
HIGH-LEVEL SCENARIO EDITING FOR SERIOUS GAMES

Casper van Est, Ronald Poelman, Rafael Bidarra
Serious Gaming Centre, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

{c.vanest|r.poelman|r.bidarra}@tudelft.nl

Keywords: Scenario editing, simulation games, serious games.

Abstract: Although simulation games provide a competetive and safe alternative to real-life training sessions, the
flexibility of adjusting such training sessions to fit the needs of individual trainees is relatively low. The
reason for this is that these games are often delivered as a static product with predefined scenarios that
cannot easily be edited by an instructor. This paper proposes a solution to this dilemma in the form of
scenario editing, which allows instructors to define and edit scenarios, using high-level actions and events
and some basic logic. A prototype scenario editing application was developed and subsequently evaluated,
featuring a graph-metaphor for easily editing scenarios and an interface that allows real-time editing. The
evaluation shows that the chosen approach is applicable and a good starting point for further development.

1 INTRODUCTION

When video games originally came into
existence, their purpose was solely to entertain.
Nowadays, with video games becoming more
accepted by the mainstream, and with more
scientific research being done in this area, a subset
of video games called serious games is being used
for business and educational purposes as well
(Smith 2007). One such application of a so called
serious game is as a replacement of professional
training sessions, where they are being used to
educate and train safety supervisors, medical
professionals, police officers, and other
professionals. The advantages of using such a
simulation game to replace real-life training
sessions are numerous; simulation games arenot
expensive, safer, less time consuming and can
potentially offer better learning (Susi, Johannesson
et al. 2007).

However, simulation games are not being used
to their full potential yet. One important issue that
simulation games are currently facing is that the
flexibility of adjusting the virtual training session
to an individual trainee’s needs is relatively low,
compared to a real-life training session.

The fundamental problem with the current
development approach of simulation games is that
a simulation game is handed to the instructor as a
finalised product. In optimal conditions, the
instructor is indirectly involved in the process of
making the game, by defining the training
program, but once the development of the game
has finished, no additional changes can be made to
the game, or to its training program. Some
simulation games do have options for adjustability.
However, these options are still very limited and
restrictive in nature. With these games, the game
developer has (perhaps in consultation with an
instructor) prepared a few options for the
instructor, which the instructor can use to alter the
gameplay. While this allows to instructor to
exercise some control over the game’s scenario,
the instructor can only adjust these predefined
settings. Thus, the game is still delivered as a
finalised, static product.

The approach described in this paper aims at
making the training session more adaptable to the
individual trainee’s needs, by providing the
instructor with a Scenario Editor. In this case, the
game developer delivers not one, but two products
to the instructor; the simulation game and an
extensive collection of scenario building blocks

(Van Est, 2010). Then, a separate application
called the scenario editor can be used to arrange
the scenario building blocks according to a training
program, and combine them with the simulation
game to create an individual training experience,
specific to a certain trainee. Using the feedback
from the training session, adjustments can then be
made to the training program, by re-arranging the
scenario building blocks. This way, another
individual training experience can be created using
the same scenario building blocks and simulation
game. With a large collection of building blocks,
the variations in arrangements that can be made are
endless. Thus, the flexibility of adjusting a training
scenario is returned to the instructor. In the
following sections, this paper will discuss this
approach in more detail, and an application
example will be presented.

2 PREVIOUS WORK

This section discusses current authoring
methods. These methods can be divided into two
categories; environment authoring and causality
authoring. In environment authoring, the editing
environment is similar to the game world; it
provides the user with a view of the environment
which is comparable to the world as it is presented
to the player. In causality authoring, the instructor
operates in a distinctly different environment than
the game world, such as an abstract graph-based
editor.

In environment authoring, the instructor can
directly influence the game’s environment. The
instructor can place assets (objects, characters,
triggers, markers, etc) and move them around. By
placing a number of these assets, and assigning
certain properties to them, the instructor can
influence the course of the scenario. A real world
example of environment authoring is a child
playing in a sandbox: he builds an environment
with perhaps buildings or foliage, places a handful
of characters and then ‘runs’ the scenario.
Environment authoring offers the instructor direct
control over specific assets in a game environment.
Thus, it offers the instructor great and precise
power. However, it also requires the instructor to
directly influence the game world, thus requiring
the instructor to have a decent amount of
knowledge about the game world. The instructor is
required to know about game development
concepts such as placing and moving objects

around in a virtual 3D world, using triggers,
materials, etc.

Examples of authoring applications that use
environment editing are UnrealEd, the level editor
of the Unreal 3 engine; and e-Adventure (Moreno-
Ger, Martinez-Ortiz et al. 2005) (Moreno-Ger,
Blesius et al. 2007). UnrealEd was developed by
and for professional game developers, and is as
such very powerful, but also very complex. When
using e-Adventure, on the other hand, creating a
game in e-Adventure is made easier for the
instructor by allowing him to author and execute a
game without any background in programming.
The instructor can author game scenarios and add
content to them, such as objects, characters and
conversations. The authoring application focuses
on supporting those tasks that are specific to the
educational domain. Among these are assessment
and adaptation: the need to track and evaluate the
activity of the trainee and the need to adapt the
behaviour of the game to fit different ranges of
trainees, respectively. A noteworthy feature of e-
Adventure is the possibility to link to other sources
of information, to be accessible during the game.

The functionality offered by e-Adventure is too
limited to be suited for professional game
developers; only one type of game can be created,
that game has to follow certain specific guidelines
and there are little options for customizing the
game. At the same time, the actions required to
create a game using e-Adventure are too detailed to
be suited for non-professional game developers.
The user has to concern himself with technical
issues such as foreground masks, layers, inventory
item icons, etc. Aside from causing the creation
process of a game to take an unnecessarily long
time, these options are overwhelming to a didactic
expert with no game development experience.

The second authoring method is called
causality authoring. This method lets the instructor
edit the causality processes of a scenario, usually
by presenting a graph metaphor. Using this
authoring method, authors can specify causalities
such as ‘when the user opens that box, he will
receive this object’. Editing a graph is easier than
editing a game environment, since it requires less
technical knowledge of the author.

Examples of authoring applications that use
causality authoring are Unreal 3’s Kismet editor,
Scribe (Medler and Magerko 2006), Façade
(Mateas and Stern 2000) (Mateas and Stern 2003),
Scenejo (Weiss, Muller et al. 2005) (Spierling,
Weiss et al. 2006), Art-E-Fact (Iurgel 2004) and
SAVEace (Holm, Stauder et al. 2002). For a
discussion on the strengths and weaknesses of
these applications, see (Van Est, 2010).

Limitations in current authoring methods
provided by game development tools are found to
be

 Authoring requires knowledge of gaming
concepts

 Authoring requires too much work
 Authoring systems are designed non-

generically
 Authoring systems offer unfriendly user

interfaces
 Graphs can become too complex

One disadvantage of all current authoring methods
is that none of them offers a generic solution; no
standalone tool exists that allows scenario
authoring to function with any other game
development tool. This would improve the
effectiveness of such a tool, as it can then be
applied in multiple projects.

The graph metaphor used in several high level
scenario authoring applications seems to be a good
fit, since it corresponds well with the user’s
concept of a scenario. However, the interface that
is usually provided can be very complex,
especially for non technical users. An authoring
application would benefit from using more
graphical metaphors, such as icons for pre- and
post conditions, as can be found in tools aimed at
children. The main issue with current authoring
methods for the use in simulation games is that
they have not been explicitly designed for use by a
field expert or instructor. These experts typically
have little knowledge of the technical concepts
required in current authoring methods. For
maximum usability, a scenario authoring
application should offer functionality that allows
people with limited experience to easily create or
edit a scenario. Of course, since the scenario editor
also needs to be powerful and support creativity,
the tool should offer considerable depth, allowing
the user to create complex scenarios as well.
Perhaps a separation between basic and advanced
features could offer some improvements to the
usability.

3 BASIC APPROACH

The goal of the approach proposed in this paper
is to give an instructor more control over the
scenario of a simulation game. Basically, this can
be achieved in three steps:

1. Represent the scenario of a simulation
game at a more abstract level of scripting.

2. Make the abstracted scenario editable by
an instructor.

3. Communicate the adjustments made by an
instructor to a simulation game.

By seamlessly supporting these steps, one can
enable instructors to make adjustments to
abstracted scenarios, and subsequently
communicate these adjustments to a simulation
game.

3.1 Abstraction

First, two levels of scripting were identified.
The first, lowest, level is called the programming
level. The scripts in this level deal with low level
concepts, such as objects, vectors, math functions,
etc. The language used to write a script in this
programming level could be any programming
language such as C++ or UnrealScript.

The second level of scripting is called the
gameplay scripting level, in which the scripts deal
with the objects in a game level. The language
used in the gameplay scripting level is easier to use
than programming languages and could for
instance be UnrealEd’s visual scripting language
Kismet (UnrealEd, 2011).

These two scripting levels, programming and
gameplay scripting, are commonly used to develop
games. In current game development teams,
programmers operate in the lowest scripting level
and write all kinds of scripts on how the engine
should simulate the playing world. Then, gameplay
scripters define what can be called the game’s
behaviour, e.g. how it interacts with the player, in
the gameplay scripting level, as in Fig. 1.

What we propose in this approach is to add a
third level of scripting above the previously
mentioned levels, in which the global scenario of a
game is scripted. We call this third level the
scenario scripting level, and it deals with the
scenario of a game. This high level of scripting is
useful because it allows the instructor to focus on
the scenario itself, without worrying about
unnecessary programming or gameplay issues. For
example, an instructor does not want to be
bothered by issues such as which truck model
should be used, how it moves or which colour it
has. All these issues are dealt with in lower
scripting levels, and are defined by one of the
game developers.

Achieving this higher abstracted scripting level
can be done by taking the same abstraction step
that is taken from the programming level to the
gameplay level, but now by applying it from the

gameplay level to the scenario level, as in Fig. 2.
In our approach, we’ve chosen to let the game
developer decide on how to abstract the contents of
the gameplay scripting level to the level of
scenario scripting, just as the programmer decides
how to abstract his code into the gameplay

scripting level. In this way, the game developer is
responsible for creating the content that can be
used by the instructor. In that sense, it is up to the
game developer to choose what information, or
meta-data, is supplied to the instructor, and thus at
which level of abstraction the instructor operates.

Therefore, there is no exact, strict, definition of the
boundary between the scenario scripting level and
the gameplay scripting level, and it can be
precisely defined on a case-by-case basis.

3.2 Editing

The editing actions of the scenario scripting
language are called building blocks, which the
instructor should have at his disposal in the
scenario scripting level. Above, we showed that
sections of gameplay script can together form
scenario building blocks. But which forms can
such a building block take? We start by identifying
two entities that are the most basic building blocks
of a scenario script; actions and events. An action
is something that is performed by the player, while
an event is something that is performed by the
game. Together, these two building blocks allow

an instructor to script a basic scenario. However,
with just these two entities, the instructor is fairly
limited in his expression of a scenario, as he can
only create linear scenarios. In order to create non-
linear scenarios, the instructor also needs to be able
to apply some logic at the level of scenario
scripting, such as if-then statements or other flow
control strategies.
Additionally, in some types of games the instructor
might want more detailed control over a scenario
by using variables. At the level of scenario
scripting, a variable can be used for logical
decisions. The use of variables widens the options
an instructor has for creating non-linearity in his
scripts. Whereas without using variables, the
instructor can only base the logic in his script on
whether an action has been performed, with the use
of variables the instructor can also write scripts
that base their logic on how well an action was
performed. Finally, a variety of settings have been

Figure 1: Nodes at the gameplay scripting level are abstractions of scripts at the programming level

introduced, including the scenario relevant
properties of a game, e.g. the number of
pedestrians in a driving simulation.

3.3 Interfacing

The arrangement and properties of the building
blocks defined above can now be applied in a
simulation game. The actual process of scripting a
scenario can potentially happen in two different
contexts and stages; within a game development
environment, as is the case in gameplay scripting,
or outside of the game development environment,
by utilising a standalone scenario authoring
application. Our approach is based on offering a
standalone authoring application. That way, the
process of scripting a scenario is independent of
the specific game in which the scenario will be
used, so the instructor can learn how to write
scripts for one game and apply this knowledge to
other games as well.

Considering that scenario building blocks are
created from sections of gameplay scripts, we use
an event-based communication between the
scenario authoring application and the simulation
game. This system sends messages back and forth
when a building block, in the form of an action or
event, needs to be executed. The game itself is then
responsible for handling all the scripts at the
gameplay scripting and the programming level,

while the scenario authoring application is
responsible for handling the scripts at the scenario
scripting level, including the handling of scenario
logic. By sending messages between the editor and
the game, all communication occurs in real-time.
This allows the instructor to make adjustments to
the scenario, as long as these changes do not
corrupt the scenario.

In conclusion, our approach allows instructors
to exercise control over a scenario by interactively
editing a visual script at the abstracted level of
scenario scripting, using the language of scenario
building blocks. Furthermore, additional control is
given to instructors by allowing them to make real-
time adjustments to a scenario as it is running.

4 PROTOTYPE SCENARIO
EDITOR: SHAI

To evaluate the approach discussed in Section
3, a prototype scenario editing application was
developed. This Section briefly discusses the
design and implementation of that prototype,
called Shai.

The Library panel on the left presents the
variety of nodes that are available to the user.
These nodes can be dragged from the Library and
dropped onto the large Scenario panel on the right.

Figure 2: Nodes at the scenario scripting level are abstractions of scripts at the gameplay scripting level

Nodes in the Library are grouped by their type;
event nodes, action nodes, logic nodes, time-based

nodes and miscellaneous nodes. Event and action
nodes are specific to a certain game, while the
other nodes types can be applied in any game. The
node types are corresponding to the entities
discussed in Section 3.

The main panel of the editor is the Scenario
Panel. Here, nodes can be linked together to form a
scenario. Starting the playback of a scenario is
straightforward; by simply pressing the play
button, the application boots up the game and the
scenario begins at the (requisite) ‘start game’ node.
While a scenario is being played, the instructor is
free to move nodes around and add or remove new
nodes, as long as this does not invalidate the
scenario (such an invalidation could be detected by
the application, but is not available in the current
implementation).

Communication between Shai and the game is
performed using a separate application, called the
Communicator. Messages sent from Shai to the
game are first handled by the Communicator. The
Communicator can read these messages and decide
what to do with them. For instance, it can simply
forward the messages to any or all connected game
engines, or it can write to a debug log, perhaps by
forwarding them to a database, etc. The
Communicator can also forward messages from the
game engine to Shai. The Communicator can
handle multiple connections, both from Shai and

(any type of) game engines, using a TCP/IP
connection.

By separating the communicator and the
scenario authoring application, the author
application is shielded off from the game engine.
This makes the functionality of the authoring
application independent of the type of game engine
used, which improves the applicability of Shai.

5 APPLICATION EXAMPLE:
SUPERVISOR

This section demonstrates the power of our
approach, using Shai in combination with a
concrete simulation game called Supervisor. We
also discuss how that game needed to be set up
properly by the game developer, in order for it to
be compatible with Shai.

5.1 Supervisor

The Supervisor simulation game was
commissioned by Shell and developed at TU Delft.
It is designed to be used as a virtual alternative to
parts of real-life training sessions. In this game, the
player (or trainee) assumes, in first person
perspective, the role of a safety supervisor at an oil
drilling site. The trainee is expected to handle
hazardous situations, watch personnel and take
care of health, safety and environment regulations.

Figure 3: Interface of the prototype scenario authoring system Shai

The instructor, or sometimes called the facilitator,
is responsible for deploying the game to teach

trainees how to become a competent safety
supervisor.

Supervisor represents a prime example of the
issues that can be found in simulation games. The
instructors at Shell had limited influence on the
development of the game; they provided information
on what type of scenarios should be developed, but
once the game was finished, its use was limited to
whatever scenarios the game developers had
implemented. The instructor, who then used the
game to perform training sessions, had only the
choice of a handful of different scenarios. Therefore,
the use of the game was very limited.

Therefore, we made Shai use Supervisor as a test
case, as Shai can be used to improve the use of such
as game by allowing the instructor to make changes
to the game’s scenario, thus expanding the range of
possible training sessions.

5.2 Implementation

Before Shai can be used in combination with
Supervisor, the game needs to be able to properly
communicate with Shai. In the case of Supervisor,
which was developed using the Unreal 3 Engine, this
required two steps. First, a programmer needed to
write code for Kismet nodes, so they could be used
in the second step by the gameplay scripter.

The second step is taken when the programmer
has finished writing the code for the Kismet nodes;
the nodes can then be placed in Kismet. This is done
by the gameplay scripter. He will decide at which
points in the game’s logic messages will be sent
back and forth between Shai and the game.

Thus, the slight overhead required to make
Supervisor communicate with Shai is relatively
little. On the programming side, there are only a
handful of classes that need to be written, and their
content is trivial. On the Kismet side, however,
placing the extra nodes can be a bit tiresome.
However, when this is performed while the level is
being created (as opposed to afterwards, as was the
case in developing this prototype), the extra work is
bearable. Moreover, it helps the designer in keeping
the Kismet sequences organized, and guides him
into using modular design, which is always
beneficial.

6 EVALUATION AND RESULTS

As discussed before, an application as Shai is
aimed at non-programmers, such as instructors. The
prototype, therefore, needs to be evaluated by its

Figure 4: A screenshot of Supervisor, as seen through the viewport of the player

users. For this purpose, an evaluation plan was
developed and executed featuring a tutorial for users
to follow and a questionnaire to fill in.

The evaluation was performed using a
combination of several evaluation methods. Mainly,
the user was asked to fulfil a tutorial, in which he
was asked to perform several tasks using the
prototype. Secondly, the user was interviewed, using
both a questionnaire, and a discussion, to find out
about his experience with the prototype.

The prototype was tested by several field experts,
including experts from Shell, who are familiar with
the Supervisor game, and serious game industry
experts, who are familiar with scenario editing
challenges. The goal of this session was to evaluate
feature completeness, adequacy of scenario
representation and usability. For more details on the
evaluation process, see (Van Est, 2010).

The general consensus amongst the testers was
that this scenario editor presents significant
advantages in helping instructors develop scenarios.
However, the domain experts who already had some
experience in scenario development noted that this
application could best be used in the preparation
phase of using scenarios, because the real-time
adjustment options seemed to be too complex in the
current form. When large, complex scenarios are
involved, it can be very difficult for the user to fully
comprehend the long-term effects of changes he is
making in the scenario, especially under the
pressures of a running game session.

While the current features offered in the
prototype, such as the use of a visual node-based
causality chain, were well received by the domain
experts, they still had some suggestions on possible
improvements, which can be considered as valuable
recommendations. These included suggestions for
conversation nodes, nodes that can retrieve
information from the game, sub-graphing options
and 3D editing with object placing. Finally, Shai’s
usability was rated poorly, which implies that
significant improvements should be made in this
area, if the prototype is considered for practical use.

7 CONCLUSIONS

This project had as its main goal to let the
instructor exercise control over the scenarios of
serious games by writing a script at the abstracted
level of scenario scripting, using the language of
scenario building blocks. More control is given to
the instructor by allowing him to make real-time
adjustments to the scenario as well. A prototype has

shown that this approach is applicable and
promising.

Now, we hope to see this project functioning as a
starting point for future research on developing
approaches that help instructors and other didactic or
creative experts gain expressive power in the
exciting and developing field of games. The current
implementation of Shai offers the basics of such an
approach, and with the right improvements, it could
very well be used to give instructors more control
over scenarios in simulation games.

REFERENCES

Holm, R., E. Stauder, et al. (2002). "A Combined
Immersive and Desktop Authoring Tool for Virtual
Environments." IEEE Virtual Reality Conference 2002
(VR 2002).

Iurgel, I. (2004). "From Another Point of View: Art-E-
Fact." Proceedings of the Second International
Conference, TIDSE 2004.

Mateas, M. and A. Stern (2000). "Towards Integrating
Plot and Character for Interactive Drama." Socially
Intelligent Agents: The Human in the Loop. Papers
from the 2000 AAAI Fall Symposium.

Mateas, M. and A. Stern (2003). "Façade: An Experiment
in Building a Fully-Realized Interactive Drama."
Game Developers Conference (GDC ’03).

Medler, B. and B. Magerko (2006). "Scribe: A Tool for
Authoring Event Driven Interactive Drama."
Proceedings of the Third International Conference,
TIDSE 2006.

Moreno-Ger, P., C. Blesius, et al. (2007). "Rapid
Development of Game-like Interactive Simulations for
Learning Clinical Procedures." Proceedings of the
Fifth International Game Design and Technology
Workshop and Conference (GDTW2007).

Moreno-Ger, P., I. Martinez-Ortiz, et al. (2005). "The <E-
Game> Project: Facilitating the Development of
Educational Adventure Games." Proceedings of the
5th International Conference on Entertainment
Computing (ICEC 2005).

Smith, R. (2007). "The Five Forces That Are Driving the
Adoption of Game Technologies within Multiple
Established Industries." Games and Society Yearbook.

Spierling, U., S. A. Weiss, et al. (2006). "Towards
Accessible Authoring Tools for Interactive
Storytelling." Proceedings of the Third International
Conference, TIDSE 2006.

Susi, T., M. Johannesson, et al. (2007). "Serious Games -
An Overview."

UnrealEd (2011). Epic Games, http://udk.com/ (last
accessed 06/01/2011)

Van Est, C. (2010) "Shai: Scenario Editing for Simulation
Games", MSc Thesis.

Weiss, S., W. Muller, et al. (2005). "Scenejo – An
Interactive Storytelling Platform." Proceedings of the
Third International Conference, ICVS 2005.

