
Eurographics Workshop on Urban Data Modelling and Visualisation (2016)
F. Biljecki and V. Tourre (Editors)

Procedural Generation of Traffic Signs

F. C. Taal1 and R. Bidarra1

1Computer Graphics and Visualization Group, Delft University of Technology, The Netherlands
fieke.taal@gmail.com, r.bidarra@tudelft.nl

Figure 1: Urban road network with procedurally generated traffic signs

Abstract

Procedurally-generated virtual urban worlds typically miss plausible signaling objects on the road network, unless they were
manually inserted. We present a solution to the problem of procedurally populating a given urban road network with plausible
traffic signs. Our tagged graph approach analyzes the road network using a rule-based reasoning mechanism that represents
relevant traffic rules, in order to identify potential sign locations. Eventually, a context-based reduction step helps choose the
most suitable candidates, taking into account a variety of real-world rules, and determines their actual place and orientation.
We discuss the performance and validation of our approach, and conclude that its generality and flexibility make it a very
convenient extension to many procedural urban environment applications.

Categories and Subject Descriptors (according to ACM CCS): [Computing methodologies]: Computer graphics—Shape modeling
[Computing methodologies]: Artificial intelligence—Knowledge representation and reasoning

1. Introduction

The demand for complex 3D virtual environments is steadily
increasing. Despite many advancements in procedural modeling
methods, the full integration of disparate content (e.g. terrain,
buildings and roads) in a complete urban environment, remains
error-prone, time-consuming and far from efficient [STBB14].

Among the elements typically missing in most procedurally-

generated virtual urban worlds, are signaling objects on and around
the road network. Signaling objects (including traffic signs, mark-
ings, traffic lights, etc.) have the purpose to control, direct and in-
form road users and their behavior. Traffic sign information can be
instrumental to improve e.g. the realism and effectiveness of driv-
ing simulators, the reliability of driver assistance systems and, in
general, road safety. Traffic signs can also play an important role in

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



F.C. Taal & R. Bidarra / Procedural Generation of Traffic Signs

the domain of traffic model analysis, e.g. to investigate their influ-
ence on drivers behavior and safety.

Traffic sign placement depends on multiple aspects, including
(i) road usage (e.g. drivers, cyclists, pedestrians, public transporta-
tion), (ii) road topology (e.g. intersections, complexity), (iii) envi-
ronmental characteristics (e.g. terrain features, neighboring build-
ings, points of interest), and (iv) traffic rules (e.g. one/two-way traf-
fic, priority, access permissions, speed limits).

Almost every concrete road traffic situation is unique, typically
resulting in a very wide variety of traffic sign combinations along
the roads. This richness of features, makes it a non-trivial and chal-
lenging task to automatically determine and place such signs on a
an arbitrary road network.

In this paper we address the problem of procedurally generating
plausible traffic signs given an urban road network, either fictive or
inspired in actual road network databases, such as OpenStreetMap
(OSM) [Con16] or other Geographic Information Systems (GIS),
which typically lack any traffic sign information.

We present a tagged graph-based approach that determines
which traffic signs should be placed where on a given road net-
work using, among other information, road and network features,
including its topology and its geometry. Our approach analyzes the
whole road network, in order to determine potential locations for
traffic signs and, ultimately, choose where and how to place which
signs. For this, a rule-based reasoning system, representing relevant
traffic rules, was developed and integrated with an efficient graph
traversal and tagging mechanism.

2. Related Work

Many procedural modeling methods have been proposed to cre-
ate terrain, vegetation, buildings and roads for urban environ-
ments [STBB14]. Specifically for roads, a variety of techniques
have been proposed, all concentrating on the design of the
road, including example-based methods [NGDA15], tensor fields
[CEW∗08], graph-based methods [SEBC15], declarative methods
[STdB11], optimization methods [GPMG10] and rule-based meth-
ods [TSBK09] to create large complex road networks. Other meth-
ods use GIS input data to create realistic road networks for traffic
simulation [WSL12, CPP15].

However, the inclusion of road environment elements such as
road signs has not been approached by such methods, and little
research results can be found, particularly on the generation of traf-
fic signs. Several methods have been described for the detection,
recognition and classification of traffic signs [FCF03, BCM∗07,
TZVG14] or traffic lights [FU11], based on photographic (e.g.
Google Street view) or video (e.g. self-driving vehicle camera) in-
put data. These example-based methods thus focus on the perspec-
tive of the road user. To some extent, such methods are able to
extract correct information about traffic signs already placed in a
real-world environment. However, by definition, these methods are
unable to take on a fictive environment, and insert in it fitting and
plausible signs at appropriate places.

A road design method explicitly aimed at driving simulators,
proposed a semantic model with predefined locations for traffic

signs, to enable integrating traffic events into their road network
[CLC15]. Unfortunately, this predefined information is not avail-
able in most road network databases (e.g. OSM and GIS).

To the best of our knowledge, the method presented in this paper
is the first generic approach to automate the generation of traffic
signs on a given road network.

3. General Approach

Our approach aims at automatically generating plausible traffic
signs into a given road network. It consists of three phases: road
network preprocessing, tagged graph analysis, and actual content
creation; see Figure 2 for its general pipeline.

In the first phase, the road network input data has to be con-
verted into a suitable tagged graph structure, in which each edge
represents a road segment, and each node represents the connec-
tions and intersections among those segments, at a given location.
In addition, any relevant road characteristics (like road category,
one- or two-way, etc.) are processed and captured in tags of the
graph edges and nodes. This graph structure faithfully preserves
both the topology, the geometry and the features of the input road
network.

In the second phase, the tagged graph has to be analyzed in order
to determine where potential signs can be placed. In this analysis,
a central role is played by the notion of candidate, which indicates
that a given graph node could potentially carry a particular traffic
sign. A candidate is represented by a sign tag attached to that graph
node.

This phase involves three steps: identification of candidates, re-
duction of candidates, and determination of the actual location and
orientation for the remaining candidates.

Identification of candidates: for the vast majority of candidates,
their identification is performed by traversing the tagged graph,
analyzing the tags on each node and edge and, whenever appro-
priate, attaching to it the corresponding sign tag. For example,
upon arrival of a road at a one-way T-splitting, one might put a
sign tag on that edge stating ‘obligatory turn left’. As we will
see, different categories of traffic signs typically require a spe-
cific kind of graph analysis.

Reduction of candidates: the identification of candidates above
will inevitably produce some redundancy among the sign tags.
For example, on a long street, it is not necessary to remind its
speed limit at each intersection. In this reduction step, redundant
sign tags are identified and removed. This removal has to be per-
formed taking the context into account, in order to carefully de-
cide which sign tags to leave where, and why, without loosing
any relevant information. Making this informed choice will only
be possible after all redundant information has been put in place,
in the previous step.

Sign placement: for the sign tags that remain, the definitive loca-
tion and orientation of the traffic sign can be determined. De-
pending on the context and on the sign tag semantics, the lo-
cation can be at the intersection (e.g. roundabout sign), at the
beginning of the road (e.g. speed limit sign) or before the inter-
section (e.g. obligatory turn direction). Similarly, the traffic sign

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



F.C. Taal & R. Bidarra / Procedural Generation of Traffic Signs

Figure 2: General pipeline of our approach

orientation will be determined relative to the nearest intersection
as towards or outwards.

The last phase deals with the creation of the actual traffic sign
content for the virtual world. Here, one has to take into account not
only the shape, texture, size and height of each traffic sign, but also
to deal with merging of signs on the same post, possibly back to
back. At the end of this phase, a road network with plausible traffic
signs has been generated.

4. Methods

In this section we describe each of the phases of the general ap-
proach introduced above, including some algorithms of the meth-
ods developed. In our prototype system implementation, we used
OSM data as input road network, for which we developed a dedi-
cated preprocessor, described in the next subsection. The remaining
modules, however, are fully generic and OSM-independent.

4.1. Preprocessing

The purpose of the preprocessing phase is to convert road network
input data into our tagged graph structure. In our prototype, we have
implemented a preprocessor for OSM input data, which uses XML
format. OSM represents many physical elements of the real world
(e.g. roads, buildings, areas) using basic data entities (e.g. nodes,
ways, relations) with attached tags, to describe the respective geo-
graphic attributes. We process this input data in order to populate
the tagged graph with the following elements:

Edge type Attributes Examples
Streetedge speed, direction,

width, street type,
rank

motorway, primary,
living street, service

Path type of path cycle way, bridle way,
footpath

Waterway type of waterway river, canal, stream
Railway type of railway,

number of tracks
tram, rail, lightrail,
subway

Area type of area industrial, parking lot,
house, building, park

Table 1: Different types of edges, and their specific attributes

• nodes: a graph node represents a point on the earth’s surface, and
it contains, at least, an ID and the point coordinates.

• edges: an edge represents a connection between two nodes. For
convenience, we will distinguish a few types of edges, each one
with its own attributes (see Table 1).

• ways: a way consists of a sequence of consecutive edges of the
same type which have a common and specific meaning. Ways
are, thus, convenient aggregations of graph entities, representing
either line entities, such as a road and a bike lane, or area entities,
such as a park or a museum, in which case the edge sequence is
closed. A way can have multiple tags describing relevant fea-
tures.

• tags: a tag is a pair in the form <key, value> that is attached to a
graph entity (node, edge or way), e.g. <highway, motorway> or
<junction, roundabout>. Tags are extensively used to describe
a particular attribute of an entity, or its meaning.

4.2. Candidate identification

Despite the large variety of traffics signs, many of them can be
grouped according to common properties, e.g. due to being depen-
dent on the same road feature. For the purposes of candidate iden-
tification, we subdivided sign tags into eleven categories; see Table
2. In addition to their category, sign tags also contain a signID de-
rived from [Gov16], and an edge reference, indicating the graph
edge to which the traffic sign is related.

Category Examples
Speed maximum speed, traffic calming
User Access no access for tractors, bicycles
Road type cycle path, footpath, motorway
Restrictions overtaking, maximum height, width
Priority priority of the road, give way, stop
Geometry narrow road, sharp bend, incline
Direction one/two-way, drive direction crossing
Crossing roundabout, level crossing, zebra
Parking no parking, parking places
Point of in-
terest

direction to hospital, recreation,
cemetery

Other road condition, warning for animals

Table 2: Categories of sign tags, with some examples of the corresponding
traffic signs

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



F.C. Taal & R. Bidarra / Procedural Generation of Traffic Signs

For most categories (Speed, User access, Road type, Restric-
tions, Priority, Geometry, Crossing and Parking), the identification
of candidates takes into account the tags on the nodes and edges as
the graph is traversed, hereby considering the differences in road
characteristics. A high level overview of the Candidate Identifica-
tion process is shown in Algorithm 1. For the detection of a sharp
curve in a way, the total angle between successive streetedges is
computed. For traffic signs in the category ‘Point of interest’, a
separate flooding algorithm is used to find for them appropriate lo-
cations along main intersections within a certain range of the point
of interest.

To determine disallowed driving directions around an intersec-
tion, the directions of the the node’s streetedges (ingoing, outgoing
or two-way) are analyzed together with the angles among them,
after which the corresponding sign tags can be generated; see Al-
gorithm 2.

Algorithm 1 Candidate Identification

Input: Tagged graph
Output: Tagged graph with sign tags

for each node in the tagged graph do
Existing node tags determine sign tags
for all edges adjacent to node do

Existing edge tags determine sign tags
Comparison of edge attributes (speed, rank and edge type)
determines sign tags
if #streetedges in edges > 2 then

Perform Intersection Identification (Algorithm 2) to de-
termine sign tags around this node

end if
end for

end for
for each way consisting of ‘streetedges’ do

Check for sharp curves and possibly add sign tag
end for
for each way indicating a point of interest do

Determine sign tag locations with flooding algorithm
end for

4.3. Candidate Reduction

At the end of the process of candidate identification, it is likely that
some sign tags are redundant or somehow included in others. In the
Candidate Reduction step, we detect such cases using a variety of
reduction rules, based on common sense as well as on current traffic
regulation [Gov15]. This allows us to handle many complex traffic
situations, as they occur in the real world. They can be grouped into
the following three main reduction cases (see Algorithm 3):

Topological cases: involve traffic situations which span over mul-
tiple separate intersections with nodes and one-way streetedges,
and are not explicitly represented as one complex entity in the
tagged graph. As a consequence, many of those individual in-
tersection nodes will receive redundant sign tags, from the pre-
vious step. These cases include roundabouts, cycle ways near a
roundabout, large intersections and intersection with tram or cy-
cle way.

Algorithm 2 Intersection Identification

Input: node (with its ‘streetedges’)
Output: node with sign tags

if edges adjacent to node have tag ‘roundabout’ then
Add ’roundabout’ and ’give way’ sign tags to node

else
Separate ‘streetedges’ according to direction: ingoing I, out-
going O, two-way T
if #streetedges is 3 then

Determine type of intersection based on angles among
‘streetedges’: T-split, Y-split, other split
Determine direction sign tags according to type and direc-
tion

else if #streetedges > 3 then
Determine direction sign tags according to amount of O+T
‘streetedges’ and angles among them

end if
end if

Node cases: identify a redundant sign tag on a node among all its
other nodes. An example of this is inclusion of a sign tag by an-
other, e.g. a ‘livingstreet’ includes a maximum speed of 15 km/h,
and redundant ’speed’ sign tags due to common speed limits in
the built-up area.

Single road cases: identify repeated sign tags on a sequence of
streetedges with the same street name, defined as single road.

4.4. Sign Placement

The definitive traffic sign location and orientation for the remain-
ing sign tags depend on the sign type. Signs giving a warning or
pre-indication have to be placed at the berm, way in advance of
an intersection; the orientation is then outwards (out) of the inter-
section. Other signs give information about the intersection or road
ahead and should be placed at the side of the road almost on the
intersection; in such cases, the orientation can be either outwards
(out) or towards (in) the intersection.

For most sign tags, they are first classified (as either before-out,
on-out, on-in). The exact position of the traffic sign is then com-
puted based on 1) the driving direction(s) of the way from the node,
2) the width of the way, 3) two corresponding offsets (longitudinal
and transversal), and 4) the position of the node. Special cases, such
as the location of a point of interest sign or the location for the driv-
ing direction sign on a roundabout, have to be handled separately.

4.5. Content Creation

In the last phase, sign tags are converted into actual traffic signs,
at the given location, by determining their shape, texture, size and
height. Possible shapes are round, triangle, rectangle, square, dia-
mond or octagon. Sign sizes are chosen for each shape, dependent
on the maximum speed of the way they are in, according to the
current traffic regulations [Gov15].

When there are multiple sign tags roughly on the same location,
they can be merged onto the same post. In that case, depending on

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



F.C. Taal & R. Bidarra / Procedural Generation of Traffic Signs

Algorithm 3 Candidate Reduction

Input: Tagged graph with sign tags
Output: Tagged graph with reduced amount of sign tags

for each Topological case do
if Roundabout then

Remove all sign tags except give way and roundabout indi-
cation

else if Separate cycle way near roundabout then
Remove sign tag for cycle way warning
Add zebra sign tag with sub sign of crossing bikes
Remove road type sign tags for cycle way between the 2
streetedges

else if Large intersection then
Remove all sign tags related to the short edges of the inter-
section
Add right passage direction sign tags

else if Intersection with tram then
Remove all sign tags related to the short edges of the inter-
section

else if Intersection with separate cycle way then
Remove warning sign tags for cycle way

end if
end for
for each Node case do

Remove all 50 limit speed sign tags if node has also 30 limit
sign tags {built-up area}
Remove speed sign tags if node contains road type sign tag
for living street, motorway or trunk, or node contains priority
sign tag {Inclusion}

end for
for each Single road case do

Remove duplicates and repeated sign tags
end for

their amount, type and orientation, they may have to be stacked,
split and/or attached back to back. Whenever stacking takes place,
the sign post height is adjusted accordingly, as shown in the ex-
ample of Figure 1. A more complete and comprehensive impres-
sion of the algorithms, results and content of our prototype system,
including an illustrative video with a walk-through, can be found
elsewhere [Taa16].

5. Results

To evaluate the performance of our approach, we selected from
OSM five map regions of different sizes, and measured both the size
of the tagged graph structure generated, and the execution times
taken by the algorithms in the different phases of the approach:
Preprocessing, Candidate Identification, Candidate Reduction and
Sign Placement (Table 3). We omit Content Creation, as it is very
much dependent on the quality desired for the output geometric
models.

Total execution times for our method range from far less than a
second (TU Delft campus) up to 29 seconds, for a whole city (12km
× 7km). These execution times grow roughly linearly with the area
of the map and the corresponding amount of nodes and edges.

One of the most computationally expensive steps of the algo-
rithm is the Preprocessing, partly (35%) due to the creation of an
auxiliary quadtree structure, but mainly (60%) due to the classifi-
cation of the input edges (in our case, OSM ways) into the different
types of graph edges (see Table 1). The Reduction step becomes
more expensive the more roundabouts and large crossings are in-
volved in the road network, due to the inherent complexity of both
their detection and handling procedures in the tagged graph.

In order to validate our approach, we took map samples for a va-
riety of traffic situations (Figure 3), and compared the output of our
procedural generator to the actual traffic signs at those locations,
in the real word (Table 4). Understandably, it is not viable to make
this comparison for a whole neighborhood or city. However, more
comprehensive validation results are available [Taa16].

We analyzed the disparities found and concluded that they can
be attributed to 5 main causes:

1. sign was not generated due to missing information in the OSM
input data (e.g. ’no parking’ zone unaccounted for);

2. sign was not generated due to inconsistent practice of road au-
thority in the real world (e.g. placing both a speed limit sign of
70 and a priority sign, while the latter includes the former);

3. sign was abusively generated, due to incorrect information in the
OSM input data (e.g. road is represented as 2 separate one-way
roads, instead of a two-way road);

4. sign was abusively generated, due to inconsistent practice of
road authority, or due to accidents, vandalism, etc. (e.g. plac-
ing in one case a ’give way’ sign when leaving a roundabout,
and in another case, not);

5. sign was abusively generated, due to a deficiency in the sign tag
reduction algorithm.

The traffic signs that were incorrectly generated due to missing
or incorrect information in the OSM input data put in evidence the
disadvantage of using an open source database in which human
errors are unavoidable. Likewise, the disparities regarding the in-
consistency of road authority practice, are a consequence of human
intervention. Road management authorities may use multiple inter-
pretations of existing sign placement rules, when deciding which
criteria to apply at each traffic situation. Therefore, different de-
cisions may be made by different people for analogous situations,
which could result in inconsistent sign placement practice. Further-
more, these interpretations are difficult to cast into concrete clear
rules. The lack of concrete rules, not only representing interpreta-
tions of road authority, but also clarifying whether a sign should be
placed or not, caused the disparities of missing rules in the reduc-
tion algorithm. Clarifying these sign placement rules will improve
the correctness of the approach.

Figure 3: Different traffic situations (from left to right): Simple roundabout
(A), Big crossing (B), Crossing with tram (C)

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.



F.C. Taal & R. Bidarra / Procedural Generation of Traffic Signs

Region Size (m)
#

nodes
#

edges
# traffic

signs
generated

Execution time (in ms)
Pre-

processing
Candidate
Identifi-
cation

Candidate
Reduc-

tion

Sign
Place-
ment

Total

TU Delft 1489×889 8403 9694 587 162 72 7 36 277
Pijnacker 2984×1779 38624 50706 907 748 317 36 52 1153
Delft South 5967×3537 187992 242311 7189 3712 895 612 335 5554
Delft 6430×6113 339103 435754 12339 6930 1579 2047 565 11121
Rotterdam 11967×7105 627868 806696 26916 11807 3105 12853 1256 29021

Table 3: Dimensions of input regions and their tagged graph sizes, amount of generated traffic signs and execution times

case real
# (in)correct signs generated

total correct Err1 Err2 Err3 Err4 Err5
A 33 38 26 6 1 1 6 5
B 13 14 10 2 1 0 1 3
C 11 12 8 3 0 0 3 1

Table 4: Comparison of real world versus generated traffic signs for the
traffic situations of Figure 3

6. Conclusion

We presented a novel approach to automatically generate plausible
traffic signs for a given road network. We use a tagged graph to
represent the road network data, including a variety of road charac-
teristics, and to analyze the topological structure and the semantics
of its junctions and intersections. These features are found to be
determinant in deciding on the appropriateness and concrete loca-
tion for each traffic sign. The process of first identifying on the
graph all possible candidates for a traffic sign, and then reducing
their amount due to a context-based analysis of sign inclusion and
redundancy, combines both local and global criteria into an inte-
grated procedural solution.

We also describe some details of our implementation, for which
we used road network input data from the OpenStreetMap database,
and discuss with several examples the performance and the validity
of this approach. Using such real-world data as input has the advan-
tage of allowing a comparison of our output signs with those at the
actual location. However, it also brings to light inconsistencies in
the road network data due to (e.g. crowd-sourcing) human errors.
In addition, we also realized that actual road management author-
ities use multiple interpretations of existing sign placement rules,
when choosing which criteria prevails at each situation (e.g. con-
flicting infrastructures, visibility and traffic complexity). It is hard
to cast these interpretations into concrete clear cut rules in an algo-
rithm. In our tests, only a small amount of signs that were abusively
generated is due to deficiencies in our sign tag reduction algorithm.

In the future, it would be interesting to handle more points of
interest in a broader, context-sensitive way, as well as to include
specific direction signs for bicycle and pedestrian routes. Despite
being an important contribution to a realistic urban traffic environ-
ment, we expressly chose not to handle traffic lights, road markings
nor zebra crossings, as they have a very explicit impact on the con-
tent to be created, including textures and geometric models, which
did not have our main focus.

Acknowledgments

We thank Pedro Silva and his colleagues for making Sceelix
[Sce16] available for this project and promptly helping us out in
all possible ways.

References
[BCM∗07] BROGGI A., CERRI P., MEDICI P., PORTA P. P., GHISIO

G.: Real time road signs recognition. In Intelligent Vehicles Symposium,
2007 IEEE (2007), IEEE, pp. 981–986. 2

[CEW∗08] CHEN G., ESCH G., WONKA P., MÜLLER P., ZHANG E.:
Interactive procedural street modeling. ACM transactions on graphics
(TOG) 27, 3 (2008), 103. 2

[CLC15] CAMPOS C., LEITÃO J., COELHO A.: Integrated modeling of
road environments for driving simulation. In 10th International Con-
ference on Computer Graphics Theory and Applications, Berlin (2015).
2

[Con16] CONTRIBUTORS O.: Open source database openstreetmap.
www.openstreetmap.org, 2016. Accessed: 1 November 2016. 2

[CPP15] CURA R., PERRET J., PAPARODITIS N.: Streetgen: In-base
procedural-based road generation. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences 1 (2015), 409–416. 2

[FCF03] FANG C.-Y., CHEN S.-W., FUH C.-S.: Road-sign detection
and tracking. Vehicular Technology, IEEE Transactions on 52, 5 (2003),
1329–1341. 2

[FU11] FAIRFIELD N., URMSON C.: Traffic light mapping and detection.
In Robotics and Automation (ICRA), 2011 IEEE International Confer-
ence on (2011), IEEE, pp. 5421–5426. 2

[Gov15] GOVERMENT T.: Administrative provisions for road
traffic order (babw). wetten.overheid.nl/BWBR0009104/
2015-04-01, 2015. Accessed: 1 November 2016. 4

[Gov16] GOVERMENT T.: Overview of traffic signs in the Netherlands.
verkeersbordenoverzicht.nl/, 2016. Accessed: 1 November
2016. 3

[GPMG10] GALIN E., PEYTAVIE A., MARCHAL N., GUÉRIN E.: Pro-
cedural generation of roads. Computer Graphics Forum: Proceedings of
Eurographics 2010 29, 2 (May 2010), 429–438. 2

[NGDA15] NISHIDA G., GARCIA-DORADO I., ALIAGA D.: Example-
driven procedural urban roads. In Computer Graphics Forum (2015),
Wiley Online Library. 2

[Sce16] SCEELIX:. www.sceelix.com, 2016. Accessed: 1 November
2016. 6

[SEBC15] SILVA P. B., EISEMANN E., BIDARRA R., COELHO A.: Pro-
cedural content graphs for urban modeling. International Journal of
Computer Games Technology 2015 (2015), 10. 2

[STBB14] SMELIK R. M., TUTENEL T., BIDARRA R., BENES B.: A
survey on procedural modelling for virtual worlds. Computer Graphics
Forum 33, 6 (2014), 31–50. 1, 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

www.openstreetmap.org
wetten.overheid.nl/BWBR0009104/2015-04-01
wetten.overheid.nl/BWBR0009104/2015-04-01
verkeersbordenoverzicht.nl/
www.sceelix.com


F.C. Taal & R. Bidarra / Procedural Generation of Traffic Signs

[STdB11] SMELIK R. M., TUTENEL T., DE KRAKER K. J., BIDARRA
R.: A declarative approach to procedural modeling of virtual worlds.
Computers & Graphics 35, 2 (April 2011), 352–363. 2

[Taa16] TAAL F.: Procedural Generation of Traffic Signs. Master’s
thesis, Delft University of Technology, September 2016. graphics.
tudelft.nl/fieke-taal. Accessed: 1 November 2016. 5

[TSBK09] TUTENEL T., SMELIK R. M., BIDARRA R., KRAKER K.
J. D.: Using semantics to improve the design of game worlds. In Pro-
ceedings of AIIDE 2009 - 5th Conference on Artificial Intelligence and
Interactive Digital Entertainment (Stanford, CA, oct 2009). 2

[TZVG14] TIMOFTE R., ZIMMERMANN K., VAN GOOL L.: Multi-view
traffic sign detection, recognition, and 3D localisation. Machine Vision
and Applications 25, 3 (2014), 633–647. 2

[WSL12] WILKIE D., SEWALL J., LIN M. C.: Transforming GIS data
into functional road models for large-scale traffic simulation. IEEE
Transactions on Visualization and Computer Graphics 18, 6 (2012),
890–901. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

graphics.tudelft.nl/fieke-taal
graphics.tudelft.nl/fieke-taal

