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Abstract

Diffusion Tensor Imaging (DTI) is an MRI
technique that measures the diffusion of water in
tissue such as white matter and muscle. From a
DTI dataset, tracts representing fibers in the data can
be reconstructed. Because of the vast amounts of
fibers that can be reconstructed from a dataset, the
visualization of these fibers is a challenging problem.
In order to give the user a better understanding of the
structure of the data, it is necessary to convey both
the shapes of fibers, and the mutual coherency among
multiple fibers and groups of fibers. Besides the fibers
that were reconstructed, the local tensor properties,
such as the second and third eigendirections and
eigenvalues, are also of importance. We propose
to use line illumination and shadowing of fibers in
order to improve the perception of their structure. We
also present a new method, inspired by the modeling
of curled hair, for showing extra tensor properties
along the fibers. This is done by showing curves
that spirally wind around the actual fiber location,
where the local tensor determines the parameters
of that curve. We implemented the illumination,
shadowing, and spiral curves, in such a way that
the user can interact with the data and interactively
change all parameters. The presented methods help
in gaining more insight in DTI data of the brain and
the heart. It is now possible to visualize more dense
fiber structures using lighting and shadowing. The
spiral curves help in evaluating the data where the
extra tensor properties are of importance.

1 Introduction

Diffusion Tensor Imaging (DTI) is an MRI tech-
nique that measures the local diffusion of water in
tissue. In water with no obstacles, water molecules
move freely in all directions, thus their diffusion is

isotropic. In tissue, the internal structure hinders the
free motion of water molecules. If these structures
are fibrous, the water molecules diffuse more in di-
rections along the fibers than perpendicular to them.
This causes the diffusion to be anisotropic. Thus, a
DTI dataset can provide information on the presence
and orientation of fibrous tissue.

An important application of DTI is the study of the
brain, for example by visualizing white-matter tracts.
DTI is the only non-invasive technique that can show
these tracts in vivo [1]. Therefore, it is useful for, for
example, brain development research and brain tumor
detection. DTI can also be applied to muscle tissue
and therefore it can also be used to visualize the struc-
ture of the heart muscle.

A common way to visualize DTI data is by recon-
structing fibers using tractography [2]. Most exist-
ing tools for visualizing DTI fibers render them either
as unshaded lines or as polygonal tubes. The use of
unshaded lines gives no cues about the shape of the
fibers, as is shown in figure 1(a). The use of polyg-
onal tubes requires a very large number of polygons
in order to achieve high image quality. This results
in bad rendering performance. Also, neither method
conveys the coherent structure of a large amount of
fibers clearly.

The visualization of DTI fibers has analogies with
realistic rendering of human hair. Both visualize
large amounts of fibers that have particular shapes and
coherencies. In DTI visualization, the fiber shapes
and coherencies are important for the user because
they contain vital information about the structure of
a dataset. In hair rendering, the shapes of fibers and
their mutual coherencies define the hairstyle, which
must be conveyed to the viewer. The two most im-
portant components of realistic hair rendering are the
local lighting model, and the casting of shadows from
hair fibers onto each other. Both techniques are essen-
tial for creating realistic-looking images [3]. Without
proper line lighting, individual fiber shapes are not ap-



(a) no lighting (b) line lighting (c) line lighting and shadowing

Figure 1: Fibers tracked in the brain of a healthy volunteer.

parent. Without self-shadowing, the coherent struc-
ture of groups of fibers cannot be easily shown.

In scientific visualization, illuminated lines are
used to acquire a better perception of shape [4, 5].
The lighting model used is similar to that used for
hair rendering. However, it is not combined with
self-shadows. In this paper, we show how percep-
tion of both shape and coherency of large amounts
of DTI fibers can be considerably improved by apply-
ing line lighting and shadowing. We also introduce a
new technique to visualize local tensor properties that
makes use of the possibility to perceive fibrous struc-
ture using illumination and shadowing. This tech-
nique is inspired by the modeling of curled hair.

In section 2, we describe the input data and its
properties. Section 3 contains an overview of ex-
isting DTI visualization techniques and related hair-
rendering methods. The methods for visualizing DTI
fibers and local tensor properties are explained in sec-
tions 4 and 5. Results are given and analyzed in
section 6. Finally, in section 7, we summarize our
new contributions and identify directions for future
research.

2 DTI data

A DTI dataset consists of a structured grid on a
volume V ⊂ R3, with a diffusion tensor on each grid
point representing the local diffusion. Each diffusion
tensor is represented by a symmetric 3 × 3 positive
definite matrix D.

D =

 Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


Trilinear interpolation on each component of D is
used to reconstruct a continuous tensor field on V.
Other interpolation methods might be used for inter-
polating tensors, but that topic is beyond the scope of
this paper.

Eigenanalysis of D gives the eigenvalues λ1 ≥
λ2 ≥ λ3 ≥ 0, and the accompanying eigenvectors
~e1, ~e2, ~e3. The eigenvectors represent the principal

Measure Name
cl = (λ1−λ2)

3µ1
Linear diffusion

cp = 2(λ2−λ3)
3µ1

Planar diffusion
cs = λ3

µ1
Spherical diffusion

FA = 3√
2

√
µ2
J4

Fractional anisotropy

RA =
√

µ2√
2µ1

Relative anisotropy

where

µ1 = λ1+λ2+λ3
3

µ2 = (λ1−λ2)
2+(λ2−λ3)

2+(λ1−λ3)
2

9
J4 = λ2

1 + λ2
2 + λ2

3

Table 1: Anisotropy indices used for classifying the
type of the diffusion [6, 7].

diffusion directions, and the eigenvalues are the cor-
responding diffusion coefficients. An intuitive way
of representing a diffusion tensor is with an ellipsoid
that has its axes aligned with the eigenvectors of D
and scaled by the eigenvalues.

Many measures for classifying the diffusion type
exist. The ones that we use are listed in table 1. We
also use normalized eigenvalues λn

i defined by:

λn
i =

λi

3µ1
i ∈ {1, 2, 3} (1)

In section 3, we describe existing techniques for vi-
sualizing DTI data and the hair rendering techniques
that we apply to DTI data in section 4.

3 Background and related work

In recent years, the visualization of DTI data has
gained interest as a research topic. In this section, we
give an overview of existing methods to visualize DTI
data. We describe tractography and the visualization
of reconstructed fibers in section 3.1. In section 3.2,
we give a short overview of methods for realistic ren-
dering of hair.



3.1 DTI Visualization

Various methods exist for visualizing DTI data [2].
One can compute scalar anisotropy indices (see table
1) from the diffusion tensors, which can be visualized
by, for example, volume rendering. Less information
is lost if the tensor field is simplified to the vector field
defined by ~e1. A popular way to visualize this field is
by slicing the data and applying RGB color coding.
The color coding is applied by directly mapping the
components of ~e1 to RGB color space. The resulting
colors may be weighed by an anisotropy index.

A method of which the resulting visualization rep-
resents the scanned tissue in an intuitive way, is trac-
tography or fiber tracking. Fiber tracking aims to re-
construct the fibrous structure that was the cause of
the anisotropy measured by DTI. There are several
techniques to perform this reconstruction. One way of
doing this is by tracing streamlines in the vector field
defined by ~e1. The streamlines are traced by releasing
particles on seed points in the vector field. The tra-
jectories of the particles are traced using numerical
integration techniques such as first-order Euler and
second-order Runge-Kutta methods. Tracing stops
when a stopping criterium such as a lower bound for
cl or FA is met. The resulting streamlines represent
the fibers. In this paper, we use the specific method
presented by Vilanova et al. [8].

The fibers that are the output of a fiber tracking al-
gorithm can be visualized in various ways. The sim-
plest way to visualize them is with unshaded lines, as
is shown in figure 1(a). Local tensor measures can
be color-coded on the lines. However, with unshaded
lines it is hard to see their actual shapes and their mu-
tual coherencies. In order to improve the perception
of shape and orientation of the fibers, the local fiber
orientation can be color-coded on the lines by map-
ping the components of the local direction directly to
RGB values. This prohibits the use of color for other
purposes.

Polygonal tubes can be used to represent lines, but
this results in poor image quality or bad rendering
performance. Hyperstreamlines are general cylinders
whose cross-sections perpendicular to the local fiber
direction are ellipses whose axes and shapes are de-
fined by ~e2, ~e3 and λ2, λ3 [9]. Hyperstreamlines show
more tensor information, but do not solve the prob-
lems of representing lines by polygons. For dense sets
of fibers, these techniques also result in more occlu-
sion of information than line-based techniques.

3.2 Hair rendering

We take a different approach in reducing visual
clutter and making the shapes of fibers and their co-
herent structures visible. We use techniques used
for the realistic rendering of human hair, in order to
achieve a better visualization of DTI fibers. In hair

rendering, anisotropic lighting [3, 10] is used for the
local shading model. This gives realistic-looking re-
sults, and conveys the fiber shapes to the viewer in
an intuitive way. Some scientific visualizations use
illuminated lines in order to make the shapes of the
individual lines easier to interpret [5]. Our method
uses the normal in the local normal plane of the fiber
that maximizes the lighting intensity to do the light-
ing calculations. It is based on the model described by
Stalling et al. [4]. Wenger et al. [11] use anisotropic
lighting for volume rendering of vector-field structure
and also apply it to DTI.

The large number of algorithms for rendering of
shadows [12] indicates the importance of shadows for
creating realistic-looking scenes. For rendering hair
and fur, self-shadowing is essential to make it look
real [3]. Shadow mapping is an image-space shad-
owing technique that is suitable for complex scenes
because it does not depend on the geometric complex-
ity of the scene [13]. However it has some problems,
including aliasing on the edges of casted shadows.
Therefore, many extensions to the classical shadow
mapping algorithm exist, of which some were espe-
cially constructed for the rendering of complex struc-
tures such as hair [14, 15].

We apply anisotropic lighting of lines to DTI fibers
in order to make the shapes of fibers better visible.
We use shadow-casting of fibers onto each other to
make the coherent structure of nearby fibers apparent.
We also present a new method for visualizing tensor
properties in a similar way that hyperstreamlines try
to show information of the other components of the
tensor, without using polygonal representations. We
propose a method inspired by the modeling of curly
hair to show more information of the tensor in section
5.

4 Light and shadow

In this section, we show how proper lighting and
shadowing can be used to improve the visual percep-
tion of the structure of a DTI dataset. First, in 4.1,
we describe how existing line lighting theory is im-
plemented for use with DTI fibers. Then, in section
4.2, we explain how the standard shadow mapping
technique is modified in order to give good results for
dense line datasets. The algorithms given are imple-
mented in the OpenGL Shading Language (GLSL),
and run directly on the GPU. This ensures interactive
rendering speeds.

4.1 Illuminated lines

If we use the Phong lighting model, the light inten-
sity I in a point on a surface, follows the equation:

I = Ia+Id+Is = ka+kd(~L· ~N)+ks(~V · ~R)n(2)



Figure 2: Fibers tracked in a folded eye nerve of a
pig, which was used to create a phantom DTI dataset.
Left: No coloring. Right: RGB coloring of local tan-
gent direction. Top: No lighting. Bottom: Illuminated
lines.

Here, Ia, Id and Is are the ambient, diffuse, and
specular components of the intensity. The material-
specific values of ka, kd, ks and n are the ambi-
ent, diffuse and specular coefficients, and the spec-
ular component or shininess. ~N is the normal on the
surface point. ~L points towards the light source, ~V to-
wards the camera position, and ~R is the reflection of
~L at ~N . Vectors ~N , ~L, ~V , and ~R have unit length.

This model cannot be applied to illuminate lines
directly, because lines do not have a single normal ~N ,
but a plane of normals perpendicular to the tangent di-
rection ~T . This problem can be resolved by choosing
for ~N the vector in the normal plane that maximizes
(~L · ~N) and (~V · ~R) in Eq. (2). To avoid explicit calcu-
lation of the optimal ~N , the following equations can
be used [4, 10]:

~L · ~N =
√

1− (~L · ~T )2 (3)

~V · ~R = (~L· ~N)
√

1− (~V · ~T )2−(~L·~T )(~V ·~T )(4)

Using Eq. (3) and (4), the calculation of I in Eq. (2)
can be implemented directly as a GLSL shader. Fig-
ures 1(b) and 2 show that line lighting gives better,
and far more intuitive cues about the shapes of the
fibers than flat shading, even if RGB color coding of
the local fiber orientation is used.

4.2 Shadowing

Shadow mapping [13] is a well-known and well-
researched technique. In the first render pass it ren-
ders the scene with the camera placed at the light

source. The depth-values in light-coordinates of the
rendered fragments are stored in the shadow map.
In the second render pass, the camera is placed at
the actual view position. For each fragment, the
view-coordinates are converted to light-coordinates
(x, y, z). The z-component is then compared to the
depth-value zs stored in the shadow map at position
(x, y). If z = zs then the current fragment is visi-
ble from the light source and thus lighted. If z > zs

then there is another object closer to the light source
that obscures the current fragment, so it must be shad-
owed.

This approach has two problems. The first is the
limited resolution of the shadow map combined with
the computations to convert coordinates in camera
space to light space. One pixel in the shadow map
may represent many pixels in the image in camera
space. This can cause serious aliasing artefacts. The
second problem is self-shadowing of objects. Be-
cause they are the result of two different, limited-
precision computations, the depth-values z and zs

will not be exactly the same. Depending on which
value is larger, for each fragment there is a chance
that the object casts a shadow onto itself. This prob-
lem is often dealt with by subtracting an offset d from
zs, such that the computed distance between z and zs

must be at least d for the fragment to be shadowed.
This is not a solution in our case because we have
very dense sets of fibers where no reasonable value
can be given for d.

We tackle the aliasing problem by using a shadow
map with a very high resolution. We implemented the
shadow-mapping technique using Framebuffer Ob-
jects to render the shadow map to a texture with a
resolution of up to 40962. Because in our case the
light source is relatively close to the camera this suf-
ficiently reduces the aliasing problems.

If the shadow map has a resolution that is r2 times
larger than the resolution of the image that is ren-
dered to the screen, the shadows will become r times
thinner. In order to deal with this, we simply call
glLineWidth() with a value of r before rendering
the shadow map. We can also use a value larger than
r to make lines cast thicker shadows.

The problem with lines casting shadows onto
themselves is solved by not using depth-values for the
shadow computations, but a unique identifier for each
line. Each fiber is assigned a unique integer identifier
idf , and within a fiber, each line is assigned an iden-
tifier idl. Together, these two values form the identifi-
cation of a line which is rendered to the shadow map
instead of the depth-value.

Because fragment shaders in GLSL can only out-
put floating-point values in the range [0, 1], idf and
idl have to be converted first. There are two ad-
vantages of using this conversion over the storing of
depth-values, as is done with standard shadow map-



(a) No shadows (b) With shadows

Figure 3: Fibers tracked in a part of the eye-nerve
dataset.

ping.. First, we always have exactly the same input
values for idf and idl, where the rasterization of a line
on the GPU with different camera settings (one for the
light source, and one for the view camera) and differ-
ent output resolutions, produces different fragments
with different depth-values. Second, because we can
control the conversion of idf and idl, we can avoid
having very small differences in the ID’s for fibers
that are close to each other. A very simple conversion
is to divide idf by the number of fibers, and idl by the
maximum number of lines per fiber.

In figures 1 and 3, the images with shadows clearly
show which structures are in front and which are be-
hind. This is the case for both fibers that are very close
to each other, and for fibers that have a larger distance
between them. If fibers are really close, shadowing
makes their coherent structures visible. For groups
of fibers that are less close to each other, shadows
make it easy to estimate the distance between the fiber
groups.

5 Attribute visualization

So far, we have only dealt with visualizing fibers
which were constructed by tracking the direction of
~e1. However, other properties of tensors, such as ~e2 in
areas with high cp, are also of interest. In this section,
we introduce a new method for visualizing the charac-
teristics of the diffusion perpendicular to ~e1, inspired
by the modeling of curled hair. Results for synthetic
datasets are shown in figure 4. Different types of dif-
fusion can be discerned, and in case of planar diffu-
sion, it also shows the direction of the plane in which
the most diffusion takes place. These results are ex-
plained in more detail at the end of this section. First,
we describe a standard helix. Then, we generalize this
helix, such that the free parameters of this curve can
be used to represent the diffusion parameters. Finally,
we show how these parameters are filled in, such that
the curve can be used to visualize DTI fibers.

A curve of which the tangent makes a constant an-
gle with a fixed line is called a helix. A helix around

the z-axis has the following parametrization:

x = r cos t
y = r sin t
z = ct,

(5)

where r is the radius of the helix and c is a strictly pos-
itive constant defining the vertical separation of 2πc
of the helix’s loops. Thus, for a point P = (0, 0, z)T

on the z-axis, we can acquire the corresponding point
Q = P + Th(P ) on the helix by translating P over:

Th(P ) =

 r cos(z/c)
r sin(z/c)

0


= r cos(z/c) ∗~b1+

r sin(z/c) ∗~b2,

(6)

where~bi form the standard basis, meaning:

~b1 = (1, 0, 0)T
~b2 = (0, 1, 0)T
~b3 = (0, 0, 1)T.

(7)

We want to construct a curve C(t) that spirally
winds around an actual fiber F(t). C(t) must visu-
alize the local diffusion, which is characterized by the
eigenvectors and eigenvalues in the points onF(t). In
order to achieve this, we generalize Th to Tg . For each
point P = F(ti), Tg(P ) depends on the local tensor
DP , and on the value of parameter ti. Here, ti is the
value of t in P , with 0 ≤ i < N where N is the num-
ber of points of the fiber. The value of ti corresponds
with the curve length from point 0 to i, added to a
constant random value t0 which differs for each fiber.
Using Tg , we construct C(t) = F(t) + Tg(F(t)),
such that the maximum distance between correspond-
ing points P = F(ti) and Q = C(ti) depends on the
amount of diffusion in P in the direction of Q − P .
Because the main eigendirection ~e1 is already repre-
sented by the tangent direction of F(t), we displace
P only in the plane orthogonal to ~e1, i.e. in the space
spanned by ~e2 and ~e3. This can be accomplished by
using as a local basis (~e1, ~e2, ~e3) for Tg instead of the
standard basis (~b1,~b2,~b3):

Tg(P ) = a2(DP , t) ∗ cos(f2(DP , t)) ∗ ~e2+
a3(DP , t) ∗ sin(f3(DP , t)) ∗ ~e3

(8)

New degrees of freedom introduced in Tg are the
functions a2, a3, f2, and f3. Functions a2 and a3

specify the amplitudes of the spiral curve C(t) in the
directions of ~e2 and ~e3. Functions f2 and f3 define
the frequencies of C(t) in those directions.

We introduce a possible definition of the degrees of
freedom a2, a3, f2 and f3 to illustrate this method. In
order to construct a representation that is easily under-
stood by the viewer, we use a constant, user-defined,



(a) (b)

(c)

Figure 4: Fibers in synthetic datasets. (a): From bot-
tom to top cl, changes from 1 to 0, and cp from 0 to
1. cs = 0 everywhere. (b): From bottom to top, cl

changes from 1 to 0, and cs from 0 to 1. cp = 0 ev-
erywhere. (c): cp = 1. From left to right, in the plane
containing the fibers, planar anisotropy changes from
in-plane (horizontal) to out-of-plane (vertical).

frequency W for all curves. Thus we obtain the fol-
lowing definitions for f2 and f3:

f2(DP , t) = f3(DP , t) = W ∗ t. (9)

We use a2 and a3 to show the relative amount of dif-
fusion in directions ~e2 and ~e3, thus we choose

a2(DP , t) = A ∗ λn
2

a3(DP , t) = A ∗ λn
3 ,

(10)

where A is the user-defined maximum amplitude. By
filling in (9) and (10) in Eq. (8), we obtain a transla-
tion function for DTI fibers Td:

Td(P ) = A ∗ λn
2 ∗ cos(W ∗ t) ∗ ~e2+

A ∗ λn
3 ∗ sin(W ∗ t) ∗ ~e3

(11)

Because the tensors are symmetric, each eigenvec-
tor may be rotated π rad, such that it points in the op-
posite direction. To avoid discontinuities in the con-
structed curve, we choose the eigenvectors in neigh-
bouring vertices P = F(ti) and R = F(ti+1) with
0 ≤ i < N − 1, such that (~e2(P ) · ~e2(R)) ≥ 0 and
(~e3(P ) · ~e3(R)) ≥ 0.

By displacing all vertices of F(t) by Td(F(t)),
we acquire curve C(t), that shows the diffusion along
F(t) in an intuitive way. As illustrated in figure 4, dif-
ferent types of anisotropy can be easily discerned. In
figure 4(a), from bottom to top, the diffusion changes
from linear to planar. The curves change gradually
from a straight line to a sine which lies completely in
the plane where the diffusion occurs. When chang-
ing the camera position, this is clearly visible, see
figure 4(c). The amplitudes of the sines change ac-
cording to the amount of planar diffusion. In figure

Figure 5: Short fibers tracked with seeding points in
one slice of a mouse heart DTI dataset. Fibers were
rendered with lighting and shadowing.

4(b), from bottom to top, the diffusion changes from
linear to spherical. In the spherical parts, the curves
are not sines as in the planar case, but helixes. Be-
cause there is no preference for a diffusion direction
there, the amplitudes of the curves are the same in all
directions in the plane orthogonal to ~e1. Figure 4(c)
shows a dataset with a constant value of cp. From
left to right, the direction of planar diffusion changes
from horizontal to vertical. This is shown by always
putting the curves in the diffusion plane. What we
presented is a possible implementation for a2, a3, f2

and f3. Other possibilities can be explored to encode
other tensor information.

In the next section, we apply the methods we de-
scribed in this section and in section 4 to different
datasets.

6 Results

We applied the methods presented in this paper to
different types of DTI data. Figure 1 shows fibers
tracked in the brain of a healthy human volunteer.
Figure 1(a) has no lighting. It is not possible to see
the shapes of the fibers and their spatial relationships.
RGB coloring of the local fiber orientation shows that
there are several coherent groups of fibers. However,
it still does not show the actual coherency among
fibers or their shapes. Line illumination makes the
shapes of the fibers more apparent, as is shown in fig-
ure 1(b). With shadowing, the spatial relationships
between groups of fibers and among fibers that are
close together, become visible. This is shown in fig-
ures 1(c) and 1(b).

Current methods of showing the varying orienta-
tion of muscle fibers in a slice of a heart include
RGB color coding of ~e1 in that slice. Another fre-
quently used method is to show fibers tracked from
seed points that are all in one line from the outside of
the heart wall to the inside. Showing these fibers vi-



(a) (b) (c)

Figure 6: Fibers tracked in a region of a human brain,
rendered with spiral curves in order to show extra dif-
fusion information. (a): A few bundles of fibers. (b)
and (c): Zoom in on the fibers at the bottom of (a), but
both with a different camera position.

sualizes the changing fiber orientation along that cho-
sen line. In figure 5 we present a visualization that
shows more fiber information for the whole slice at
once. We seeded on the whole slice and tracked short
fibers. The resulting fibers are then visualized with
line lighting and shadowing. In this way, a lot more
data can be shown to the user at once, and the differ-
ent orientations are still visible.

Figure 6 shows results of using the spiral curves
for fibers tracked in a brain dataset of a healthy vol-
unteer. When interacting with such a scene, the type
of diffusion along the various fibers becomes appar-
ent. Fibers that have highly linear diffusion have spi-
ral curves with small amplitudes, thus they closely
follow the path of the actual fiber location. Areas
that are more isotropic have curves with higher am-
plitudes, thus the curves look more chaotic. In areas
with high planar anisotropy, the curves change their
path more in the planes in which the diffusion was
measured than in other directions.

The fibers in figures 6(b) and 6(c) have a high cp.
This can be seen when interacting with the scene be-
cause the spiral curves have a much larger amplitude
in the diffusion plane than perpendicular to that plane.
Therefore, the diffusion direcion ~e2 can also be ob-
served. In figure 6(b) the view-direction is close to
~e2, thus the amplitudes of the curves are small in this
projection. In figure 6(c), the camera is rotated such
that the view direction is closer to ~e3. This shows how
the curves behave in the diffusion plane spanned by ~e1

and ~e2

Our aim was to create an interactive visualization
where the user can change the possible parameters
interactively. The lighting and shadowing were im-
plemented using shaders that run on the GPU, which
gives a high performance. The computations needed
for the displacement of the vertices in order to obtain
the curves that represent the local diffusion are done
on the CPU in each render pass. Because of this, we
do not need to use extra memory to store the new lo-

cations, and the user can change the parameters for
the displacements interactively.

The rendering performance for several datasets is
given in table 2. The measurements were made on
a 3.2 GHz Pentium 4 PC with 3 GB of RAM and a
GeForce 7800 GTX 256MB graphics card. The num-
ber of fibers and lines in these datasets are much larger
than the amounts of fibers we could visualize for-
merly. This is because without the methods presented
in this paper, we could not visualize such dense sets
of fibers in a way that the results were interpretable by
the user. We applied the spiral curve rendering to the
datasets with a maximum of 248 fibers and 124102
lines. They show a framerate between 2.0 and 15 FPS.
We expect to improve the render speeds drastically by
implementing the translation of points P over Td(P )
to run on the GPU.

7 Conclusions and future work

Our work was inspired by techniques for the ren-
dering of human hair. With the techniques presented,
it is now possible to visualize dense sets of fibers,
where the structure of the fibers is more apparent.
The lighting of the fibers improves the perception of
their shapes. The casting of shadows by the fibers
onto each other shows which fibers are in front and
which are behind in an intuitive way. This also shows
the coherencies among individual fibers and groups
of fibers. The data-dependent curling of the fibers is a
new way to visualize local diffusion properties. It can
be used to distinguish the different types of diffusion
(high cl vs. high cp vs. high cs). In case of planar
diffusion (high cp) it also shows the direction of the
plane in which the most diffusion occurs.

There are more hair-rendering techniques that can
be applied to the visualization of DTI fibers. There are
improved shadow mapping techniques, such as deep
shadow maps [14] and opacity shadow maps [15], that
were developed especially for the rendering of hair-
like structures. The application of these techniques
needs to be evaluated in the future.

In the current implementation the displacements of
the vertices for the curl visualization are computed
on the CPU as a proof of concept. These computa-
tions can be moved to vertex shaders that are executed
on the GPU. This can result in an increase of perfor-
mance. Also, more complex functions for a2,3 and
f2,3 can be investigated. For example, if it is known
that cp is within a certain range for certain types of
data, then a2 and f3 may be tuned to this range in or-
der to show a large difference in amplitudes and fre-
quencies for values near the upper or lower bound of
the cp range. It would also be necessary to do an ex-
tensive user study to be able to evaluate the efficiency
of these curl visualization techniques.

We showed that the methods that we developed for



total FPS FPS FPS
#fibers #lines flat shading line lighting light+shadow Figure

39 8956 1152 633 26 6
160 94606 123 71 14 –
757 254934 44 25 7.0 –
3595 309876 38 22 6.4 1
9286 770068 15 8.9 2.9 3
9218 967531 12 7.1 2.5 5
1493 1006774 12 6.8 2.4 2

Table 2: Dataset size and performance in frames per seconds (FPS) for rendering with line lighting and shadow
mapping. The datasets are ordered by the number of lines. Measurements were made using a 1024× 768 viewport
and a 4096× 3072 shadow map. Datasets that do not have a figure listed are not shown in this paper.

DTI are useful for getting insight in brain and heart
data. Especially for heart data, where you have a heart
wall that is densely filled with fibers, our methods can
show the structure of the fibers better than methods
that do not use shadows and lighting. The method
which we presented for visualizing extra tensor prop-
erties helps the user to distinguish between areas with
different types of anisotropy. It also shows changing
~e2-directions in areas where the diffusion is planar.
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