
A Software Environment for the Responsive Workbench

Michal Koutek and Frits H. Post

Delft University of Technology, Faculty of Information Technology and Systems

email: M.Koutek@cs.tudelft.nl, F.H.Post@cs.tudelft.nl

Keywords: Responsive Workbench, RWB Library, RWB Simulator

Abstract

In this paper we present a software environment
for the Responsive Workbench (RWB). We will give a
technical information on our RWB system. We will
describe the architecture and the usage of the RWB
library, interaction tools, and the RWB simulator.
Finally we will show some visualization applications
on the RWB.

1 Introduction
The Virtual Reality Responsive Workbench

(RWB) is a powerful system for 3D visualization
and interaction [1]. It intensifies perception of 3D
models and data. The RWB is a semi-immersive
virtual environment: the user stands in the real
world and is looking into a virtual world which is
projected on the screen of the Workbench. One of the
advantages of the RWB is its tabletop metaphor. It
creates for the user an illusion of a laboratory table
or a design studio, while the only real element is the
wooden construction of the workbench everything
else is purely virtual. The RWB also offers a large
screen to visualize the 3D models. Combined 2D and
3D interfaces can be used for the user interaction.

The RWB is complementary to the CAVE [3],
where the user is almost fully immersed into the pro-
jected virtual environment. The usage of the RWB
is a bit different than of the CAVE. The RWB bene-
fits from the table metaphor although its field of view
is rather limited. In the CAVE, all objects are usu-
ally virtual. In automotive industry they put mock-
ups, car-seats inside the CAVE to have at least some-
thing real with a substance, but they have to face the
problems of interference with electro-magnetic track-
ing and thus wooden or plastic materials have to be
used. If we would want to use the CAVE in the same
way as the RWB we would have to display a virtual
table as well. For some application is the RWB more
suitable than the CAVE.

For controlling these types of VR systems VR soft-
ware and libraries are needed. Two years ago, when
the RWB facility was installed at the HPaC Centre at

TU Delft, there were not many software options. On
one hand there were a few experimental libraries (like
Avocado/Avango [2], VR-Lib, MR Toolkit, VrTool)
used by VR researchers and the other hand there was
a commercial software, like the CAVE library [9] or
the WorldToolKit (WTK). Usually, the commercial
VR software is not an ultimate option for a VR re-
searcher.

We have chosen a third option. Based on the ex-
periences with the experimental software, we have
built our own VR software infrastructure that satis-
fied our research needs. Our RWB library is based
on OpenGL and Iris Performer and has been imple-
mented in C++. A customizing of the CAVE library
or of the WTK for our installation of the RWB would
be much a harder task.

In this paper we want to give an overview of the
framework and the architecture of the Responsive
Workbench, the way this VR system works and how
to use the RWB library and the RWB simulator.

2 RWB Basics

The Responsive Workbench is based on a stereo
projection table system which is combined with an
electro-magnetic tracking system, see Figure 1. The
stereo images are generated from a powerful graphic
station, the SGI ONYX 2 with four CPUs and an In-
finite Reality 2 graphic card. We use the display reso-
lution of 1120� 840 pixels in 96 Hz in stereo mode.

Figure 1: Top and side views on the Workbench

The image from the RGB projector is reflected
though two mirrors and has to properly fit on the ta-
ble glass which is tilted by 10

Æ. To obtain a clear
and a sharp image the RGB projector has to be well

calibrated and precisely aligned. Crystal Eyes shutter
glasses are used to see the stereo effect.

Figure 2: Workbench table coordinate system

The virtual world projected on the screen of the
RWB is represented in the workbench table coordi-
nates. The tracked positions and orientations of the
user’s head and hand must be converted into the same
table coordinate system. We are using table-centered
and table-aligned coordinate system, see Figure 2.

In the RWB environment, the head-tracker updates
user’s viewpoint, and the tracking of the stylus pen
forms the base for a 3D interaction, see Figure 3.

Figure 3: 3D user interaction on the RWB

2.1 Projection and Viewing
In common 3D rendering systems the user’s eye

is positioned on the axis of perspective projection, so
called on-axis-perspective. This is usually the case for
a user watching the monitor on which a 3D geometry
is displayed. Usually we put the viewpoint on the +Z-
axis and the viewing frustum is oriented into -Z-axis.
Of course, it is an ideal case when the user has his/her
head on the central axis of the screen. For monoscopic
images it is not a problem.

But on the Workbench, we cannot assume that
user’s eye is on the Z-axis. Therefore we have to
use an off-axis-perspective. Construction of the RWB
perspective frustum is shown in Figure 4.

We have to set up the perspective frustum from
the user’s eye position (in table coordinates) point-
ing down, perpendicular to the the Workbench ground
plane. After the perspective transformation we have
to perform a 2D shift in viewport coordinates to fix-
ate the viewport origin with the origin of the RWB.
This is equivalent to the assumption that the user is
always looking at the center of the Workbench. By
this we have constantly fixed the ground plane of the

projected VR world to the screen of the Workbench.
This has to be done for the left and the right eye to set
the correct stereo perspective.

Figure 4: Construction of the viewing frustum

It’s important to mention that Iris Performer uses
a different notation of viewing direction than usual.
Performer’s viewing direction is the +Y-axis, and
OpenGL uses the -Z-axis.

2.2 Tracking

The electro-magnetic tracking system, in our case
the Polhemus Fastrak, measures the position (xyz)
and the orientation (AER: azimuth, elevation, roll) of
two sensors: the head and the stylus. For a later use
we must convert orientations to the Performer’s angle
notation (HPR: head, pitch, roll).

The tracker daemon process reads periodically
(50Hz) the data from the tracking system, converts
them to the workbench table coordinate system and
stores them in a shared memory. The tracker daemon
also offers functions to access and read the data for
any running process. More about the tracking system
in section 2.3.

Figure 5: Tracker to table coordinate transformation

The update-view function of the RWB library
reads the new position and orientation from the
tracker daemon’s shared memory. This information
is first stored in the tracker-coordinate-system in the
form of 4x4 matrix where the position is placed in
the translational part of the matrix and the HPR rota-
tion is stored in the rotational 3x3 sub-matrix. This
matrix forms the frame of transformation. But origi-
nally, this frame is defined with respect to the tracker-
coordinate-system, thus it has to be transformed to
the workbench-table-coordinate-system, see Figure 5.

Therefore a tracker-to-table transformation 4x4 ma-
trix is used. The original head-tracker frame is trans-
formed by this matrix. The resulting frame has to be
aligned so that in the neutral orientation of the head
tracker, resp. stylus, is its Z-direction pointing up-
wards in the virtual world coordinates. This is done
by multiplying the frame with pre- and post- rota-
tional matrices. The final frame together with the in-
formation on the offsets of the eyes is used to posi-
tion the viewpoints of the left and the right eyes. The
viewing direction is always pointing towards the cen-
ter of the RWB table, see Figures 5 and 6.

Figure 6: Head tracking and eyes positions

2.3 Calibration
The calibration of the tracking system is a very im-

portant process, see Figure 7. It consists of two stages.
First, the tracker-to-table transformation has to be

defined. The user clicks with the stylus pen on the 3
points �: the origin and points on the X and Y axis
of which we know the exact position on the screen
(in pixels) and their exact position with respect to
the center of the glass-plane (in cm). We measure
the positions in tracker coordinates. From this we
can obtain the scaling factors, the axis-vectors XY
and the Z-axis which is the cross product of X and
Y, and the position of the origin with the respect to
the tracker-coordinate-system. From these values the
ortho-normal frame base (4x4 matrix) is constructed
and its inversion gives the tracker-to-table transforma-
tion matrix:

MTT =

2
664

0
BB@
Xi Xj Xk 0

Yi Yj Yk 0

Zi Zj Zk 0

oi oj ok 1

1
CCA ?Mscale

3
775

�1

Figure 7: Grid calibration of the tracker data

Next, the grid calibration is performed by measur-
ing the tracking error on the grid. We use a bi-linear
interpolation to correct for this error.

In Figure 7, the dashed lines show tracking results in
the glass plane without the grid calibration. The track-
ing error is very annoying especially for 3D interac-
tions with the stylus pen when the virtual cursor is
sometimes significantly displaced from the stylus po-
sition. For the head-tracking the tracking error is less
significant.

3 The RWB Library

Considering the available hardware and our needs
we have built the RWB library. We want to use the
RWB facility in an optimal way. There is a power-
ful IR2 graphics in the SGI Onyx 2, which can theo-
retically render 13 million triangles, and which has a
large texture memory. This system is equipped with
4 CPUs and a main memory of 512MB. These re-
sources should be used effectively by the RWB appli-
cation.

The typical RWB application needs real time 3D
graphics and 3D interaction. Therefore we have cho-
sen for Iris Performer which offers an optimized 3D
graphics pipeline based on OpenGL, and also in-
cludes an extensive support for multiprocessing and
shared memory access in IRIX 6.5 operating system.

The tracker daemon is a separate application which
just reads the tracking data from the tracking systems
and converts them to the workbench coordinate sys-
tem. On the side of the RWB library there are func-
tions to read the tracker data from the tracker dae-
mon’s shared memory. Advantage of such a solution
is that multiple applications/processes can access the
shared memory without using HW ports of the track-
ing system.

Second to solve was to set up the stereo-projection
pipeline using the off-axis perspective projection, as
discussed above. We have tried several stereo projec-
tion schemes including the on-axis perspective which
we had proved not to be suitable for the RWB, espe-
cially because of the distorted perspective which was
a serious problem for 3D interaction with the stylus
pen. During this process we had to do many calibra-
tions of our system.

Then we had to define a multiprocessing scheme
for a general RWB application, which consists of
the main RWB process, the tracker daemon, the key-
board/mouse interaction process and the user applica-
tion process. The main RWB process consists of ap-
plication, culling and draw sub-processes as defined
in Iris Performer. All the processes can communi-
cate through the shared memory. For this purpose
we have created unified shared memory object called
”Shared”. All the necessary parameters of an RWB
application can be accessed from there. It is a respon-
sibility for the application programmer to work care-
fully with global, local and shared variables. In many
cases the problem of a crashing application is hidden
in undefined values of variables in forked processes.

Iris Performer together with our RWB library of-
fers many functions to access 3D geometry files or
for creating a custom geometry and building the scene
graph of the virtual world which is displayed on the
RWB.

We have incorporated a generic class, the RWB-
obj, which is used to contain the geometrical infor-
mation as well as interaction abilities in the form of
interaction, drawing and culling call-backs. This type
of object also incorporates collision detection and in-
tersection calculations.

3.1 The Structure of RWB Applications

We have designed the functions of the RWB library
to be clear, easy to use, and to minimize the program-
ming effort made by a programmer of an RWB ap-
plication. The user has to specify just the rwb-objects
within the virtual world and to define the special func-
tional/interactional call-backs of the application and
the rwb-objects; more on this in section 3.2. The tem-
plate for an RWB application looks as follows:

include ” rwblib . h”

class MySharedData : public rwbRootClassf
. . user spec i f i ed . . g ;

MySharedData �MyShared ;

s ta t i c void My UserCodeFunc()
/ / t h i s func t ion is cal led from
/ / the Main LOOP of the main process

f . . user spec i f i ed . . g ;

s ta t i c void My UserCodeAsyncFunc()
/ / t h i s func t ion runs as a separate process

f . . user spec i f i ed . . g ;

s ta t i c void My KeyPressed Event (int dev , int key)
/ / t h i s func t ion runs in a user�input process
f . . user spec i f i ed . . g ;

s ta t i c void my rese t func t ion (void)
f . . user spec . ; funct ion ca l l ed from the global r e se t g;

s ta t i c void r e s e t b u t (rwbObj �v)
f . . user spec i f i ed ; button cal lback funct ion g ;

s ta t i c void ex i t func (rwbObj �v)
f . . user spec i f i ed ; button cal lback funct ion g ;

int main (int argc , char � argv [])
f

rwbInit main (argc , argv) ;

p fd In i tConver t e r (” myfile1 . iv ”) ;
p fd In i tConver t e r (” myfile2 . obj ”) ;

/ / Load a l l geometry�loaders before Performer forks

rwbIni t scene () ;
rwbIni t view () ;

MyShared = new MySharedData () ;
Shared�>use r da ta =(void �) MyShared ;

Shared�>UserKeyPressed Event =
&My KeyPressed Event ;

Shared�>UserCodeAsyncFunc =
&My UserCodeAsyncFunc;

Shared�>UserCodeFunc =
&My UserCodeFunc;

rwbIni t s im () ;

rwb button � but1 = new rwb button (” ex i t ” ,
7. f ,�18.5 f ,2 .1 f ,10 . f , 3 . f , 4 . f) ;

but1�>setPickFunc (ex i t func) ;

rwb button � but3 = new rwb button (” re se t ” ,
0. f ,�18.5 f ,2 .1 f ,10 . f , 3 . f , 4 . f) ;

but3�>setPickFunc (r e s e t b u t) ;

Make ApplicationPanel (” Test RWB Applicat ion ” ,
” Copyright (c) 2001 M. Koutek”) ;

MyShared�>myObject = new myObject (Shared�>my world) ;
MyShared�>myObject�>i n i t () ;

Shared�>r e se t func = & my rese t func t ion ;
my rese t func t ion () ; / / ca l l i t for the f i r s t time

rwbHideGlobalCoordXYZ () ; / / or rwbShowGlobalCoordXYZ

< . . . load or c rea t e geometries
and bui ld the scene graph . . .>

Scene Root : :
������������>Shared�>App worldDCS

Shared�>App worldDCS�>addChild (<your pfObject :
pfDCS , pfGroup or pfNode>);

or

rwbObj � obj ;
/ / RWB class for anything you need

obj = new rwbObj (0) ;
/ / 0 . . bounding box , 1 . . sphere , 2 . . cy l inder

obj�>attachGRobj (<your performer�object :
pfDCS , pfGroup or pfNode>,

xpos , ypos , zpos , xscale , yscale , zscale ,
rot h , rot p , r o t r) ;

obj�>add to SceneGraph (Shared�>App worldDCS) ;

obj�>Disab leCo l l i s ions () ; / / or EnableCol l is ions
obj�>makeGenericBoundVol () ;
obj�>HideBoundingVolume () ; / / or ShowBoundingVol .
obj�>Update TransfMat () ;

rwbForkMain () ;
g

The detailed documentation of RWB library func-
tions can be found at [8]. The most simple working
application consists of:

rwbInit main(arc,argv);
rwbInit scene(); rwbInit view(); rwbInit sim();
rwbShowGlobalCoordXYZ(); rwbForkMain();

It creates an empty world with a grid texture on the
ground and XYZ coordinate system in its origin.

3.2 3D Interaction and User Interface

The RWB library offers the user interaction with
devices like a keyboard, a mouse, a space-mouse
(with 6 degrees of freedom), and a stylus pen (6
DOF). The space-mouse is used for navigation in
large environments and to its 9 keys extra function-
ality can be assigned by the application. For a real 3D
interaction the RWB applications use the stylus pen
with a tracking sensor and one button.

A widget set is available for building a 3D user
interface with buttons, sliders, menus, display, dials
and type-ins windows.

At the position of the stylus pen in the virtual envi-
ronment a virtual cursor is displayed follows motions
of the stylus.

3.2.1 Direct Object Manipulation Tools

When the stylus pen is inside an RWB object (col-
liding with it), the object is selected and changes its
color to red.

The user can then invoke its function by clicking
on the button, or holding the button and simultane-
ously performing some motion. There are 4 basic
call-back functions of a generic RWB object:

� touch/untouch: an object is being touched

� pick: at the moment of the first button-click

� manipulation: during manipulation

� release: at the moment of releasing the button

Each of these can be user specified. For example
touch call-back can print object information, or if the
user picks a door it start an animation of opening the
door.

Figure 8: Object manipulation

Objects can be selected and manipulated directly
with the stylus, or in the case of distant objects, using
a ray-casting technique (see Figure 8).

3.2.2 Object Collisions

For a realistic object behavior in user interaction, col-
lision detection is important to prevent objects from
moving through each other.

Detecting object collisions helps to create an illu-
sion that virtual objects have a substance.

We have implemented the following object colli-
sion schema into the RWB library: collision between
stylus-object, ray-object and object-object.

The stylus and ray intersection/collision is sup-
ported by Iris Performer. Collisions between individ-
ual objects had to be implemented into our library.

First, bounding volume collisions between objects
are evaluated. In the case of a collision of bounding
boxes/spheres/cylinders the system performs a pre-
cise triangle object collision check. This part of the
collision detection can put serious limitations on per-
formance, especially if the triangle collision is not

optimized and all triangles of one object are tested
against triangles of the other object. We have imple-
mented some optimalizations, but for a general ob-
ject with more than 200 triangles, the interactivity de-
creases significantly during manipulation of an object
colliding with an other object.

3.2.3 Dynamic Object Manipulation Tools

In the RWB library we have also built a visual force-
feedback method to provide a visual interface and to
substitute a real force input [4]. We use spring-based
tools attached to objects assisting the manipulation,
based on the following assumptions:
� a linear relation of force with spring compression

/ extension is intuitively understood and shown
by the spiraling shape of a spring. Thus, even
without exerting real force, a user has an intuitive
notion of transforming a change of spring length
to a force.

� bending and torsion of a shaft is used to show
forces and torques exerted on virtual objects

� stability is introduced by friction and damping
� physical contact of objects is intuitively equiva-

lent with geometric intersection

We have introduced a set of spring-based tools for
providing the basic manipulation tasks, see Figure 9.

Figure 9: Spring-based manipulation tools

� spring: attached to the center of an object. It
supports linear motions. The tool has 1 DOF
(degree of freedom), the length of the spring, and
controls 3 DOF (xyz) of an object.

� spring-fork: attached to an object it defines a
contact point for transfer of forces and moments
to the object. It supports translations and rota-
tions. The tool has 3 DOF (extension, bend, tor-
sion) and controls 6 DOF (xyz+hpr) of an object.

� spring-probe: used for probing the material
stiffness of an object or pushing an object. The
tool has 1 DOF (length) and can control 3 DOF
(xyz) or 1 DOF (pressure) of an object.

Figure 10: The Spring selection and manipulation

The Spring-tools are used as a link between user’s
hand and a manipulated object. When the user lifts a
heavy object, the spring will extend proportionally to
the object’s weight and its motion.

Figure 11: The Spring-fork selection / manipulation

The fork metaphor seems to be very intuitive. For
object selection the fork has to be inserted into an ob-
ject. The user can fix the position and the orienta-
tion of the fork inside the object. Then the spring part
(handle) of the fork gives a visual dynamic feedback
during the manipulation of the object. The user con-
trols one end of the fork and the other end is influ-
enced by the object. The fork can bend, extend (com-
press), or twist according to the laws of mechanics.

If virtual forces and moments are applied to vir-
tual objects using the tools, they will show appropri-
ate inertial effects according to the object’s mass and
moments of inertia.

3.3 Workbench In Workbench

Besides already mentioned functions and features
of the RWB library including the collision and the in-
tersection functions, the 3D user interface and the dy-
namic object manipulation tools, there are also some
special functions and features of the RWB library.

For an improvement of the user’s orientation in the
virtual world projected on the RWB we have built in
the library the Workbench In Workbench function, see
Figures 12 and 13.

A small copy of the Workbench is projected onto
the RWB table top. It contains the whole virtual world
with all its objects as well as the user’s head and the
stylus. The user can orient in a large world by look-
ing onto the Workbench miniature and seeing which
part of the world is displayed on the RWB. The WIW
function also helps to locate and manipulate objects

Figure 12: WIW: mini preview

which are not projected onto the RWB table top be-
cause they are out of the field of view. These objects
are visible in the RWB miniature.

Figure 13: WIW: navigation assistence

3.4 Monitoring of User Interaction

A very important aspect of the work with the RWB
is to be able to monitor and debug the RWB applica-
tion in a distributed VR environment. Therefore we
have implemented the monitoring function of the user
interaction. The principle is quite simple. During the
runtime of the application the tracker data are written
into a file (or sent through a network) for immediate
or later use, such as animated replay of a session.

Currently, we are using the file with the tracker
data for the RWB Simulator.

4 The RWB Simulator

It is not always convenient and effective to de-
bug or monitor an RWB application on the RWB
itself. Sometimes the user performs application-
specific tasks, and it is difficult to see if the task or the
underlying algorithm works properly, when the user is
just standing at the Workbench and wearing the shut-
ter glasses. Usually, many program variables will be
written onto the screen and analyzed, but on the real
Workbench you cannot pause the application. This is
even more complex if we consider the multiprocess-
ing nature of the RWB application.

The Workbench Simulator is in fact the same RWB
application that is compiled in a simulator mode.

It means that the tracker data are not read from the
tracker daemon but from the tracker data file. The
application then runs in the same way as on the real
Workbench. What is different is the role of the user,
and of course the type of the 3D projection.

Figure 14: The RWB Simulator: fork manipulation

On the real Workbench the user performs the in-
teraction with the RWB and with the running appli-
cation. At any moment the user can start the writing
of the tracker data to the file. Then within the RWB
Simulator the user sitting at a common workstation
can watch what was happening on the real RWB. The
application world is displayed on the model of the
Workbench. The user can observe the run of the RWB
application, how the user performed with it and the
simulator user can navigate around the RWB model
with the mouse via a trackball metaphor (see Fig-
ure 15). The keyboard can be used to steer the simula-
tor (e.g. pause, trace back/forward or reset simulation,
reposition the user’s head or the stylus).

Figure 15: Using the mouse: trackball navigation

Another aspect of VR research is a demonstration
& presentation of results. It is not possible to take
stereo/immersive pictures of a user working with a
RWB application. Usually, we switch the projection
to a monoscopic mode and then we do ”some adjust-
ments” with the perspective to align the user with the
virtual world. The RWB Simulator is very convenient
for making pictures/animations of the RWB applica-
tion, see Figures 10-17.

A big advantage of the RWB Simulator lies in

its portability. The RWB applications can be imple-
mented and developed on common graphic worksta-
tions with Iris Performer and the RWB library. Cur-
rently the library works exclusively on SGI worksta-
tions. With the availability of the Performer for Linux
the RWB library will also be available for PC’s.

Figure 16: Delft WLjHydraulics: visualization of the
flooding simulation

Using our RWB library and simulator, the process
of application development runs as follows.

First, the user prepares a main part of an applica-
tion: the scene graph of the virtual world, basic func-
tions and callbacks, the user interface. During this
preparation stage the user compiles the application
with the simulator option.

In the next step, the user runs the application on the
real RWB, and performs some tests and adjustments.
The user’s can save sample tracker data for having
some user’s interaction data, and switches back to the
simulator mode. This process repeats until the imple-
mentation is finished.

After the final test of the application on the real
Workbench the RWB Simulator can produce images
and animations for presentations.

Figure 17: The RWB Simulator: molecular dynamics

5 Examples of RWB Applications

There is a wide range of applications running on
the Responsive Workbench.

GIS, architectural, landscape planning/observation
applications profit from the large overview, the high
level of immersion and the 3D interaction.
In Figure 13, the Workbench In Workbench function
assists the navigation in a GIS application. The user
is observing a model of the TU-Delft campus.
In Figure 16, the user performs an interactive visual-
ization of the flooding simulation.

The RWB, can also be used for various experi-
mental applications such as shown in Figures 12 and
14, where the dynamic object manipulation with the
spring-based tools is shown.

Visualization and simulation applications greatly
benefit from the computational power of the SGI’s
Onyx 2 system. A large scalar / vector data set of
a simulation can be interactively visualized on the
RWB. Many visualization techniques can be used and
combined together to produce the best visualization
of given phenomena.

Figure 18: GMD: medical visualization

The RWB provides a convincing impression of a
laboratory table application, for example in medical
training or instruction on human anatomy, see Fig-
ure 18.

Figure 19: TN-HPaC: molecular dynamics

The Workbench environment is also suitable for
scientific visualization and simulation. One example
is molecular dynamics, see Figures 17 and 19.

The Figures 18 and 19, are real snapshots of appli-
cations running on the RWB and were not created us-
ing the RWB Simulator. The reader can compare the
value of RWB Simulator images with the real ones.
It’s worth to mention that creating of the real images
was a bit more complex task (adjusting light condi-
tions, correcting the perspective, etc.). Making the
simulator images was much simpler.

6 Conclusions and Future Work

We have implemented the RWB library which
forms the basic implementation environment for the
RWB applications. We have tested this system on
several case studies. Some of them were mentioned
in this paper.

This library, based on Iris Performer, offers not
only the optimal usage of the available HW resources
for the realtime 3D graphics and interaction but also
includes several special features and extra functions
which cannot be found (yet) in commercial packages
like the CAVE library and the CAVE simulator [9].

Our system is still under development and increas-
ing functionality. Currently, we prepare a version for
PC’s with Linux and by this make the RWB facil-
ity available for students and their VR assignments.
We also plan to add an interface for vtk (Visualization
Toolkit) [10].

References
[1] W. Krüger, B. Fröhlich, C.A. Bohn, H. Schüth,

W. Strauss, G. Wesche, The Responsive Workbench:
A Virtual Work Environment, IEEE Computer, July
1995, pp. 42-48.

[2] P. Dai, G. Eckel, M. Göbel, G. Wesche, Virtual
Space: VR Projection System Technologies and Ap-
plications, Internal report on AVOCADO framework,
GMD, 1997.

[3] C. Cruz-Neira, T.A. Sandin, R.V. de Fanti, Surround-
Screen Projection-Based Virtual Reality: The De-
sign and Implementation of the CAVE, Proc. of SIG-
GRAPH, 1993, pp. 135-142.

[4] M. Koutek, F. H. Post, Dynamics in Interaction on the
Responsive Workbench, Proc. of Eurographics Virtual
Environments 2000, Springer, Amsterdam 2000, pp.
43-54

[5] R. van de Pol, W. Ribarsky, L. Hodges, F. Post, In-
teraction Techniques on the Virtual Workbench, Proc.
of Eurographics Virtual Environments ’99 workshop,
Springer, Vienna 1999.

[6] D. Bowman, L. Hodges, User Interface Constrains
for Immersive Virtual Environment Applications,
Proc. of IEEE VRAIS, 1997, pp. 35-38.

[7] S. Bryson, Approaches to the Successful Design
and Implementation of VR Applications, ACM SIG-
GRAPH’94, Course Notes, 1994.

[8] The RWB Library and the RWB Simulator,
http://www.cg.its.tudelft.nl/˜michal/RWBlib

[9] The CAVE Library and the CAVE Simulator,
http://www.ncsa.uiuc.edu/VR/VR/PapeClass/,
http://www.ncsa.uiuc.edu/Vis/ImmersaVis/,
http://avl.iu.edu/programming/cavelib2.5.6/

[10] The Visualization Toolkit,
http://www.kitware.com/vtk.html

