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Abstract—Any sufficiently smooth, positive, real-valued function  : S2 ! IRþ on a sphere S2 can be expanded by a Laplace

expansion into a sum of spherical harmonics. Given the Laplace expansion coefficients, we provide a CPU and GPU-based algorithm

that renders the radial graph of  in a fast and efficient way by ray-casting the glyph of  in the fragment shader of a GPU. The

proposed rendering algorithm has proven highly useful in the visualization of high angular resolution diffusion imaging (HARDI) data.

Our implementation of the rendering algorithm can display simultaneously thousands of glyphs depicting the local diffusivity of water.

The rendering is fast enough to allow for interactive manipulation of large HARDI data sets.

Index Terms—Computer graphics, viewing algorithms, three-dimensional graphics and realism, computer applications, life and

medical sciences.

Ç

1 INTRODUCTION

THE rendering algorithm introduced in this paper
implements a new primitive for geometric modeling

and visualization. The new primitive can present any
smooth, positive, real-valued function  that is defined on
an ordinary sphere S2.

 : S2 ! IRþ: ð1Þ

We refer to these functions as spherical functions. One can
visualize a spherical function by a deformed sphere, where
the extent of the radial in- or extrusion is given by  . The
parameterization of the spherical function domain S2 is
usually given by spherical angles # 2 ½0; �� and ’ 2 ½0; 2�Þ.
Hence, the shape or so-called glyph of  is given by the
radial graph defined by r ¼  ð#; ’Þ.

Any sufficiently smooth spherical function  can be
expanded in a set of orthonormal, spherical basis functions.
The default choice is the orthonormal set of spherical
harmonics Y m

l . Such an expansion is called a Laplace
expansion. We assume that the function  can be given or
can be approximated by a finite Laplace expansion. Our
goal is to render a spherical function in such an efficient
way, that hundreds or even thousands of these glyphs can
be displayed at once in real time.

There are basically two techniques to achieve this in a
standard graphics pipeline. For each glyph of a spherical
function, one can either generate a vertex geometry of a

sphere via a nth-order tessellation and then in- or extrude
the resulting vertices according to  . Or, alternatively, one
can apply a ray-casting algorithm to the spherical function
and determine the shading of each pixel in a simple polygon
which covers the glyphs projection toward the viewport.

We opt for the second approach and outline an efficient
ray-casting algorithm for spherical functions in the follow-
ing sections.

The purpose of this endeavor has been a visualization
task in high angular resolution diffusion imaging (HARDI),
a magnetic resonance imaging (MRI) technique, that
provides a unique view of the fiber structure of white brain
matter in vivo. HARDI is an extension of the better known
diffusion tensor imaging (DTI), a technique introduced in
its current form in 1994 by Basser et al. [1]. In DTI, one
determines symmetric, positive-definite diffusion tensors
(DT) from a minimum of seven diffusion weighted images.
This gives a second order approximation of the probability
density functions (PDF) which describes the local diffusiv-
ity of the water molecules by a Gaussian distribution. One
of the most important application of DTI is the prediction of
fiber orientation, which is specified by the principal
eigenvector of the DT. The local fiber orientations determine
the trajectories of fiber bundles and consequently the
neuronal connections between regions in the brain.

Due to the crude assumption that a simple 3D Gaussian
probability density function can capture the Green’s
function of a diffusion process [2], DTI is limited. It can
only recover structures with at most one direction per voxel.
In areas with more complex intravoxel heterogeneity (i.e.,
fiber crossing, kissing, divergence, etc.), the second order
DT approximation fails, which is a severe limitation
particularly when tracking the path of a fiber bundle.

To overcome the limitation of DTI, HARDI [3] has been
introduced. In HARDI, about sixty to a few hundred
diffusion gradients are scanned that together sample a
sphere of given radius [4] in order to better reconstruct a
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more realistic PDF. This PDF-measurement aims to recover
the diffusion of water molecules in a multidirectional fiber
population. Popular analysis techniques that transform the
diffusion weighted data to certain probability density
functions are Q-ball imaging [5], diffusion orientation
transform (DOT) [6], and high order tensors (HOT) [7].
The results produced by these techniques can always be
presented in the form of a spherical function  ð�; �Þ that
characterizes the local intravoxel fiber structure. A spherical
function  ð�; �Þ is expandable in a Laplace series and is as
such subject to our rendering technique. Consequently, it is
straightforward to represent HARDI data by a field of
spherical function glyphs, each glyph corresponding to a
local PDF or orientation distribution function (ODF).

Recently, one can observe an increase in research activity
regarding deterministic and probabilistic HARDI fiber
tracking algorithms [8], [9], [10]. The resulting fiber
visualizations give a clear representation of the data while
a glyph visualization can be confusing and cluttered for the
end user. However, all fiber tracking techniques exhibit
several ambiguities and disadvantages, such as choice of
initialization, sensitivity with respect to the estimated
principal direction, lack of connectivity information between
regions of the brain in deterministic trackings, considerable
computational effort in probabilistic trackings, and most
importantly, the lack of thorough validation. Validation is
needed before fiber tracking can be used in clinical
applications. Knowledge about the local HARDI information
is still quite important for testing and improving the fiber
tracking techniques and, to the best of our knowledge,
showing the local structure by glyph representation is the
most common and reliable way of visualizing HARDI data.

The traditional way of visualizing HARDI glyphs starts
by generating a mesh of points on a sphere, and then
deforming it as mentioned above. This visualization is
potentially slow and memory consuming, especially if one
wants to achieve smooth and exact surfaces which requires
an icosahedral tessellation of fourth order or higher. Using a
coarser mesh is an option to gain speed, but then lots of
subtle details on the surface are missed and quite often the
angular maxima are slightly displaced, as shown in Fig. 1.

The glyph ray-casting approach in this paper achieves a
fast, detailed, and accurate rendering of high-dimensional
diffusion-weighted (DW) data. Furthermore, it is applicable
to any form of data that can be expressed by spherical
functions. We give an overview of related work on HARDI
visualization and GPU-based glyph rendering in Section 2.
The mathematical tools for ray-casting spherical functions is
the subject of Section 3. In Section 4, we show how to
incorporate these mathematical tools in a GPU-based ray-
casting implementation for rendering HARDI glyphs. The
analysis of visual aspects and performance measurements
follows in Section 5. Finally, in Section 6, we conclude this
manuscript by addressing future challenges.

2 RELATED WORK

In DTI, glyphs are the basic tools to visualize the local
diffusivity of water. The covariant matrix of the Gaussian
PDF is a second order, symmetric, positive-definite tensor.
Tensor glyphs are, therefore, the appropriate tool to depict

the complete tensor information. Commonly used shapes
for visualizing the DTs are cuboids, ellipsoids, and super-
quadrics [11]. There has been work in glyph packing
algorithms by Kindlmann [12] and Hlawitschka et al. [13],
but these algorithms change the glyph location for better
visual perception.

HARDI techniques overcome the disadvantages of DTI by
applying high-order methods in the description of water
molecule diffusion. However, these methods significantly
raise the complexity of data processing and visualization.
Among the available software packages for visualizing and
processing HARDI data are Slicer [14] with the Qball plug-in
[15] and Camino [16]. The latter one has very limited
visualization capabilities since its core purpose is the
processing of HARDI data. Recently, Shattuck et al. [17]
developed a set of tools for visualizing ODF models. All of
the mentioned packages apply the same concept. To obtain
an ODF shape via polygons, they generate a mesh of points
on a sphere and in- or extrude the vertices. This approach
renders an interactive scene only after the geometry is
calculated. Furthermore, there is always a trade-off between
the visual quality and rendering speed. In Shattuck et al. [17],
the interaction is reported as 10 fps on a single brain data
slice with 225 samples on a sphere that approximates fourth
order icosahedral tessellation. In their work, this limitation
in rendering performance is being mentioned and GPU
programming is suggested as a solution. Higher frame rates
were reported by Schultz [18] using the same technique. He
obtained a frame rate of up to 77 fps for 196 glyphs with third
order icosahedral tessellation on a 2 GHz processor and a
NVIDIA Quadro NVS 110M.

Interesting work by Hlawitschka et al. [19] addresses the
problem of improving the speed and robustness of the fiber
tracking algorithms in HARDI. However, no performance
information is given and the underlying field of HOT or
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Fig. 1. Traditional way of HARDI glyph visualization. The glyphs’
surface becomes smoother as the order of tessellation of the
icosahedron is increased from order 2 (a) to order 7 (d). Changes of
the maxima can be observed as the sampling of the glyphs’ surface
becomes denser. (a) Order 2. (b) Order 3. (c) Order 4. (d) Order 7.



spherical harmonics (SH) representation still needs sam-
pling on a predefined grid, which gives rise to the same
disadvantages discussed above.

Recent advances in capability and performance of GPUs
have triggered several publications about glyph rendering
where ray-casting on GPUs has been applied. Application
areas include mathematics [20] and molecule rendering
[21]. However, those methods focus on simple glyph shapes
with few parameters, such as ellipsoids, where the
intersection with the view-ray can be computed analyti-
cally. Recently, Mario Hlawitschka and Scheuermann [22]
used GPU ray-casting to render superquadric tensor glyphs
[23]. The degrees of freedom of spherical functions and,
thus, the number of parameters that define the shape of our
glyph is much higher than in the above-mentioned cases.
This leads to more elaborate computations for the intersec-
tion of the view-ray with the glyph and for the normal
vector at the intersection.

In a preceding paper [24], we have published a basic ray-
casting algorithm for spherical functions. In the current
work, we now fully utilize all applicable properties of
spherical harmonics and introduce a far more efficient and
faster algorithm. Our more advanced algorithm solves the
HARDI visualization problem on the GPU and one obtains
a substantially faster, accurate visualization of HARDI data
sets well suited for interactive usage.

3 METHODS

First, we introduce all relevant mathematical concepts of
our glyph rendering algorithm before discussing the
implementation details in the next section. We start with
the Laplace expansion of real-valued spherical functions  
in real-valued spherical harmonics ~Y m

l . We then cast view-
rays from an observer onto the surface of the spherical
function  in 3-dimensional space. For this, we need to
determine the location of a ray-glyph intersection and we
need to determine the normal vector with respect to the
glyph surface at that intersection.

To facilitate and to speed up the indispensable numerical
calculations needed for the ray-glyph intersection, we alter
the representation of the spherical harmonics ~Y m

l in the
Laplace expansion in two steps. First, we align the para-
meterization of the spherical harmonics ~Y m

l with the view
axis via rotation with Wigner matrices. Then, we rewrite the
Laplace expansion in cylindrical coordinates to obtain a
fairly simple, polynomial expression � whose 0-contour
marks the glyph surface. The polynomial expression �
requires fewer trigonometric function calls, multiplications,
and additions than the explicit formula with ~Y m

l , thereby
speeding up the GPU-based process, in which we numeri-
cally probe expression � along the view-ray utilizing the
bisection method or regula falsi [25] to obtain the ray-glyph
intersection. The glyph normal that determines the shading
of the view-ray pixel is given by the gradient of expression �.

We also consider a bounding cylinder that encompasses
the glyph and its spherical function. The tight cylindrical
encapsulation improves the overall efficiency of the algo-
rithm. Rays outside the cylinder do not have to be
considered and the numerical sampling for the ray-glyph
intersection can be confined to the inside of the cylinder.

3.1 Laplace Expansion

A real-valued function  on a sphere S2,  : S2 ! IRþ, can
be expanded in an orthonormal basis of spherical functions,
orthonormal with respect to the hermitian inner product

h 2j 1i :¼
Z 2�

0

Z �

0

 1ð#; ’Þ  �2ð#; ’Þ sin# d# d’: ð2Þ

The default choice is the orthonormal set of complex-valued
spherical harmonics Y m

l [26],

Y m
l : S2 ! CC; for all l 2 IN0 and m 2 ZZ with jmj � l; ð3Þ

which are explicitly defined by associated Legendre
polynomials Pm

l

Y m
l ð#; ’Þ ¼ ei m ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

4�

ðl�mÞ!
ðlþmÞ!

s
Pm
l ðcos#Þ; ð4Þ

with spherical angles # 2 ½0; �� and ’ 2 ½0; 2�Þ.
The expansion of a spherical function  in Y m

l is known
as the Laplace expansion.

 ð#; ’Þ ¼
X1
l¼0

Xl
m¼�l

aml Y m
l ð#; ’Þ: ð5Þ

The aml s denote the expansion coefficients. Obviously, the
above expansion is only feasible in an implementation if
one can safely truncate the outer sum at a given lmax.

The expansion of a spherical function  via the Laplace
series (5) is quite practical, since spherical harmonics Y m

l

posses several convenient properties. The most important
property with respect to HARDI is the fact that the spherical
harmonics Y m

l are eigenfunctions of the spherical compo-
nent �S2

of the Laplacian differential operator �.

�S2
Y m
l ð#; ’Þ ¼

1

sin2 #
@2
’ þ

1

sin#
@# sin#@#

� �
Y m
l ð#; ’Þ

¼ �lðlþ 1Þ Y m
l ð#; ’Þ:

ð6Þ

Note that the Laplace operator � governs the homogeneous
diffusion equation @t ¼ D � and that diffusion is the
underlying physical process of diffusion weighted mole-
cular resonance imaging.

The Y m
l s are the Laplacian eigenfunction in spherical

coordinates where as ei ~!�~x; cos ð~! �~xÞ, and sin ð~! �~xÞ are
Laplacian eigenfunctions in Cartesian coordinates. An
expansion in these latter functions constitutes a Fourier
transformation. Correspondingly, the Y m

l s form the basis
functions of a spherical Fourier transformation, the sphe-
rical Fourier coefficients being the Laplacian expansion
coefficients aml .

aml ¼ hY m
l j i ¼

Z 2�

0

Z �

0

 ð#; ’Þ
�
Y m
l ð#; ’Þ

��
sin# d# d’:

ð7Þ

The inverse spherical Fourier transformation is given by the
Laplace series (see (5)).

The Laplace series (5) deals with complex-valued
functions. We, however, have to consider the expansion of
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a real-valued function  . Thus, the expansion in complex-
valued spherical harmonics Y m

l inflicts an unnecessary
computational burden. To overcome this issue, we utilize
the identity �

Y m
l

�� ¼ ð�1Þm Y �ml ; ð8Þ

which allows us to form the following real-valued linear
combinations (9) and (10) of spherical harmonics that
constitute a new set of basis functions.

ffiffiffi
2
p

Re
�
Y m
l

�
¼ 1ffiffiffi

2
p
�
Y m
l þ ð�1Þm Y �ml

�
; ð9Þ

ffiffiffi
2
p

Im
�
Y m
l

�
¼ �iffiffiffi

2
p
�
Y m
l � ð�1Þm Y �ml

�
: ð10Þ

Be aware that ReðY m
l Þ and ReðY �ml Þ as well as ImðY m

l Þ and
ImðY �ml Þ are linearly dependent, so that we consider the
following set of basis functions ~Y m

l according to the
convention used by Descoteaux et al. [27].

~Y m
l ð#; ’Þ :¼

ffiffiffi
2
p

Re
�
Y m
l ð#; ’Þ

�
; if m < 0;

Y 0
l ð#; ’Þ; if m ¼ 0;ffiffiffi
2
p

Im
�
Y m
l ð#; ’Þ

�
; if m > 0:

8<
: ð11Þ

These real-valued spherical harmonics ~Y m
l ð#; ’Þ are again

orthonormal due to the normalization factor
ffiffiffi
2
p

. The tilde
indicates the use of real-valued instead of complex-valued
spherical harmonics and the corresponding Laplace expan-
sion reads

 ð#; ’Þ ¼
X1
l¼0

Xl
m¼�l

~aml
~Y m
l ð#; ’Þ: ð12Þ

One obtains the expansion coefficients ~aml by substituting
~Y m
l ð#; ’Þ into (7).

In the application of DTI and HARDI visualization, we
encounter only spherical functions  S that are symmetric
under spatial inversion at their center P . Consequently, the
in- or extrusion of  S-glyphs in one direction are the same
as in the opposite direction.

 Sð#; ’Þ ¼  Sð�� #; ’þ �Þ: ð13Þ

Spherical harmonics ~Y m
l with even l also exhibit this

symmetric property, whereas ~Y m
l with odd l are antisym-

metric under spatial inversion. Thus, the Laplace expansion

(12) of an inversion symmetric spherical function  S is
independent of spherical harmonics ~Y m

l with odd l and the
expansion simplifies to

 Sð#; ’Þ ¼
X1

l¼0;2;4;...

Xl
m¼�l;�lþ1;...

~aml
~Y m
l ð#; ’Þ: ð14Þ

3.2 Ray-Casting

Our ray-casting geometry for a glyph is depicted in Fig. 2.
The spherical functions  or  S given by the Laplace
expansions (12) or (14) with a truncation value lmax define a
smooth surface around the glyph center P . We need to
determine the intersection I where a view-ray-casted by the
observer at position V intersects the glyph surface.

3.2.1 Realignment

To facilitate the calculation, we use a glyph-observer-based
coordinate system with basis vectors ~x0, ~y0, and ~z0 located at
the glyph center P . Unit vector ~z0 (not depicted in Fig. 2) is
defined by the view axis PV

��!
that runs through the glyph

center P and the observer position V . Basis vector ~x0 is
orthogonal to ~z0 and the up-vector ~y0up of the observer. The
remaining ~y0-vector is given by ~z0 �~x0.

~x0 :¼
~y0up �~z0��~y0up �~z0

�� ; ð15Þ

~y0 :¼~z0 �~x0; ð16Þ

~z0 :¼ PV
��!
kPV��!k : ð17Þ

It is a nontrivial challenge to determine the intersection
point I, where the view-ray hits the surface of the glyph  .
For Laplace expansions of arbitrary but finite lmax, this can
only be achieved via numerical methods. However, the
parameterization of  by spherical (world) coordinates #
and ’ is not optimal for this task. The default spherical
coordinate system is usually aligned along the world z-axis
and, thus, the coordinate poles and the #-coordinate lines
of  do not correspond with the glyph-ray geometry (see
Fig. 2). To overcome this handicap, we rotate the spherical
coordinates that parameterize  such that they align with~z0

on the PV -axis (see Fig. 3). To do so, we perform a rotation
around ~x,~y, and~z with the Euler angles �; �; � such that the
world basis ~x;~y;~z would align with the glyph-observer
basis ~x0;~y0;~z. The respective Euler angles are
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Fig. 2. The glyph of a spherical function  at position P is rendered via
ray-casting. The view-ray starting at the observer position V intersects
the surface of the glyph at position I.

Fig. 3. A spherical parameterization of glyph  that is aligned with the
PV -axis has the benefit, that the point of view-ray and glyph intersection
I has to be on a given #0-coordinate line depicted in red.



� :¼ arctan
z0x
z0y
; ð18Þ

� :¼ arctan
z0zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0zÞ
2 þ ðy0zÞ

2
q ; ð19Þ

� :¼ arctan
x0z
y0y
; ð20Þ

where z0x denotes the x-component of vector ~z0 with respect
to world coordinates, and so on.

Keep in mind that only the spherical coordinate
parameterization of  has to be rotated, not the glyph  

itself. We achieve this by rotating the complete glyph with
its spherical coordinate parameterization and then undoing
the rotation by rotating the glyph back via its Laplace
expansion coefficients aml .

Recall that there are three ways to rotate a spherical
function given by a Laplace expansion. One can rotate the
spherical function  by simply substituting the spherical
angles #0 and ’0 of a rotated coordinate system (21), one
can rotate the spherical function by rotating the function
basis Y m

l with the corresponding rotation matrices, the so-
called Wigner matrices Dm m0

l , as in (22), or one can apply
the inverse Wigner matrices to the expansion coefficients
aml as in (23).

R���½ ð#; ’Þ� ¼  ð#0; ’0Þ; ð21Þ
R���½ ð#; ’Þ� ¼X1

l¼0

Xl
m¼�l

aml
X
m0

Dm m0

l ð�; �; �Þ Y m0

l ð#; ’Þ
 !

; ð22Þ

R���½ ð#; ’Þ� ¼X1
l¼0

Xl
m¼�l

X
m0

Dm m0

l ð��;��;��Þ am0l

 !
Y m
l ð#; ’Þ: ð23Þ

We rotate the glyph with its spherical coordinates # and
’ along the z-axis by simply substituting the spherical
coordinates #0 and ’0 along the z0-axis as in (21). Then, we
undo the rotation of just the glyph by performing the
inverse rotation on the expansion coefficients ~aml as in (23)
via the Wigner matrices ~Dm m0

l ð�; �; �Þ as defined in
Appendix A. Note, however, that the regular Wigner
matrices are defined for the complex-valued spherical
harmonics Y m

l . With the tilde, we identify the Wigner
matrices that are transformed according to (9) to the basis of
real-valued spherical harmonics ~Y m

l given in (11).
The glyphs with the rotated parameterization are then

given by the expansion

 ð#0; ’0Þ ¼
X1
l¼0

Xl
m¼�l

~bml
~Y m
l ð#0; ’0Þ; ð24Þ

with the rotated, real-valued expansion coefficients ~bml
given by

~bml ¼
X
m0

~Dm m0

l ð�; �; �Þ ~am
0

l ; 8 l 2 IN0: ð25Þ

The transformation of Laplace expansion coefficients
needs to be done for every glyph once and needs to be
redone whenever the viewpoint V changes. The refinements

in the subsequent section need to be performed for every
view-ray once, but not for every sampling point on the view-
ray. The refinements lead to a fairly simple mathematical
expression �, that provides an efficient way for sampling the
view-ray, thus, facilitating the numerical determination of
the ray-glyph intersection I.

3.2.2 Cylindrical Coordinates

The realignment of the glyph parameterization is just a first
step to simplify the expressions in the Laplace expansion
(12). In a second step, we replace the rotated spherical
coordinates r0; #0; ’0 of ~Y m

l ð#0; ’0Þ by cylindrical coordinates
�0; ’0; z0 that are even more suitable for the description of the
view-ray V I

�!
. The cylindrical coordinates are given by

�0 ¼ r0 sin#0; ’0 ¼ ’0; z0 ¼ r0 cos#0: ð26Þ

The inverse transformation from cylindrical back to
spherical coordinates is

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p
; ’0 ¼ ’0; #0 ¼ arctan

�0

z0
: ð27Þ

Up to now, the definition of our glyph has been in
explicit form.  ð#0; ’0Þ gives the radial extent r0 of the glyph.
In cylindrical coordinates, however, r0 is incorporated in the
coordinates �0 and z0 and the explicit definition of
 ð#0; ’0Þ ¼ r0 becomes an implicit equation for �0 and z0.

 ð�0; ’0; z0Þ ¼
X1
l¼0

Xl
m¼�l

~bml
~Y m
l ð�0; ’0; z0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p
; ð28Þ

where we have used a kind of operator overload-notation
 ð�0; ’0; z0Þ and ~Y m

l ð�0; ’0; z0Þ for  and ~Y m
l in cylindrical

coordinates.

The implicit nature of (28) is not a disadvantage in the

numerical calculations that will follow. Traversing along a

view-ray from the observer V to the point of ray-glyph

intersection I and beyond, one only has to verify, if one is

still out- or already inside the glyph. This is still possible

with the implicit (28). As long as the cylindrical coordinates

are outside of glyph  , the glyph-radius, given by

 ð�0; ’0; z0Þ, will be smaller than the distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p
of

the sample point location to the glyph origin P . Vice versa,

for a sample point inside the glyph, the radius  ð�0; ’0; z0Þ
will be larger than

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p
. Hence, for

�ð�0; ’0; z0Þ :¼  ð�0; ’0; z0Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p
; ð29Þ

we obtain the inequalities

�ð�0; ’0; z0Þ � 0; for �0 and z0 inside  ; ð30Þ
�ð�0; ’0; z0Þ < 0; for �0 and z0 outside  : ð31Þ

A further simplification of expression �ð�0; ’0; z0Þ in the
above inequalities depends on the explicit choice of
the Laplace expansion truncation lmax. If we multiply the
above inequalities with ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p
Þlmax , we obtain for the

Laplace expansion of  ð�0; ’0; z0Þ a sum of two homoge-
neous polynomials in �0 and z0 of degree lmax and lmax � 1.
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� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p �lmax ð�0; ’0; z0Þ

¼
Xlmax

n¼0

ceven
n ð’0Þ �0n z0lmax�n

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p Xlmax�1

n¼0

codd
n ð’0Þ �0

n
z0
lmax�1�n

:

ð32Þ

It is straightforward to derive the ’0-dependent coefficients

ceven
n ð’0Þ and codd

n ð’0Þ by expanding the spherical harmonics
~Y m
l of (28) in (32). The specific case of lmax ¼ 4 is listed in

Appendix B. Furthermore, all coefficients codd
n ð’0Þ are 0 for

glyphs  S that are symmetric under spatial inversion.

Hence, for lmax ¼ 4, we are left with five real-valued

coefficients ceven
n ð’0Þ to specify a symmetric glyph  S and

another four real-valued coefficients codd
n ð’0Þ for general

glyphs  .
To obtain a numerically more stable implementation, we

use the following substitution:

p :¼ �0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p ¼ �
0

r0
¼ sin#0; ð33Þ

q :¼ z0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p ¼ z
0

r0
¼ cos#0: ð34Þ

With p and q, we can write for  ð�0; ’0; z0Þ

 ð�0; ’0; z0Þ ¼
Xlmax

n¼0

ceven
n ð’0Þ pn qlmax�n

þ
Xlmax�1

n¼0

codd
n ð’0Þ pn qlmax�1�n:

ð35Þ

Before sampling a view-ray, we simply need to sub-

stitute the specific ’0 of the view-ray into the equations for

ceven
n ð’0Þ and codd

n ð’0Þ. Then, we can readily sample the view-

ray via (35) for position I in a rather efficient manner.

3.3 Glyph Normals

To determine the correct shading of a pixel whose view-ray

intersects a glyph at position I, we still need to determine

the glyph normal at I. Recall that the 0-contour of expression

� in (29) constitutes the surface of glyph  and that gradients

are always orthogonal to contours. Hence, the gradient of �

at position I provides the normal vector that we seek.
The derivation of the gradient vector r� is straightfor-

ward, though slight complications arise due to the

cylindrical coordinates. The gradient vectorr� in Cartesian

coordinates ~x0, ~y0, ~z0 is given by

r� ¼ r �rr0; ð36Þ

with

r r0 ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02 þ z02

p
¼

p cos’0

p sin’0

q

0
@

1
A; ð37Þ

and

r  ð�0; ’0; z0Þ ¼
cos’0 @�0 � sin’0

�0 @’0

sin’0 @�0 þ cos’0

�0 @’0

@z0

0
B@

1
CA ð�0; ’0; z0Þ: ð38Þ

The partial differentials with respect to �0, ’0, and z0 are

@�0  ð�0; ’0; z0Þ

¼
Xlmax

n¼1

ceven
n ð’0Þ p

2ðn� lmaxÞ þ n q2

r0
pn�1qlmax�n

þ
Xlmax�1

n¼1

codd
n ð’0Þ

p2ðnþ 1� lmaxÞ þ n q2

r0
pn�1qlmax�n�1:

ð39Þ

@z0  ð�0; ’0; z0Þ

¼ �
Xlmax�1

n¼0

ceven
n ð’0Þ p

2ðn� lmaxÞ þ n q2

r0
pnqlmax�n�1

�
Xlmax�2

n¼0

codd
n ð’0Þ

p2ðnþ 1� lmaxÞ þ n q2

r0
pnqlmax�n�2:

ð40Þ

@’0  ð�0; ’0; z0Þ ¼
Xlmax

n¼0

@’0 c
even
n ð’0Þ

� �
pnqlmax�n

þ
Xlmax�1

n¼0

@’0 c
odd
n ð’0Þ

� �
pnqlmax�n�1:

ð41Þ

At the point of ray-glyph intersection I, the coordinate
values r0, p, q, and ’0 are given and the gradient is readily
computed via (36) through (41). The resulting normal vector
determines the reflection of the view-ray toward the light
source and the corresponding pixel shading.

3.4 Outer Bound

Traversing casted rays for glyph intersections is a computa-
tional expensive task. We, therefore, try to avoid it if possible.
For this purpose, we determine an outer bound for each
glyph. A ray outside the outer bound will not intersect the
glyph surface and the above considerations are futile.
However, if a ray passes through the outer bound, a ray-
glyph intersection I is likely. In this case, the outer bound
provides a convenient bracket for the view-ray sampling of �.

In accordance with the cylindrical coordinates, we
consider a cylinder for an outer bound as depicted in Fig. 5.
We estimate the cylinder size given by its radius �max and
depth z0max by constructively adding the maximal radii �max

m
l

and the maximal cylinder depths z0max
m
l of all real-valued

spherical harmonics ~Y m
l according to the Laplace expansion

(12). We thereby obtain an estimate for a cylindrical outer
bound that will definitely encompass the glyph inside.

�0max ¼
Xlmax

l¼0

Xl
m¼�l

		~bml 		 �max
m
l : ð42Þ

z0max ¼
Xlmax

l¼0

Xl
m¼�l

		~bml 		 zmax
m
l : ð43Þ

The maximal radii �max
m
l and cylinder depths zmax

m
l for

l � 4 are given in Appendix C.
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In the preceding publication [24], we consider a sphere
as an outer bound. The cylinder, however, tends to
encompass the glyph in a more tight fashion resulting in a
more efficient algorithm.

4 IMPLEMENTATION

The mathematics outlined above can be utilizes to
visualize any kind of spherical function  . The subsequent
algorithm also holds for any spherical function  . The only
feature specific to our HARDI application is the omission
of odd l-values in the Laplace expansion of  .

The  -glyphs, in our HARDI application, display the
spherical characteristics of water diffusivity in a cross
section of a HARDI volume. The cross section of a HARDI
volume is defined by a plane-of-interest (POI), which the
user can translate, rotate, and resize using the mouse. It is
impractical to render a volume, a thick slice of several glyph-
layers, or an arbitrarily dense array of glyphs, since it would
be visually overwhelming for the user. Instead, we consider
a 2-dimensional array of seed points that define the locations
of the glyphs and which is implicitly given by the POI and a
user-specified seed grid constant. An example of a POI of
close to 100� 100 seed points of a human brain is given in
Fig. 4. It is also possible to consider other distributions of
seed points, such as strings along fiber tracks.

Rendering a scene, we step through all the seed points
sequentially and deal with each glyph separately. Per
glyph, the calculations are divided between CPU and GPU.
On the CPU, we perform all the calculations that can be
done per glyph and on the GPU we run a ray-casting
algorithm per pixel. In the following sections, we describe
these calculations in more detail.

4.1 CPU

Prior to any rendering calculation, the HARDI data have to
be expressed in a set of real-valued Laplace expansion
coefficients ~aml (l ¼ 1; . . . ; 4 and jmj � l) for each voxel. This
is achieved via (7) and appropriate numerical methods as
described in Numerical Recipes [25].

Specifically, for the HARDI application, the following
calculations are then performed for all glyphs at each seed
point. We manipulate the expansion coefficients ~aml according

to parameters that the user can set interactively. The user can
specify a scaling factor, with which all coefficients ~aml are
multiplied in order to change the size of the glyphs. Another
user-defined parameter, the sharpness variable, rescales the ~a0

0

via scalar division to reduce the influence of the isotropic
spherical harmonic component ~Y 0

0 , thus, enhancing the
anisotropic maxima of the glyphs. Finally, the user has the
optiontoscaleallglyphs independently.Theusermaywant to
adjust the ~a0

0 for each glyph to the same over all value, thus,
annihilating all differences in isotropic diffusion magnitude.
Alternatively, the user may want to rescale all glyphs by the
global ~a0

0-maximum such that the differences in diffusion
magnitude between different voxels become apparent.

The last interactive manipulation by the user is the
choice of viewpoint V and the observers up-vector ~yup. For
each new viewpoint and up-vector, we need to rotate the
Laplace expansion coefficients ~aml to obtain via (15), (16),
(17), (18), (19), (20), and (25) their rotated version ~bml , the
coefficients ~bml decompose  with respect to the real-valued
spherical harmonics that are aligned with the view axis
through viewpoint V .

We also construct for each glyph a bounding cylinder to
facilitate the ray-casting calculations. For each glyph, the
bounding cylinder is aligned with the view axis PV

��!
as

depicted in Fig. 5. The center of the cylinder is the seed
point P of the glyph. The extent of the bounding cylinder is
given by its radius �0max and its size along the view axis
reaching from �z0max to z0max as defined in (42) and (43).

Finally, we need to generate for each glyph a geometry
that covers all the pixels of the glyph projection onto the
viewport. For each glyph, the geometry will consist of a
mere square polygon that we position right in front of the
glyph as seen from the viewpoint and as depicted in Fig. 5.
In the glyph coordinate system, the center position of the
square polygon is given by z0g in ~z0-direction, which is
the intersection point of the glyph with the view axis PV

��!
.

One obtains z0g by filling #0 ¼ ’0 ¼ 0 into (24).

z0g ¼
Xlmax

l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lþ 1

4�

r
~b0
l : ð44Þ
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Fig. 4. The interactive rendering of glyphs in a POI of close to 100� 100
seed points in a HARDI data set of a human brain. Fig. 5. The outer bound of a glyph  is given by a cylinder along the

rotated z0-axis which coincides with the view axis PV
��!

. The square
polygon that acts as a screen displaying the glyph is attached at the
glyph on the view axis at z0g. Sampling the view-ray for intersection I is
done within the cylinder bound.



The square polygon is spanned by the orthogonal vectors ~x0

and ~y0. To assure that the square polygon covers the
projection of the glyph and its bounding cylinder on the
viewport, the square has to encompass a circle of radius
�0quad, which we derive by the rule of three with the two
ratios �0quad=ðz0V � z0gÞ and �0max=ðz0V � z0maxÞ as displayed in
Fig. 5. We obtain for z0V > z0g

�0quad ¼ �0max

z0V � z0g
z0V � z0max

; ð45Þ

with z0V ¼ kPV
��!k. If the viewpoint V is too close to the glyph

(z0V 	 z0max) or even inside the bounding cylinder
(z0V < z0max), it is sufficient to set �0quad equal to the viewport
size. In this latter case, the glyph tends to fill the screen. For
z0V � z0g, no glyph will be drawn. Thus, for z0g < z0V, the
geometry of each glyph is given by a square polygon and its
four corner vertices at ð
�0quad;
�0quad; z

0
gÞ in glyph coordi-

nates ~x0, ~y0, and ~z0.
This concludes the calculations performed on the CPU.

For each glyph, we pass the Laplace expansion coefficients
~bml as vertex attributes to the GPU. In our case of HARDI
visualization, we have to cope with 15 such coefficients,
since we truncate the Laplace expansion at lmax ¼ 4 and
since we only have to handle even l coefficients for
inversion symmetric glyphs. Furthermore, we need to pass
on the two parameters of the bounding cylinder and the
four vertices of the square polygon. The remaining
computation is handled by the GPU.

4.2 GPU

In the vertex shader, we merely compute for each glyph the
view directions of its four square polygon corner vertices by
subtracting the position vector of the viewpoint V from the
position vector of each vertex. The view direction ~v of an
arbitrary view-ray is then automatically interpolated for use
in the fragment shader. The 15 Laplace expansion coeffi-
cients ~bml are simply passed on to the fragment shader.

The major computational load on the GPU is handled by
the fragment shader performing a ray-cast for each pixel of
the square polygon of each glyph. This ray-cast is achieved
in three steps.

1. Compute the intersections of the view-ray with
bounding cylinder of the glyph. If there are no
intersections, discard the fragment. If there are
intersections, use them as brackets in the next step.

2. Determine the ray-glyph intersection I numerically
by sampling expression � on the view-ray inside the
bracket that was determined in the previous step.
Proceed, if an intersection exists.

3. Compute the normal ~n of the glyph surface at
intersection I and perform lighting calculations to
compute the color of the current fragment. Update
the Z-buffer using I.

These three steps are discussed in detail in the following
sections.

4.2.1 Intersections of View-Ray and Bounding Cylinder

The view-ray can be conveniently parameterized by the
cylindrical coordinates of a glyph. Note, that each ray
exhibits a fixed ’0. Within the plane determined by ’0 and
the view axis, a view-ray is given by a linear �0-function of z0.

�0rayðz0Þ ¼
~v�0

~vz0
z0 � z0V
� �

; ð46Þ

with ~v�0 being the projection of the normalized view-ray
vector ~v on �0 and ~vz0 being the z0-component of the
normalized view-ray vector ~v.

To eventually find the intersection I of a view-ray and a
glyph, we define a search bracket for the z0-parameter in
(46). The bracket will consist of the points z0near and z0far,
where the view-ray enters and exits the bounding cylinder.

We have to distinguish three scenarios. If the viewpoint
is outside the bounding cylinder, an intersecting view-ray
has to pass the front face of the bounding cylinder to
intersect the glyph. This first intersection point of view-ray
and bounding cylinder is given by ð�0rayðz0maxÞ; ’0; z0maxÞ in
cylindrical glyph coordinates and the first bracket is
z0near ¼ z0max. If the viewpoint is already inside the bounding
cylinder but still in front of the glyph, no initial ray-cylinder
intersection exits. In this case, we consider the viewpoint V
as the first bracket and set z0near ¼ z0V. If the viewpoint is
inside or passed the glyph, we discard the fragment. Hence,
we obtain for the first bracket

z0near ¼ min
�
z0max; z

0
V

�
; if z0g < z0V: ð47Þ

There are two scenarios how a view-ray can exit the
bounding cylinder. In the first scenario, the ray exits the
cylinder through the rear face at position ð�0rayð�z0maxÞ;
’0;�z0maxÞ in cylindrical glyph coordinates and the second
bracket is z0far ¼ �z0max. In the second scenario, the view-ray
exits the cylinder through the side. The corresponding z0-
value can be derived by solving �0rayðz0farÞ ¼ �0max. Hence, we
obtain for the second bracket

z0far ¼ max �z0max; z
0
V þ

~vz0

~v�0
�0max

� �
; if z0g < z0V: ð48Þ

If the view-ray does not intersect the bounding cylinder
or if the viewpoint is inside or past the glyph, the view-ray
will not strike the glyph from the outside and we can safely
omit the following steps by discarding the fragment. If,
however, the view-ray intersects the bounding cylinder, we
are provided with a search bracket ðz0far; z

0
nearÞ to numerically

determine the ray-glyph intersection I, if it exits.

4.2.2 Intersection of View-Ray and Spherical Function

In (29) of Section 3.2.2, we have derived function � in
cylindrical glyph coordinates, with which one can effi-
ciently probe the spatial extent of glyph  . � renders
positive values, if its cylindrical parameters are inside the
spherical function  , and � renders negative values if
outside. For each view-ray with given ’0, we need to
initialize function � by determining the polynomial
coefficients ceven

n ð’0Þ and codd
n ð’0Þ in (32). For inversion

symmetric HARDI glyphs and a truncation of the Laplace
expansion at lmax ¼ 4, only five coefficients ceven

n ð’0Þ need to
be determined as specified in Appendix B.

The ray-glyph intersection I is given by the root z0I of

�
�
�0rayðz0Þ; ’0; z0

�
¼ 0; ð49Þ

that is nearest to viewpoint V . We can easily determine the
roots of (49) by classical numerical means, since ’0 is fixed
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and since search brackets for z0 are provided by (47) and

(48). We have tested the bisection method and regula falsi

(false position method) [25]. The latter has proven to be

more efficient. The initial sampling of the view-ray is done

with a step size �z0 of typically 0.1 or about 1 percent of

z0far; z
0
near

		 		 starting at z0near and progresses toward z0far. If a

sign change in � is detected, two refinement steps of the

regula falsi algorithm are performed. We thereby determine

a good approximation of root z0I nearest to viewpoint V . If

one, however, reaches the end of the search bracket z0far

without detecting a sign change in � no intersection I exists

and we can omit the subsequent step.
The initial step size �z0 and the iteration depth of the

regula falsi algorithm can be chosen by the user. The values

quoted above are appropriate example values. If one choses

a larger step size �z0 one gains speed, but risks to miss the

edges of the glyph. In this case, the appearance of the glyph

seems to be intact, but the edges are missing and the glyph

is smaller than it should be. A larger regula falsi iteration

depth will render more accurate values for root z0I, but the

visual impact is hardly detectable.
If a casted ray exhibits an intersection with the spherical

function  , one still needs to determine the normal surface

vector at this intersection to provide an appropriate shading

for the corresponding pixel.

4.2.3 Normal Vector and Lighting

We compute the normals at the intersection I on the ray-

casted surface of the glyph as described in Section 3.3. The

implementation is straightforward, since all the equations

are given in an explicit form. With the normal vectors we

can use standard lighting according to the Phong lighting

model to determine the color of the view-ray pixel.
In our specific application example, we apply a color

coding commonly used in HARDI and DTI. We map the

spherical angles # and ’ of an intersection I with respect to

the glyph center P to a color, so that red corresponds to

mediolateral, green to anteroposterior, and blue to super-

oinferior orientation. The results are illustrated in Fig. 6.

5 RESULTS

Glyphs of spherical functions depict directional distribu-
tions in 3-dimensional data sets. As with most 3-dimensional
visualizations, interactivity via rotation or change of view-
point provides the user with prominent clues about the
spatial configuration of the data. Thus, the rendering speed
that ensures a responsive interactivity is the first perfor-
mance criteria that we discuss. We then describe the HARDI
data used in our validation and address the visual aspects
and qualities of the ray-casted glyphs.

5.1 Performance Measurements

The performance measurements of three glyph rendering
methods are listed in Table 1. We compare the traditional,
geometry-based method with our two ray-casting methods.
For the traditional generation of geometry, we used a
custom VTK filter whose output was rendered with a
standard VTK polydata mapper. Our first ray-casting
method [24] is a straightforward implementation that lacks
all of the refinements of the second algorithm introduced
above. The measurements for all three methods were
performed on a PC with an Intel Pentium 4 3.20 GHz
CPU, 2 GB RAM, and a GeForce 9,600 GT graphics card
with 512 MB of memory and a display of 1262� 880 pixels.

Although, we did not optimize the traditional method to
efficiently generate and render geometry, the results clearly
indicate that our proposed ray-casting methods outperform
the geometry-based method. Of course, in all three methods
the performance decreases when the number of glyphs
increases. But the performance of the geometry-based
method decreases drastically when the order of tessellation
is increased. This poses a problem since tessellations of fifth
order or higher, which are favorable for sufficiently good
visual results, cannot be rendered in an interactive way.
Furthermore, with the geometry-based method it is not
possible to interactively redefine the region-of-interest
(ROI). Doing so requires the time-consuming generation
of geometry for the glyphs in the new ROI. The same
applies when changing parameters, such as scaling and
sharpening. The geometry needs to be changed and this
cannot be done interactively. However, being able to
interact and explore the data in real time is of utmost
importance for the researchers in this field and it can make
HARDI techniques more attractive for clinical applications.

The first, basic ray-casting method does not align the
spherical function with the view axis and, thus, cannot
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Fig. 6. Close-up of our GPU glyphs showing a detail of a synthetic
phantom data set of two crossing fiber bundles under an angle of
90 degrees.

TABLE 1
Rendering Performance of the Classical Geometry-Based

Glyph-Rendering Method Compared with Our Two GPU-Based
Ray-Casting Methods

For the geometry-based rendering, we used 252 vertices per glyph. The
step size for the ray-casting measurements was 0.1 and we use
2 refinement steps.



utilize the more efficient polynomial � in cylindrical
coordinates. Instead, the spherical function is probed
directly. As an outer bound, the first ray-casting method
uses a sphere instead of a cylinder and it applies the
bisection method instead of regula falsi to approximate the
ray-glyph intersections.

Table 1 also shows that the refinements in the second
ray-casting method lead to a performance boost that
consistently triples the frame rate in comparison to the
first, more basic ray-casting approach [24].

Three refinements in the second ray-casting algorithm
contribute to the higher frame rates:

. the replacement of spherical coordinates by cylind-
rical coordinates and the alignment of the cylindrical
coordinate system with the glyph-observer axis
yielding polynomial �,

. the use of quads instead of boxes for pixel projection,
and

. the use of tighter bounding cylinders instead of
spheres.

All three modifications of the second algorithm are
intimately connected. The use of quads is only possible in
aligned coordinates, and bounding cylinders are only
sensible if working in cylindrical coordinates. Nevertheless,
we made performance measurements adding each of these
three refinements at a time and we observed in the case of
a 2,600 glyph data set (in a 757� 928 viewport with an
initial ray-casting step size of 0.05 and two subsequent
step-size refinements) an overall 5-fold increase in speed.
The speed increase consisted of a 250 percent fps increase
due to the aligned cylindrical coordinates and polynomial
�, a 30 percent fps increase due to quads, and a 10 percent
fps increase due to tighter cylindrical bounds.

5.2 Diffusion Data Acquisition

For the validation of the proposed HARDI visualization
method, the following data sets were used. Synthetic phantom
data: We generate artificial noiseless synthetic data of a 90
degree crossing according to Soderman and Jönsson [28]. In
vivo data: DW-MRI acquisition was performed on a healthy
volunteer (25-year old female) using a twice refocused spin-
echo echo-planar imaging sequence on a Siemens Allegra 3T
scanner (Siemens, Erlangen, Germany). The scanning was
done using FOV 208� 208 mm and voxel size 2:0� 2:0� 2:0
mm. Ten horizontal slices were positioned through the body
of the corpus callosum and centrum semiovale. Data sets
were acquired with 106 directions, each at b-values of 1,000,
1,500, 2,000, and 3;000 s=mm2.

5.3 Visual Aspects

For validation of our proposed methods, we use a software
phantom of 90 degree crossings (Fig. 6). The RGB color
coding coincides with the orientation of the simulated
volume. In the single fiber areas, we clearly observe the
“peanut” shape representation of the ODFs. The areas of
crossings are correctly represented as well. Here, we
immediately observe the advantage of our GPU-based
rendering. The quality of the rendered glyphs is indepen-
dent of the zooming factor exhibiting every level-of-detail.
In Fig. 7, we show a region-of-interest on a coronal slice of
centrum semiovale. Fibers of the corpus callosum (CC),
corona radiata (CR), and superior longitudinal fasciculus
(SLF) form a three-fold crossing. This interesting region

with known crossings is often targeted for the qualitative
analysis of DW-MRI techniques. In Fig. 7a, we show ODF
glyphs rendered by the geometry-based method with third
order icosahedral tessellation. We have choosen this quality
for the geometry-based method, since its frame rate is
comparable to our proposed methods. However, although
interaction is possible at this level of smoothness (except
scaling and sharpening), we can observe a lower visual
quality. The same ROI is shown in Fig. 7b represented by
our ray-casting method. The increase of visual quality is
immediately visible. Crossings become visually more
apparent and there is an obvious 3D effect that perceptually
helps in the distinction of CC and CR structures.

Both ray-casting methods give results that are substan-
tially better than the geometry-based approach, visually
and with respect to performance. With the settings used in
the figures, the glyphs look much smoother than with the
traditional method even if we use fourth order of tessella-
tion (i.e., 252 vertices per glyph). Furthermore, we can
define the current ROI interactively, since no geometry
needs to be generated, and we can also change all rendering
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Fig. 7. ODF representations of the DW-MRI data with 106 gradient
directions and b ¼ 2;000 s=mm2 of a human subject in a ROI defined on
a coronal slice in the centrum semiovale. The glyphs are shown for
fourth order spherical harmonics, which are min-max normalized. The
lower left corners exhibit inlets with a two-fold magnification of four
glyphs each. (a) Traditional way of HARDI glyphs rendering with third
order icosahedral tessellation so interaction is still possible. (b) Ray-
casting of the HARDI glyphs on GPU. (a) Geometry-Based. (b) GPU
Ray-Casting.



parameters interactively. This enables HARDI researchers
to easily inspect their PDFs or ODFs and it helps them to
verify if their tissue models and fiber tracking algorithms
correctly reflect the underlying HARDI data.

When we compare the two ray-casting approaches, we

see that the new method, based on cylindrical coordinates,

gives substantially higher frame rates than the previous

method without compromising the visual quality of the

rendered glyphs.

6 CONCLUSIONS AND FUTURE WORK

We presented a fast and flexible CPU and GPU-based
method for glyph rendering of spherical functions in
general and HARDI data in particular. It is important to
state that HARDI is an emerging area, rapidly growing,
with new proposed techniques for data modeling, regular-
ization, fiber tracking, and more. Validation is still an open
issue. Showing the local information of the reconstructed
PDFs, ODFs, or any other spherical function in a fast way is
essential for the development of HARDI research. At the
moment, to the best of our knowledge, there is no fast and
interactive way for HARDI data exploration and visualiza-
tion. Being able to interactively explore the quality of the
obtained data, to detect the interesting areas for further
inspection in a fast and reliable way, and to validate the
new proposed fiber tracking techniques by supplying the
local information will undoubtedly move the HARDI
methodology from pure research toward a clinically
applicable, new, and better DW-MRI technique for depict-
ing the white matter structure of the brain.

We stress that this visualization is aimed at HARDI

researchers and not physicians, due to the complexity and

cluttering of the data. This GPU-accelerated visualization

will improve the working condition of researchers, allowing

them smooth and interactive data exploration. The render-

ing technique is based on the spherical harmonic approx-

imation applicable to any function on a sphere. The

proposed visualization technique is, therefore, not

HARDI-specific. Any data that is given by spherical

functions can be visualized this way.
It will be useful to extend the proposed visualization

algorithm with specialized coloring and sharpening meth-

ods that will highlight maxima of a spherical function and

possibly highlight intervoxel coherence. We will also

integrate the new algorithm into our visualization tool for

DTI so that we can combine different imaging modalities.

APPENDIX A

WIGNER MATRICES

According to the Euler rotations around the z, y, and z-axis,

the Wigner rotation matrices are the concatenation of three

rotation matrices.

Dm m0

l ð�; �; �Þ :¼ eþim� dm m0

l ð�Þ ei�m0 : ð50Þ

The rotations around the z-axis are given by cmm
0

l ð�Þ ¼
ei m � 	mm0 and by cmm

0

l ð�Þ ¼ ei m � 	mm0 . The rotation around

the y-axis is given by the reduced Wigner function dmm
0

l ð�Þ.

dmm
0

l ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl�mÞ!ðlþmÞ!
ðl�m0Þ!ðlþm0Þ!

s
sinm�m

0 �

2

� �

� cosm
0þm �

2

� �
P
ðm�m0;m0þmÞ
l�m ðcos�Þ;

ð51Þ

where P ða;bÞn ðzÞ stands for the Jacobi polynomial.
Here, we provide matrix coefficients ~cmm

0

l ð�Þ and the

reduced Wigner function ~dmm
0

l ð�Þ for real-valued spherical

harmonics for l up to 4.

~cmm
0

l ð�Þ :¼ cos ðm �Þ 	mm0 � signðmÞð�1Þm sin ðm �Þ 	m �m0 :
ð52Þ

All values of ~dmm
0

l ð�Þ for l � 4 are 0 unless listed below:

~d00
0 ð�Þ ¼ 1;

~d-1-1
1 ð�Þ ¼ ~d00

1 ð�Þ ¼ cos�;

~d-10
1 ð�Þ ¼ �~d0�1

1 ð�Þ ¼ � sin �;

~d11
1 ð�Þ ¼ 1;

~d-2-2
2 ð�Þ ¼ 1

4
ðcos 2� þ 3Þ

~d-2-1
2 ð�Þ ¼ �~d-1-2

2 ð�Þ ¼ � sin� cos �

~d-20
2 ð�Þ ¼ ~d0-2

2 ð�Þ ¼
ffiffiffi
3
p

2
sin2 �

~d-1-1
2 ð�Þ ¼ cos 2�

~d-10
2 ð�Þ ¼ �~d0-1

2 ð�Þ ¼ �
ffiffiffi
3
p

cos� sin�:

~d00
2 ð�Þ ¼

1

4
ð1þ 3 cos 2�Þ

~d11
2 ð�Þ ¼ ~d22

2 ð�Þ ¼ cos�

~d12
2 ð�Þ ¼ �~d21

2 ð�Þ ¼ � sin�

~d-3-3
3 ð�Þ ¼ 1

16
ð15 cos� þ cos 3�Þ

~d-3-2
3 ð�Þ ¼ �~d-2-3

3 ð�Þ ¼ � 1

8

ffiffiffi
3

2

r
ð5 sin� þ sin 3�Þ

~d-3-1
3 ð�Þ ¼ ~d-1-3

3 ð�Þ ¼
ffiffiffiffiffi
15
p

4
cos � sin2 �

~d-30
3 ð�Þ ¼ �~d0-3

3 ð�Þ ¼ �
1

2

ffiffiffi
5

2

r
sin3 �

~d-2-2
3 ð�Þ ¼ 1

8
ð5 cos� þ 3 cos 3�Þ

~d-2-1
3 ð�Þ ¼ �~d-1-2

3 ð�Þ ¼ 1

8

ffiffiffi
5

2

r
ðsin� � 3 sin 3�Þ

~d-20
3 ð�Þ ¼ ~d0-2

3 ð�Þ ¼
ffiffiffiffiffi
15
p

2
cos � sin2 �

~d-1-1
3 ð�Þ ¼ 1

16
ðcos � þ 15 cos 3�Þ

~d-10
3 ð�Þ ¼ �~d0-1

3 ð�Þ ¼ �
1

8

ffiffiffi
3

2

r
ðsin� þ 5 sin 3�Þ

~d00
3 ð�Þ ¼

1

8
ð3 cos � þ 5 cos 3�Þ
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~d11
3 ð�Þ ¼

1

8
ð3þ 5 cos 2�Þ

~d12
3 ð�Þ ¼ �~d21

3 ð�Þ ¼ �
ffiffiffi
5

2

r
cos � sin �

~d13
3 ð�Þ ¼ ~d31

3 ð�Þ ¼
ffiffiffiffiffi
15
p

4
sin2 �

~d22
3 ð�Þ ¼ cos 2�

~d23
3 ð�Þ ¼ �~d32

3 ð�Þ ¼ �
ffiffiffi
3

2

r
cos � sin �

~d33
3 ð�Þ ¼

1

8
ð5þ 3 cos 2�Þ

~d-4-4
4 ð�Þ ¼ 1

64
ð35þ 28 cos 2� þ cos 4�Þ

~d-4-3
4 ð�Þ ¼ �~d-3-4

4 ð�Þ ¼ � 1

16
ffiffiffi
2
p ð14 sin 2� þ sin 4�Þ

~d-4-2
4 ð�Þ ¼ ~d-2-4

4 ð�Þ ¼
ffiffiffi
7
p

8
ð3þ cos 2�Þ sin2 �

~d-4-1
4 ð�Þ ¼ �~d-1-4

4 ð�Þ ¼ � 1

2

ffiffiffi
7

2

r
cos� sin3 �

~d-40
4 ð�Þ ¼ ~d0-4

4 ð�Þ ¼
ffiffiffiffiffi
35
p

8
sin4 �

~d-3-3
4 ð�Þ ¼ 1

8
ð7 cos 2� þ cos 4�Þ

~d-3-2
4 ð�Þ ¼ �~d-2-3

4 ð�Þ ¼ �
ffiffiffi
7

2

r
cos3� sin �

~d-3-1
4 ð�Þ ¼ ~d-1-3

4 ð�Þ ¼
ffiffiffi
7
p

4
ð1þ 2 cos 2�Þ sin2 �

~d-30
4 ð�Þ ¼ �~d0-3

4 ð�Þ ¼ �
1

2

ffiffiffiffiffi
35

2

r
cos � sin3�

~d-2-2
4 ð�Þ ¼ 1

16
ð5þ 4 cos 2� þ 7 cos 4�Þ

~d-2-1
4 ð�Þ ¼ �~d-1-2

4 ð�Þ ¼ 1

8
ffiffiffi
2
p ð2 sin 2� � 7 sin 4�Þ

~d-20
4 ð�Þ ¼ ~d0-2

4 ð�Þ ¼
ffiffiffi
5
p

8
ð5þ 7 cos 2�Þ sin2�

~d-1-1
4 ð�Þ ¼ 1

8
ðcos 2� þ 7 cos 4�Þ

~d-10
4 ð�Þ ¼ �~d0-1

4 ð�Þ ¼ �
1

16

ffiffiffi
5

2

r
ð2 sin 2� þ 7 sin 4�Þ

~d00
4 ð�Þ ¼

1

64
ð9þ 20 cos 2� þ 35 cos 4�Þ

~d11
4 ð�Þ ¼

1

16
ð9 cos � þ 7 cos 3�Þ

~d12
4 ð�Þ ¼ �~d21

4 ð�Þ ¼ �
1

8
ffiffiffi
2
p ð3 sin� þ 7 sin 3�Þ

ð53Þ

~d13
4 ð�Þ ¼ ~d31

4 ð�Þ ¼
3
ffiffiffi
7
p

4
cos � sin2�

~d14
4 ð�Þ ¼ �~d41

4 ð�Þ ¼ �
1

2

ffiffiffi
7

2

r
sin3�

~d22
4 ð�Þ ¼

1

8
ðcos� þ 7 cos 3�Þ

~d23
4 ð�Þ ¼ �~d32

4 ð�Þ ¼
1

8

ffiffiffi
7

2

r
ðsin � � 3 sin 3�Þ

~d24
4 ð�Þ ¼ ~d42

4 ð�Þ ¼
ffiffiffi
7
p

2
cos � sin2�

~d33
4 ð�Þ ¼

1

16
ð7 cos� þ 9 cos 3�Þ

~d34
4 ð�Þ ¼ �~d43

4 ð�Þ ¼ �
1

8
ffiffiffi
2
p ð7 sin� þ 3 sin 3�Þ

~d44
4 ð�Þ ¼

1

8
ð7 cos � þ cos 3�Þ:

ð54Þ

APPENDIX B

POLYNOMIAL COEFFICIENTS

For lmax ¼ 4, the polynomial coefficients in (32) are

determined by expanding polynomials (28). Note that the

coefficients are only valid for a Laplace expansion with

truncation at lmax ¼ 4. Laplace expansion with different

truncations will result in different coefficients.

ceven
0 ð’0Þ ¼ 1

2
ffiffiffi
�
p
�
~b0
0 þ

ffiffiffi
5
p

~b0
2 þ 3 ~b0

4

�
;

ceven
1 ð’0Þ ¼

ffiffiffiffiffiffi
5

4�

r �� ffiffiffi
3
p

~b�1
2 þ 3

ffiffiffi
2
p

~b�1
4

�
cosð’Þ

�
� ffiffiffi

3
p

~b1
2 þ 3

ffiffiffi
2
p

~b1
4

�
sinð’Þ

�
ceven

2 ð’0Þ ¼
ffiffiffi
5
p

4
ffiffiffi
�
p
�� ffiffiffi

3
p

~b2
2 þ 9 ~b2

4

�
sinð2’Þ

þ
ffiffiffi
5
p � ffiffiffi

3
p

~b�2
2 þ 9 ~b�2

4

�
cosð2’Þ

þ 4 ~b0
0 þ

ffiffiffi
5
p

~b0
2 � 18 ~b0

4

�
ceven

3 ð’0Þ ¼ 1

8

ffiffiffi
5

�

r ��
9
ffiffiffi
2
p

~b1
4 � 4

ffiffiffi
3
p

~b1
2

�
sinð’Þ

þ 3
ffiffiffiffiffi
14
p �

b�3
4 cosð3’Þ � ~b3

4 sinð3’Þ
�

þ
�
4
ffiffiffi
3
p

~b�1
2 � 9

ffiffiffi
2
p

~b�1
4

�
cosð’Þ

�
ceven

4 ð’0Þ ¼ 1

16
ffiffiffi
�
p
�
3
ffiffiffiffiffi
35
p �

b4
4 sinð4’Þ þ ~b�4

4 cosð4’Þ
�

þ 2
ffiffiffi
5
p �

2
ffiffiffi
3
p

~b2
2 � 3 ~b2

4

�
sinð2’Þ

þ 2
ffiffiffi
5
p �

2
ffiffiffi
3
p

~b�2
2 � 3 ~b�2

4

�
cosð2’Þ

þ 8 ~b0
0 � 4

ffiffiffi
5
p

~b0
2 þ 9 ~b0

4

�
:

ð55Þ

codd
0 ð’0Þ ¼

1ffiffiffiffiffiffi
4�
p

� ffiffiffi
3
p

~b0
1 þ

ffiffiffi
7
p

~b0
3

�
codd

1 ð’0Þ ¼
ffiffiffiffiffiffi
3

4�

r ��
b�1

1 þ
ffiffiffiffiffi
14
p

~b�1
3

�
cosð’Þ

�
�
b1

1 þ
ffiffiffiffiffi
14
p

~b1
3

�
sinð’Þ

�
codd

2 ð’0Þ ¼
1

4
ffiffiffi
�
p
� ffiffiffiffiffiffiffiffi

105
p

~b2
3 sinð2’Þ þ

ffiffiffiffiffiffiffiffi
105
p

~b�2
3 cosð2’Þ

� 3
ffiffiffi
7
p

~b0
3 þ 2

ffiffiffi
3
p

~b0
1

�
codd

3 ð’0Þ ¼
1

8
ffiffiffi
�
p
� ffiffiffi

3
p � ffiffiffiffiffi

14
p

~b1
3 � 4 ~b1

1

�
sinð’Þ

þ
ffiffiffiffiffi
70
p �

~b�3
3 cosð3’Þ � ~b3

3 sinð3’Þ
�

þ
ffiffiffi
3
p �

4 ~b�1
1 �

ffiffiffiffiffi
14
p

~b�1
3

�
cosð’Þ

�
:

ð56Þ
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APPENDIX C

CYLINDRICAL BOUND

The following tables contain the maximal extents of the real-
valued spherical harmonics ~Y m

l along the cylindrical radius
� and depth z. The maximal radii �max

m
l and maximal

depths zmax
m
l have been determined numerically.

C.1 Maximal Cylindrical Radii �max
m
l

�max
m
l ¼ �max

�m
l : ð57Þ

C.2 Maximal Cylindrical Heights zmax
m
l

zmax
m
l ¼ zmax

�m
l : ð58Þ
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