the six eigen-
modes, Ek with k = 1, . . . ,6, of the fourth-order covariance tensor.
To illustrate the effects of each eigenmode, they build a pair of
tensors D(t;k) = DEu± tµkEk, where DEu is the Euclidean mean
tensor and µk is the square root of the corresponding eigenvalues
of the covariance tensor. The parameter t can be freely adjusted by
users. The pair of tensors is then rendered with two complemen-
tary colors, blue and orange. The normalized covariance tensor is
decomposed with respect to the spherical invariants set (i.e., Frobe-
nius norm, FA, and tensor mode) and rotation tangents [KEWW07],
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(g) (h)(f)
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Figure 8: Comparison of two different aggregate visualizations for
two different synthetic ensembles ((a) and (e)). (b) and (f) show the
glyph-based eigenmodes visualization and IGRT matrix view. (c)
and (g) show our tensor glyphs, depicting the variations in instinct
properties. (d) and (h) show the dODF-based glyphs. The direction
with large variations are colored in gray. For the purpose of clear
illustration, images are generated from different viewpoints.
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and displayed via a blue-gray-yellow colormap. Figures 8b and 8f
show their visualizations. Figures 8c and 8g show our tensor glyphs
while Figures 8d and 8h show our dODF-based glyphs. The varia-
tion threshold of dODF can be freely adjusted by users as well.

During the experiment, we first gave an introduction with a
live demo of the two visualizations to be compared and the cor-
responding interaction methods. At this time, the participants in-
teracted with the prototype to get themselves familiar with the vi-
sualizations. The objects of comparison are the aggregated glyphs
in Section 5 and the visualizations proposed by Abbasloo et
al. [AWHS16] of three synthetic datasets. We presented them to
the participants, together with interaction capabilities, in random
order. The participants freely analyzed the visualizations, and then
we asked them to describe the original ensemble based on the ag-
gregated visualizations they were observing in the form of a ques-
tionnaire. The participants had no information on the configuration
of the ensembles apart from the provided aggregated visualizations,
beforehand.

The first ensemble in Figure 8a comprises most variation in the
orientation, some variation in scale, and no variation in shape. The
scale variation is captured by all visual representations as suggested
by the fourth eigenmode in Figure 8b and the visible halo in Fig-
ure 8c, respectively. The IGRT (i.e., invariant gradients and rotation
tangents [KEWW07]) matrix of Abbasloo et al. shows high val-
ues in the 2nd and 3rd diagonal entries, corresponding to FA and
mode respectively. The first and second eigenmodes, shown in the
small multiples of Figure 8b, however, falsely indicates variation in
shape. Our tensor glyph in Figure 8c shows no variation in shape.
Both participants could not describe the variation in tensor shapes
using the method of Abbasloo et al., while with our visualization
they readily confirmed that only linear tensors are included in the
ensemble. In Abbasloo et al., the third and fourth eigenmodes, to-
gether with the rotation tangents part of the IGRT matrix, i.e., the
bottom three diagonal entries, show orientation variation in two or-
thogonal directions. The first and second eigenmodes show clear
simultaneous variation in orientation and shape. One participant
commented that it is really hard for him to combine all the eigen-
modes to deduce information about the ensemble. Both participants
deliberately ignored the rotations manifested in the first and second
eigenmodes in Figure 8b when deducing the orientation, and came
to the correct conclusion that there are two main directions of ro-
tation in the ensemble. Our aggregated tensor glyph in Figure 8c
makes the orientation variation directly visible as a large sector.
Furthermore, the dODFglyph in Figure 8d shows the principle dif-
fusion direction as three orthogonal directions with high diffusion
variation. Combining both glyphs, they came to the conclusion that
a group of linear tensors spreads around the major eigenvector e1 of
the mean tensor, which, while not describing the orientation varia-
tion exactly, is very close to the correct description.

The second ensemble in Figure 8e shows some variation in scale,
shape, and orientation. This simulates the interface between two or-
thogonally aligned fiber tracts [KEWW07]. In Abbasloo et al., the
last four eigenmodes correspond to zero eigenvalues. Therefore,
we only keep the first three views in Figure 8f. The orientation and
scale variation are manifested in the first and second eigenmode,
respectively. The IGRT matrix in Figure 8f, however, indicates no

variation in orientation (see the bottom three rows) but large varia-
tion in tensor mode (see the 3rd diagonal entry), which is part of the
tensor shape. This contradiction between the eigenmode views and
the IGRT matrix view causes considerable confusion for both par-
ticipants. This is caused by the fact the variation in mode and minor
eigenvector, shown as the 3rd and 6th diagonal entries respectively,
should be interpreted integrally [KEWW07] near a planar mean
tensor. Our tensor glyph in Figure 8g shows variation for all the
three properties. The dODF glyph in Figure 8h provides additional
information, indicating two main orthogonal directions with high
diffusion variation. Both participants speculated that there may be
fiber crossing effects in the underlying ensemble.

After the participants finished the overview analysis we showed
them the underlying ensemble with our detail views and infor-
mally discussed the application. With regard to the tensor scale,
the visualization of Abbasloo et al. and ours work well. How-
ever, our technique is found to be more accurately describing the
shapes in the ensemble. In terms of tensor orientation, both partic-
ipants remarked that the non-linearity of tensor orientations makes
the covariance-based visualization harder to understand. With our
method they could readily identify orientation variation but both
thought it requires a considerable learning curve to interpret the
dODF and to effectively combine the information of the two ag-
gregated glyphs. Another insight we learn from the user study is
that the visual representation of the shape variation is not optimal.
While participants found the noise texture less readable than the
half tone texture, they preferred the stability of the object-space
Perlin noise. We intend to explore other visual design idioms to
optimize this in the future.

We do not show correlations between different tensor proper-
ties explicitly in our glyph designs. Correlations can be shown via
eigenmodes, and the off-diagonal entries of the IGRT matrix. How-
ever, it is unclear whether it can be reliably interpreted. For in-
stance, the first and second eigenmodes in Figure 8b indicate some
relation in shape and orientation but there is no shape variation in
the ensemble. Generally, both participants deem the proposed mean
tensor, based on the separation of tensor intrinsic properties, as well
as our visual design more intuitive.

8.2. Application to DTI Ensembles of Healthy Subjects

In this section, we present an exemplary analysis of a cohort DTI
study, conducted with a neuroscientist, who is specialized in DTI-
based group analysis and a co-author of this paper. The dataset used
for this case study is an ensemble, consisting of 46 DTI scans of
healthy volunteers, age 47 to 78, serving as the control group in
clinical research. Each scan has a resolution of 224× 224× 144
with isotropic voxel size of 2mm. The diffusion weighting is b=
1000 s/mm2 along 64 uniformly distributed directions with four
non-diffusion averages. The numerical range of the tensor values is
scaled by 1000. The datasets are registered with a non-rigid regis-
tration approach by DTI-TK, which takes the whole tensor infor-
mation into consideration [ZYAG06].

During the visual exploration with the glyph-based overview
in Figure 9b, we find a region of interest (ROI) with both high
scale and shape variations. This region (see green highlight in Fig-
ure 9a) corresponds to the border between the ventricle, corpus
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Figure 9: Visual analysis results for a border region of ventricle, CC, and IFO (a). The glyph-based overview (b) guides the selection of a
voxel of interest for further exploration via shape space (c), scale line plot (d), orientation difference matrix (e), and age information (f).

callosum (CC), and inferior fronto-occipital fasciculus (IFO). The
glyph-based overview in Figure 9b shows small variation in ori-
entation (i.e., small sector angle). The glyphs in the bottom-right
have thicker halos, indicating a larger scale variation, compared to
the glyphs corresponding to the fibrous regions, i.e., bright areas in
Figure 9a. In contrast, shape variation shown as half tone patterns is
stronger in the top region. We now make a selection and use the de-
tail views for further exploration. We select one of the voxels with
larger shape and scale variation (see orange highlight in Figure 9b).
In the detail views, the glyph color encodes the subject age. In the
shape space view in Figure 9c, we see a transition from anisotropic
tensors to nearly isotropic tensors. The scale view in Figure 9d
shows a right-skewed distribution with a strong peak at lower scale
values, as well as several large values. Selecting the right tail of the
distribution in the scale view reveals the nearly isotropic tensors in
the shape-space view via linked brushing, i.e., red highlighted in
the different detail views. We also highlight the selection in a sim-
ple table view in Figure 9f, clearly identifying the older subjects.
This confirms the expectation that older people have larger ventri-
cles [RPK∗03, LGC∗12], resulting in tensors with lower diffusion
anisotropies but high diffusion scales. Somewhat unexpected is a
clear separation in the orientation view in Figure 9e, even though
differences in orientation are generally small, as already indicated
by the glyph-based overview. Interestingly, there seems to be fur-
ther correlation with age, placing the previously selected tensors all
in one group on the top right of the diagonal.

For the second analysis, we choose a different ROI (see blue
highlight in Figure 9a) in the CC to illustrate that our detail views
can be used to identify potential outliers. The glyph-based overview
in Figure 10a shows that the variations in the ensemble are similar
throughout the selected region. Slight variation in orientation and
some variation in scale and shape can be identified. We select a
voxel in the center, highlighted in Figure 10a, for further inspec-
tion in the detail views. An outlier tensor with lower anisotropy,
encircled in Figure 10b top, becomes apparent. Through the linked
selection we also find this member exhibits a larger scale value (see
the encirclement in Figure 10c top) compared to the rest of the en-
semble members. To verify that this behavior is consistent in the
complete ROI, we select the 18 voxels in Figure 10a for visualiza-
tion in the shape space view (Figure 10b bottom). We now select the

overview(a) shape(b) scale       (c)
0.0

0.0

0.5

1.0

1.5

1.5 3.0 4.5

0.0
0.0

1.0

2.0
2.3

1.5 3.0 4.5

Figure 10: Identification of potential outliers in a region of the
corpus callosum, highlighted in blue in Figure 9a. (a) shows the
overview glyph visualization. (b) and (c) show the shape space view
and scale line plot for (top) the selected voxel in (a) and (bottom)
the complete ROI, respectively.

subject corresponding to the outlier, identified in Figure 10b top,
through the table view, highlighting only the corresponding tensors
in the shape space view in Figure 10b bottom. The selection high-
light clearly shows that all the corresponding diffusion tensors have
coherently lower anisotropies (see Figure 10b bottom) and gener-
ally larger scale values (see Figure 10c bottom). This indicates that
the selected ensemble member as a whole could be regarded as an
outlier for this area.

9. Discussion and Conclusion

We present an interactive approach for the analysis, visualization,
and exploration of diffusion tensor ensembles. At the core of our vi-
sual analysis approach is a novel way to compute a representative
tensor and quantify tensor variation through tensor intrinsic proper-
ties (i.e., scale, shape, and orientation), each of which has a biologi-
cally meaningful interpretation. By adapting the dODF, we provide
an alternative for aggregating orientation variation, for cases where
a single representative tensor cannot properly summarize differ-
ent orientations in the ensemble. Another core contribution is the
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overview + detail visual design to facilitate per-voxel inspection
of variation of tensor intrinsic properties free of assumptions about
the underlying distribution. Finally, we demonstrate the effective-
ness of our approach by comparing it to previous work by means
of a qualitative user study with two domain experts and show the
potential of our design by a case study.

The conducted user study requires knowledge about diffusion
tensor analysis as well as multilinear normal distributions and as
such limits the pool of possible participants. We consider a larger
user study that would allow for strong conclusions on the effective-
ness of the presented techniques future work.

We test our detail view system for ensembles of less than hun-
dred members, a reasonable number for current DTI group studies.
However, scaling to much larger numbers of ensemble members
would require other solutions, specifically with respect to the visu-
alizations of tensor shape space and orientation difference matrix.

Apart from data aggregation, another main task when conducting
DTI group studies is the detection of potential outliers. While we
demonstrate outlier detection using our detail views, our glyph rep-
resentation currently does not provide any information on potential
outliers. To ease the process of outlier detection a careful adaption
of the glyph design that does not increase clutter is needed.

Finally, our design is targeted at second-order positive-definite
tensors. However, similar rules apply to the glyph construction of
second-order symmetric tensors [SK10b]. Investigating the appli-
cability of our design to those or even general second-order tensors
would be an interesting future direction.
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