
1 Copyright © 2001 by ASME

Proceedings of DETC’01
2001 ASME Design Engineering Technical Conferences

September 9-12, 2001, Pittsburgh, Pennsylvania

DETC2001/CIE-21286

COLLABORATIVE MODELING WITH FEATURES

Rafael Bidarra, Eelco van den Berg and Willem F. Bronsvoort

Faculty of Information Technology and Systems
Delft University of Technology

Mekelweg 4, NL-2628 CD Delft, The Netherlands
Email: (R.Bidarra/E.vdBerg/W.F.Bronsvoort)@its.tudelft.nl

ABSTRACT
Collaborative systems are distributed multiple-user systems that are
both concurrent and synchronized. An interesting research challenge is
to develop a collaborative modeling system that offers all facilities of
advanced modeling systems to its users, while at the same time pro-
viding them with the necessary coordination mechanisms that guaran-
tee an effective collaboration.
To achieve this, a web-based collaborative feature modeling system,
webSPIFF, has been developed. It has a client-server architecture, with
an advanced feature modeling system as a basis for the server, provid-
ing feature validation, multiple views and sophisticated visualization
facilities.
A good distribution of the functionality between the server and the
clients has resulted in a well-balanced system. On the one hand, the
server offers all the functionality of the original feature modeling sys-
tem. On the other hand, all desirable interactive modeling functionality
is offered by the clients, ranging from display of sophisticated feature
model images to interactive model specification facilities.
The architecture of webSPIFF, the distribution of model data, the func-
tionality of the server and the clients, and the communication mecha-
nisms are described. It is shown that a good compromise between
interactivity and network load has been achieved, and that indeed ad-
vanced modeling with a collaborative system is feasible.

1. INTRODUCTION
In the last decade, research efforts in the areas of solid and fea-
ture modeling substantially contributed to the improvement of
computer-aided design (CAD) systems. A broad range of ad-
vanced modeling facilities is now becoming available in high-
end commercial systems, amplified by continuous enhance-
ments in interactive and visualization capabilities, and profiting
from the availability of faster and more powerful hardware.
Still, these improvements have their counterpart in the increas-
ing size and complexity of such systems. At the same time, a
number of research prototypes are pushing the edge to even

more advanced modeling facilities. For example, embodiment
of richer semantics in feature models and validity maintenance
of such models (Bidarra and Bronsvoort 2000), and physically-
based modeling techniques (Kagan et al. 1999) are among the
current research issues.

A common characteristic of most current CAD systems is
that they run on powerful workstations or personal computers.
Interaction with the system is usually only possible if the user is
directly working at the CAD station, although remote interac-
tion is sometimes possible through a high-bandwidth local area
network. This situation is no longer satisfactory, as nowadays
more and more engineers, often at different locations, are get-
ting involved in the development of products. It would be pref-
erable if a user could remotely browse and manipulate a model,
via Internet, as if he were working directly at a powerful CAD
station. A web-based system would be ideal for this, as it would
facilitate access to all sorts of product information in a uniform,
simple and familiar framework.

Even more attractive would be the support of collaborative
modeling sessions, in which several geographically distributed
members of a development team could work together on the
design of a product. Typically, in such collaborative sessions,
different participants would be provided with their own, appli-
cation-specific views on the product model according to the
analyses or activities required, e.g. detailed design, manufac-
turing planning or assembly planning (de Kraker et al. 1997;
Hoffmann and Joan-Arinyo 1998). In addition, each session
participant, as in normal development teams, should be given
his own competence and specific session privileges by the sys-
tem.

So far, only a small number of tools have been developed
that somehow support collaborative design activities. For ex-
ample, tools for collaborative model annotation and visualiza-
tion via Internet are now becoming available, providing con-

2 Copyright © 2001 by ASME

cepts such as shared cameras and telepointers (Autodesk 2000;
Parametric 2000; Kaon 2001). However, such tools are primar-
ily focused on inspection, e.g. using simple polygon mesh mod-
els, and do not support real modeling activities. In other words,
they are valuable assistants for teamwork, but no real CAD
systems. Some more recent research is focusing on the possibil-
ity of enhancing existing CAD systems with collaborative fa-
cilities; see Section 2. To the best of our knowledge, the only
commercial system currently offering some collaborative mod-
eling facilities is OneSpace (CoCreate 2000). However, its
modeling capabilities are severely constrained by the modeler at
the server, SolidDesigner, and by the model format into which it
converts all shared models.

The idea of collaborative modeling combines very well
with the increasingly popular concept of Application Service
Providers (ASP), in which clients remotely access, via Internet,
specialized applications running on a server, being billed exclu-
sively for the service time they spend logged on at the ASP
server. Such an approach has been identified as a very promis-
ing and affordable alternative for distributed CAD teams
(Comerford 2000). The first rudimentary commercial CAD
ASP has recently been launched by CollabWare (2000).

In order to satisfy all requirements outlined above, it is an inter-
esting research challenge to develop a collaborative modeling
system that offers all facilities of advanced feature modeling
systems to its users, while at the same time providing them with
the necessary coordination mechanisms that guarantee an effec-
tive collaboration. Among these mechanisms, solutions have to
be provided to the critical problems of concurrency and syn-
chronization that characterize collaborative design environ-
ments. This paper presents a new web-based collaborative fea-
ture modeling system that is a major step in the right direction.
In Section 2, the main research issues of collaborative modeling
are surveyed. In Section 3, the architecture of the proposed
system is discussed. The structure and functionality of the
server and of the clients are described in Sections 4 and 5, re-
spectively. Finally, results and conclusions are presented in
Section 6.

2. SURVEY OF COLLABORATIVE MODELING
Collaborative systems can be defined as distributed multiple-
user systems that are both concurrent and synchronized.
Concurrency involves management of different processes trying
to simultaneously access and manipulate the same data. Syn-
chronization involves propagating evolving data among users of
a distributed application, in order to keep their data consistent.

These concepts being in general already rather demanding,
their difficulty becomes particularly apparent within a collabo-
rative modeling framework, where the amount of model data
that has to be synchronized is typically very large, and the con-
current modeling actions taking place may be very complex.
This section briefly surveys collaborative modeling, highlight-
ing the key aspects put forward by recent research, and summa-

rizing the lessons learned from a few prototype systems pro-
posed so far.

2.1. Client-server architecture
The requirements for concurrency and synchronization in a
collaborative modeling context lead almost inevitably to the
adoption of a client-server architecture, in which the server
provides the participants in a collaborative modeling session
with the indispensable communication, coordination and data
consistency tools, in addition to the necessary basic modeling
facilities. For a recent survey on client-server architectures, see
Lewandowski (1998).

A recurrent problem in client-server systems lies in the con-
flict between limiting the complexity of the client application
and minimizing the network load. In a collaborative modeling
context, client complexity is mainly determined by the model-
ing and interactive facilities implemented at the client, whereas
network load is mainly a function of the kind and size of the
model data being transferred to/from the clients.

A whole range of compromise solutions can be devised
between the two extremes, so-called thin clients and fat clients.
A pure thin-client architecture typically keeps all modeling
functionality at the server, which sends an image of its user in-
terface to be displayed at the client. Clicking on the image gen-
erates an event, containing the screen coordinates of the inter-
face location the user clicked on. This event is sent to the
server, which associates it with an action on a particular widget.
Eventually, this action is processed, and an updated image of
the resulting user interface is sent back to the client, where it is
displayed. This approach requires a continuous information
stream between server and clients, and is therefore very expen-
sive in terms of network traffic. The response time would be
intolerably high for many model specification actions, thus
making it very ineffective to remotely participate in a modeling
session.

On the other extreme, a pure fat client offers full local
modeling and interaction facilities, maintaining its own local
model. Communication with the server is then often required in
order to synchronize locally modified model data with the other
clients. In a collaborative environment where clients can con-
currently modify local model data, preventing data inconsisten-
cies between different clients becomes a crucial problem. In
addition, fat clients, to be effective, place on the platform run-
ning them the heavy computing power requirements of typical
CAD stations.

2.2. Current research prototype systems
Several collaborative modeling prototype systems have recently
been described in literature. Some of these systems will be
shortly surveyed here, and their shortcomings identified.

CollIDE (Nam and Wright 1998) is a plug-in for the Alias
modeling system, enhancing it with some collaborative func-
tionality. Users of CollIDE have private workspaces, where
model data can be adjusted independently from other users. In
addition, a shared workspace exists containing a global model,

3 Copyright © 2001 by ASME

which is synchronized between all users participating in a col-
laborative modeling session. Users can simply copy model data
between the private and shared workspaces, in order to create
and adjust certain model data locally, and add it to the model in
the shared workspace. The architecture of CollIDE poses severe
restrictions to crucial collaborative modeling issues. In particu-
lar, no special measures have been taken to reduce the amount
of data sent between the participants of a collaborative model-
ing session, resulting in delayed synchronization of the shared
workspace and of the users' displays. Also, since each user op-
erates on a separate instance of the modeling system, able to
perform modeling operations by itself, concurrency has to be
handled by the users themselves in order to keep shared model
data consistent.

The ARCADE system (Stork and Jasnoch 1997) defines a
refine-while-discussing method, where geographically distrib-
uted users can work together on a design, interacting with each
other in real-time. Every participant uses a separate instance of
the ARCADE modeling system, and all ARCADE instances are
connected to a session manager via Internet. A message-based
approach was chosen, where every change of the product model
is converted into a short textual message, which is sent to all
other instances of ARCADE through the session manager. AR-
CADE provides a collaborative environment in which the net-
work load is kept low. This was done by including all modeling
functionality in the distributed ARCADE instances, which ex-
change only textual messages, rather than large sets of poly-
gons. A drawback of this approach, however, is that the user
application becomes rather complex, thereby requiring much
computational power. In addition, ARCADE provides a primi-
tive concurrency control mechanism, where only one user can
edit a particular part at a time.

CSM, the Collaborative Solid Modeling system proposed
by Chan et al. (1999) is a web-based collaborative modeling
system. Within its client-server architecture, the server contains
a global model, while every client owns a local copy of this
model. When a user has locally modified the model, it is propa-
gated to all other users through the server. Concurrency is man-
aged in two ways: (i) the model can be locked, using token
passing, restricting it from being accessed by other users as long
as some user is performing a modeling operation; and (ii) func-
tionality can be locked, preventing certain functions from being
used by particular users. Clearly, such methods provide a very
strict concurrency handling policy. In fact, they turn the clients
into several independent modeling systems, just using the same
product model alternately. In a truly collaborative modeling
system, one expects a higher level of coordination support.

NetFEATURE (Lee et al. 1999) claims to be a collabora-
tive, web-based, feature modeling system. A server provides
basic functions on a central product model, including creation
and deletion of features. On the clients, a local model is avail-
able, containing a boundary representation of the product, de-
rived from the server-side central model. The local model is
used for real-time display, navigation and interaction. For more
advanced operations, the server must be accessed. Updating the

local model is done incrementally, which required a rather
heavy naming scheme. This scheme severely reduces the mod-
eling functionality of the system, degrading it to a history-based
geometric modeling system, instead of a genuine feature mod-
eling system. Furthermore, NetFEATURE uses, just like CSM,
very strict concurrency handling methods, thus seriously limit-
ing genuine collaborative modeling.

2.3. Conclusions
Collaborative modeling systems can support engineering teams
in coordinating their modeling activities. Instead of an iterative
process, sending product data back and forth among several
team members, designing becomes an interactive process, in
which several engineers are simultaneously involved to agree
on design issues. Collaborative modeling systems typically have
a client-server architecture, differing in the distribution of func-
tionality and data between clients and server.

Concurrency control is still a crucial issue in current col-
laborative environments. If a user is allowed to change a model
entity, while another user is already changing the same entity,
problems can easily arise concerning consistency. To avoid this
situation, a strict concurrency control mechanism can limit ac-
cess for other users. It depends on the application, whether all
entities of the design should be locked or just some of them. If
possible, users should be allowed to simultaneously modify
different parts of the design, but this could lead to much more
complicated concurrency control mechanisms. Also, one should
always bear in mind that designing is a constructive activity.
Users can therefore be given some responsibility for establish-
ing a good collaboration.

Current systems also often fall short in adequately handling
synchronization of model data among distributed clients.
Timely updating data over a network is difficult, since there is a
certain delay between the moment data is sent and the moment
it is received at another node of the network; during this time
interval, the latter might try to manipulate data that is not up-to-
date. Mechanisms to detect such conflicts should be available,
and recovery mechanisms provided. Good locking can also help
to avoid such situations, but sometimes it may hinder users'
flexibility.

For a collaborative CAD system to be successful, it should
provide a good level of interactivity. Users will not be able to
design properly if they have to wait a considerable time after
every operation. But increasing interactivity by just porting
more and more data and functionality to the clients is not a
good solution either, as synchronization problems would turn
critical again. Furthermore, fat clients are typically platform-
dependent applications that require complex installation proce-
dures, and are therefore unsuitable in a web-based context.

In conclusion, a good compromise solution to the difficulties
summarized above can be a web-based client-server approach,
where the server coordinates the collaborative session, main-
tains the shared model, and provides all functionality that can-
not, or should not, be implemented on the client. The clients

4 Copyright © 2001 by ASME

perform operations locally as much as possible, and only high-
level semantic messages, as well as a limited amount of infor-
mation necessary for updating the client data, will be sent over
the network. This keeps the network load relatively low, while
guaranteeing good client interactivity at acceptable response
times. An important advantage of such an architecture is that
there is only one product model in the system. Clients send their
modeling operations to the server, and receive feedback after
any modeling operation has been performed on its central fea-
ture model, thus avoiding inconsistency between multiple ver-
sions of the same model.

3. webSPIFF: A BALANCED SOLUTION
In this section, we discuss the architecture of a system imple-
mented according to the above-mentioned compromise solu-
tion: the collaborative feature modeling prototype system web-
SPIFF.

3.1. Overview of webSPIFF architecture
webSPIFF, the new web-based, collaborative feature modeling
system introduced here, has a client-server architecture. As a
basis for the server, the SPIFF system developed at Delft Univer-
sity of Technology was chosen, which offers several advanced
modeling facilities. First, it offers multiple views on a product
model, each view consisting of a feature model with features
specific for the application corresponding to the view. The cur-
rent version of webSPIFF provides two such views: one for de-
sign and another for manufacturing planning of parts. In the
design view, the feature model consists of both additive (e.g.
protrusions) and subtractive (e.g. slots and holes) features. In
the manufacturing planning view, the feature model consists of
only subtractive features. All views on a product model are kept
consistent by feature conversion (de Kraker et al. 1997). Sec-
ond, it offers feature validity maintenance functionality. This
can guarantee that only valid feature models, i.e. models that
satisfy all specified requirements, are created by a user (Bidarra
and Bronsvoort 1999). Third, it offers sophisticated feature
model visualization techniques, which visualize much more
specific feature information than most other systems do. For
example, feature faces that are not on the boundary of the re-
sulting object, such as closure faces of a through slot, can be
visualized too (Bronsvoort et al. 2001). All these facilities are
computationally expensive, and require an advanced product
model, including a cellular model with information on all fea-
tures in all views (Bidarra et al. 1998), which uses functionality
provided by the ACIS Modeling Kernel (Spatial 2000).

In webSPIFF, some of the functionality of the original SPIFF
modeling system, in particular for interaction with feature mod-
els, is moved to the clients. However, as soon as real feature
modeling computations are required, such as modeling opera-
tions, conversion between feature views, feature validity main-
tenance and feature model visualization, they are executed at
the webSPIFF server, on a central product model, and their re-
sults are eventually exported back to the clients.

webSPIFF consists of several components, as depicted in the
global architecture diagram of Figure 1. On the server side, two
main components can be identified: the SPIFF modeling system,
providing all feature modeling functionality; and the Session
Manager, providing functionality to start, join, leave and close a
modeling session, and to manage all communication between
SPIFF and the clients. The webSPIFF portal component provides
the initial access to a webSPIFF session for new clients, and in-
cludes a web server where model data is made available for
download by the clients.

The Session Manager stores information about an ongoing
session and its participants. It manages all information streams
between webSPIFF clients and the SPIFF process corresponding
to the session. Since several session participants can send mod-
eling operations and queries to the webSPIFF server at the same
time, concurrency must be handled at the Session Manager.
Practically, this means that parallel information streams have to
be serialized. The Session Manager has been implemented us-
ing the Java programming language (Sun Microsystems 2000).

The clients of webSPIFF make use of standard web brows-
ers. When a new client connects to the webSPIFF portal, a Java
applet is loaded, implementing a simple user interface, from
which a direct connection with the Session Manager is set up.
Different clients can connect from various locations, local
through a network or remote via Internet, in order to start or
join a modeling session. Using standard web browsers at the
clients increases accessibility and platform independence, but
limits the complexity of the operations that can be implemented
on them. Nevertheless, the main goal of the work described
here was to make available to the clients, in an interactive way,
as much functionality as possible of the original SPIFF system.

Once connected to the server, the user can join an ongoing
collaborative session, or start a new one, by specifying the
product model he wants to work on. Also, the desired view on
the model, e.g. design or manufacturing planning, has to be
specified. Information on the feature model of that view is re-
trieved from the server, and used to build the client's graphical
user interface (GUI), through which the user can start active
participation in the modeling session; see Figure 2.

Figure 1 – Architecture of webSPIFF

5 Copyright © 2001 by ASME

The bottom line is obviously that clients should be able to
specify modeling operations in terms of features and their enti-
ties; for example, a feature, to be added to a model, should be
attachable to entities of features already in the model (e.g. faces
and datums), rather than in terms of faces of the evaluated
boundary representation of the product. Among other advan-
tages, this approach avoids the well-known problem of persis-
tent naming of model entities (Bidarra and Bronsvoort 2000).
After a feature modeling operation, with all its operands, has
been fully specified, the user can confirm the operation. The
operation is then sent to the server, where it is checked for va-
lidity and scheduled for execution. Notice that this can result in
an update of the product model on the server, and thus also of
the feature model in the view of each session participant.

In addition to the above functionality, several visualization
and interactive facilities of the server have also been ported to
the clients. webSPIFF clients provide two ways of visualizing the
product model, both making use of so-called camera windows.
A camera window is a separate window in which a graphical
representation of the product model is shown. Each client may
create as many cameras as desired. First, a sophisticated feature
model image can be displayed. Second, a model can be ren-
dered that supports interactive modification of camera viewing
parameters, e.g. rotation and zoom operations. After the desired
viewing parameters have been interactively set, they are sent to
the server, where a sophisticated feature model image corre-
sponding to the new parameter values is rendered and sent back
to the client, where it is displayed. Finally, webSPIFF cameras
also provide facilities for interactive specification of modeling
operations, e.g. assisting the user in selecting features or feature
entities by having them picked on a sophisticated image of the
model. The visualization and interactive functionality of web-

SPIFF cameras is described in detail by van den Berg et al.
(2000).

To support all these facilities, the webSPIFF clients need to
locally dispose of some model data, as described in the next
subsection.

3.2. Model data distribution
As explained above, only one central product model is main-
tained at the server. This feature model includes all canonical
shapes, representing individual features in a specific view, and
the cellular model. Some model data, however, is also required
at the clients. This information is derived by the server from the
central model, but it does not make up a real feature model.
webSPIFF clients need just enough model information in order
to be able to autonomously interact with the feature model,
without continuously requesting feedback from the server.

Model data at the clients can be classified into the follow-
ing three categories:

Textual data
This data is used for specific sets of model information,

mostly in list form. The most important are:
• List of feature classes: contains the names of all feature

classes available in a given view. It is used to fill a GUI list
widget when adding a new feature instance, and is requested
from the server at client initialization time. This list does not
need to be refreshed during a modeling session.

• List of feature instances: contains the names of all fea-
ture instances in a given view of the model. It is used to fill a
GUI list widget when editing or removing an existing feature
instance. This list is set upon initialization of the client, and is
refreshed after each modeling operation.

• List of parameter values: contains the values of all pa-
rameters of a given feature instance, in a pre-defined order. It is
used to fill various GUI entry widgets when editing the selected
feature instance, and is always queried before a feature editing
operation.

Graphical data
This comprises the sophisticated feature model images,

rendered at the SPIFF server in GIF format, and displayed in
camera windows at the clients. These images provide very pow-
erful visualizations of a feature model. Many visualization op-
tions can be specified. For example, selected features may be
visualized with shaded faces, and the rest of the model as a wire
frame or with visible lines only. Also, additional feature infor-
mation, such as closure faces of holes, can be visualized. A
separate image is needed for each camera, and it must be up-
dated every time the model or the camera settings are changed.
The images are stored in the web server to be downloaded by
the respective clients.

Figure 2 – User interface of a webSPIFF client: the user, working
on a design view, is modifying some parameters of the corner

pocket at the left side of the model

6 Copyright © 2001 by ASME

Geometric data
This comprises two kinds of models: the visualization

model and the selection model.
• visualization model: represents the global shape of the

product model. The visualization model is generated by SPIFF in
VRML format (Ames et al. 1997). It is used at the clients for
interactively changing the camera viewing parameters. This
model is needed because rendering of a smooth sequence of
sophisticated feature model images at the server and transmit-
ting it to the clients is unfeasible in real time. All cameras on a
particular client use the same local visualization model, but
each camera displays it with its own viewing parameters.

• selection model: is a collection of three-dimensional
objects representing the canonical shapes of all features in a
given view of the model. Its purpose is to support the interac-
tive selection of feature faces on the sophisticated feature model
image, during the specification of a modeling operation. Again,
the selection model is identical for all cameras on a client, each
applying its own viewing parameters. The selection model is
also generated by SPIFF in VRML format.

Model data on the clients is never modified directly by the cli-
ents themselves. Instead, after a modeling operation has been
sent to the server and executed, updated model data is sent back
to the client. In addition, if the central feature model has been
changed, appropriate updated model data is sent to all other
session participants as well. This consists of, possibly several,
new sophisticated model images, a new visualization model,
and an incremental update of the selection model (containing
only new and/or modified feature canonical shapes).

Similarly, when a client modifies any camera settings, the
corresponding camera operation is sent to the webSPIFF server,
which generates a new sophisticated feature model image. Since
the feature model remains unaffected by camera operations, the
server only needs to send the new sophisticated feature model
image back to the client that requested the camera update.

Temporary local inconsistencies can still occur at a client,
for example after the execution of a modeling operation. Since
sending information from the server to all clients takes some
time, for a short period model information on the clients is not
up-to-date. Avoiding conflicts arising from this transitory mis-
match will be dealt with in Subsection 5.2.

3.3. Data communication
As it becomes clear throughout this section, the various compo-
nents of webSPIFF have to exchange information at several
stages during a modeling session. Communication among them
plays therefore an important role in webSPIFF.

webSPIFF clients can specify modeling operations, camera
operations, and a variety of queries, and send them to the Ses-

sion Manager. Communication between the Session Manager
and the clients is handled by socket connections. A socket is
one end-point of a two-way communication link; there is thus a
socket on the client and a socket on the server, with a socket
connection set up between them. The Java programming lan-
guage, used for implementing both the Session Manager and the
clients, supports the exchange of complex objects over a socket
connection. Messages sent from clients to the Session Manager
are simple textual messages, whereas messages sent in the re-
verse direction are more complex objects, such as arrays of
data.

Socket connections also provide a good solution for setting
up the communication channel between the Session Manager
and the SPIFF modeling system. Textual messages are used to
pass commands from the Session Manager to the SPIFF model-
ing system. The system replies using also textual messages, but
several data structures, such as model images and the visualiza-
tion and selection models, are stored by SPIFF into files at the
web server. The Session Manager then notifies the client(s) to
download them using the hypertext transfer protocol (HTTP).

4. THE SERVER
As outlined in the previous section, the two main components
of the webSPIFF server are the Session Manager and the SPIFF
modeling system. The functionality of SPIFF has been summa-
rized in Subsection 3.1; see (Bidarra and Bronsvoort 2000) for
a comprehensive overview and additional references. Therefore,
this section is focused on the Session Manager, in particular its
concurrency management mechanisms.

4.1. The Session Manager
Two important types of processes run on the Session Manager;
see Figure 3. First, it maintains a Client Manager for each cli-
ent, managing the socket connection used for communication
with it. The Client Manager receives messages from its client,
interprets them, and either processes a message itself, if possi-
ble, or propagates it to the SPIFF modeling system. Besides Cli-
ent Managers, the Session Manager contains one Event Man-
ager for every session, initiated by the Client Manager that
opened the session. The Event Manager has an event queue that
collects all tasks that have to be passed on to the SPIFF modeling
system.

The Client Manager and the Event Manager processes run
independently from each other, as so-called separate Threads in
Java. The main function of a Client Manager is to handle all
communication coming from the corresponding client by inter-
preting messages and taking an appropriate action. A separate
Thread is needed for every Client Manager, because within a
Thread it is only possible to listen to a single socket at a time.

7 Copyright © 2001 by ASME

Several types of tasks can be distinguished at the Client
Managers. First, session operations have to be handled. These
involve starting a session, logging into and out of a session, and
also querying for session information. Second, modeling opera-
tions can be received that have to be forwarded to the SPIFF
modeling system, which, after executing them, returns their
result to the Session Manager. Sending these results to all cli-
ents is handled by the Event Manager, which retrieves a list of
clients from the Session Info record, and starts updating them
accordingly. Third, camera operations have also to be for-
warded to the SPIFF modeling system. Fourth, queries about the
feature model have to be answered. In order to reduce response
times, the Session Manager keeps a record of up-to-date model
information. In this way, most queries can be directly answered,
without involving the SPIFF modeling system. The results of the
last two types of tasks must be sent only to the client that issued
the request.

When a user starts a new session, a Session Info record is
created by the Session Manager, storing all relevant information
about the session, for example the name of the session, and a
reference to the Event Manager associated with this session.

In the Client Profiles, information about individual clients
is stored, for example about the connection between the client
and the Session Manager, the modeling view of the user, and a
list containing the names of the Cameras the client has opened
(Camera Info).

It is the task of the Session Manager to synchronize session
participants, by sending them the updated data structures, after
a modeling or camera operation has been processed. However,
several types of feedback are possible here, depending on the
type of operation and whether the operation was successful.

In case of a successful modeling operation, all clients will
need updated model data. Messages are then created, notifying
them of the appropriate files available for download at the web
server (new sophisticated model images, visualization and se-
lection models). Also, additional information on the feature
model is included in the messages, such as an updated list of
feature instances. Separate messages have to be created per
client, since each client typically has different cameras, and

therefore requires different feature model images. Of course,
the feature model information will also be different for users of
different modeling views. Each message is sent to the respective
client, using the connection information stored in its Client Pro-
file. Upon receiving its update message, a client can extract
and/or download the data in order to update its data structures.

If a modeling operation fails, and the feature model at the
server enters an invalid state, the Session Manager takes the
role of coordinating the validity recovery efforts. Although sev-
eral strategies can be devised for such situations, two principles
are generally applicable:

• If the validity violation takes place on the modeling view
of the client who issued the operation, documentation on the
situation, including possible recovery hints generated by SPIFF,
is sent to that client, in order to allow him to correct the prob-
lem (Bidarra and Bronsvoort 1999). In case there are more ses-
sion participants working on that view, they are notified as well
of the event, although not necessarily allowed to fix the prob-
lem.

• If the validity violation takes place on another view than
that of the client who issued the operation, it seems appropriate
to notify the latter of the event, although documentation and
recovery hints are better sent to the client(s) working on the
invalid view, who can then take over the task of correcting the
problem.
In any case, it seems inevitable to freeze modeling facilities for
clients who are not involved at all in the validity violation.

4.2. Concurrency handling
In a distributed multiple-user environment, concurrency must be
handled at several stages. If this is not done properly, serious
problems can arise, such as inconsistency of data structures, or
processes indefinitely waiting for each other, i.e. deadlock.
However, not only distributed applications can suffer from
concurrency problems. Any application that uses multi-
threading must make sure that concurrency involving its re-
sources is managed in a proper way.

Figure 3 – Structure of the Session Manager

8 Copyright © 2001 by ASME

Event management
The most delicate case of concurrency occurs with event

management at the Session Manager. Communication streams
from all clients come together, requesting information to be sent
back and modeling operations to be carried out. The Session
Manager serializes data that arrives in parallel streams.

As seen in the previous subsection, each client is repre-
sented on the Session Manager by an instance of the Client
Manager. When two events arrive at the Session Manager at the
same moment, only one Client Manager should be able to add
an event to the event queue at a time, so the system must deter-
mine which Client Manager will be allowed to add the event
first. Fortunately, the Java programming language provides use-
ful locking mechanisms for this purpose, the most important
being the synchronized mechanism. When a class is accessed by
a synchronized method, all its methods and data structures are
locked, preventing them from being accessed by another proc-
ess at the same time.

Downloading data using HTTP
Another possible concurrency problem arises when the so-

phisticated feature model images and VRML files have to be
propagated from the web server to the clients. Using HTTP, it is
very easy to transfer these files parallel to the existing socket
connection between a client and the Session Manager. A prob-
lem arises if, for some client, this transfer takes so long that
meanwhile the next modeling operation is executed, and the
model files stored at the web server are updated before that
client completely downloaded their previous version. To over-
come this problem, the model data files are buffered at the web
server, so that their old version can coexist with the new one:
the former for downloading, the latter for writing.

Conflicting modeling operations
webSPIFF encourages users to coordinate their actions, for

example using the phone or a chat channel, in order to avoid
conflicting operations. To assist in this goal, a traffic light icon
is displayed on the user interface of every client, informing
about the busy state of other clients and of the webSPIFF server.
This icon switches from green to yellow when another client
starts specifying a modeling operation, and to red when the
server starts executing any operation. It has been decided not to
implement strict token passing policies, since modeling is con-
sidered to be a constructive activity. Additional communication
between users will always remain necessary, because it does not
make much sense to have several users performing modeling
operations simultaneously, without any coordination.

Still, it could happen that two clients decide to simultane-
ously submit a modeling operation. Consider the following
situation: the modeling operation that is handled first by the
Session Manager will remove a certain feature, while the sec-
ond modeling operation will try to edit this same feature. In a
single user modeling system, for example SPIFF, this situation
could not occur, since operations are always performed serially:

after a feature has been removed, it is not possible to subse-
quently edit it, since it cannot be selected anymore in the user
interface. In webSPIFF, however, where operations are per-
formed concurrently, operations can potentially be defined on
features that no longer exist. Extra operation validation checks
have therefore been added to SPIFF, to ensure that such opera-
tions are rejected. A user trying to execute such an operation is
notified that his operation is not meaningful anymore.

5. THE CLIENTS
The webSPIFF clients provide the remote user interface to the
users of webSPIFF. In order to offer them the same interactive
functionality as the SPIFF modeling system does, it is not
enough to just replicate the user interface of SPIFF at the clients.
As described in the previous sections, webSPIFF clients maintain
some data structures with feature model information, and use
them to provide various interactive facilities. The interactive
functionality of webSPIFF clients was briefly summarized in
Subsection 3.1. This section mainly elaborates some communi-
cation issues regarding client model data, in particular its syn-
chronization at the clients.

Several components can be identified within a webSPIFF
client, as shown in Figure 4. The user interface is the compo-
nent used for interactively specifying all operations, by means
of panels, menus, buttons and list boxes. Three major compo-
nents can be distinguished, namely the View Panel, the Session
Panel and the Cameras. The first two provide plain interfaces
with standard widgets, the latter functionality for graphical in-
teraction with the model.

5.1. The Communication Manager
The Communication Manager on the client manages all com-
munication with the Session Manager on the server. It contains
a separate process that continuously listens for incoming mes-
sages on the socket connected to the Session Manager. Also,
outgoing messages bound for the Session Manager are sent via
the Communication Manager. Two kinds of messages can be
identified here:

a) messages whose response is not awaited, before the cli-
ent can be operated again; these messages include all
modeling operations, such as adding, removing and ed-
iting a feature;

b) messages whose response is awaited, suspending all ac-
tivities on the client; these messages include queries and
camera update messages.

When a message of type b) is sent, all activity on the client is
suspended until a reply to it is received. While in this state,
however, it is still possible that other messages arrive at the
client earlier than the expected response. These messages are
stored in a queue, and processed after the expected response has
been received and processed. An exception is made here for

9 Copyright © 2001 by ASME

messages concerning the update of state information; see the
next subsection.

The reason that camera update messages fall into the sec-
ond category is that, after a camera operation has been specified
and sent to the Session Manager, the interactive functionality
cannot be used any more to continue operating webSPIFF.
Specifying camera operations is typically done interactively,
using the visualization model, whereas specifying modeling
operations is typically done using the sophisticated image, in
combination with the selection model; see Subsection 3.2.
However, after the visualization model has been transformed,
both the visualization model and the selection model are incon-
sistent with the sophisticated feature model image. Therefore,
parameters for modeling operations cannot be selected on the
sophisticated feature model image until an updated image ar-
rives. For this reason, the client is suspended until the new im-
age has been received.

Whereas messages sent by a client to the Session Manager
are merely textual strings, messages received at a client from
the Session Manager are more complex, typically containing
multiple objects. The first object in all messages is a command
string, which is parsed by the Communication Manager to find
out the message type, and how it should be handled. In addition,
messages can contain requested information on the feature
model, such as a list of feature instances, or the names of visu-
alization and selection model files at the web server.

5.2. Synchronization
Synchronization is the process of propagating evolving data
from one component of a distributed system to another, in order
to keep the information on the components consistent. Before
data structures can be updated, it must be made sure that the
involved clients are in the right state for processing the update.
Two types of information can be distinguished here: (i) updated
feature model information, resulting from a modeling or a cam-
era operation, and (ii) updated state information. The order in
which these updates are received at the clients is not known in

advance, and several scenarios must therefore be handled. Two
scenarios are described here.

Updating feature model information
In webSPIFF, the feature model can be modified at any time

by one of the users. After such a modification, new feature
model information will have to be sent to all clients. At the cli-
ent side, preparation of a new modeling operation could be un-
derway when the update arrives. It is not convenient to force the
user into canceling his operation, since it might well be that the
user coordinated his operation with the other users, for example
using a communication channel outside webSPIFF, in a way that
the update does not have any influence on the modeling opera-
tion being specified. For example, a user could be editing a
feature, while the update concerns another feature, not having
any influence on the edit feature operation that is going on.
Having cancelled the operation in this case, would have meant
that all the parameters that had been specified so far would have
to be specified again. Therefore, the user is allowed to continue
specifying the modeling operation, but he is notified of the
modeling operation that has been carried out at the server. He
can then choose to continue specifying his operation, or to can-
cel it himself.

Updating state information
Besides updating the feature model information at the cli-

ent, also state information, such as the traffic light icon, must be
kept up to date. The difference with the other data structures is,
however, that state information must always be processed as
soon as possible. Whereas other messages that arrive unexpect-
edly can be put into a queue at the Communication Manager,
awaiting their processing, the most recent state information
must become available to the client immediately, since its pur-
pose is to inform the user of the current state of the modeling
session. Therefore, for every incoming message, it is immedi-
ately checked whether it is a state update message.

Figure 4 – Architecture of a webSPIFF client

10 Copyright © 2001 by ASME

6. RESULTS AND CONCLUSIONS
Current trends in product development demand from CAD sys-
tems not only advanced modeling facilities, but also that these
be concurrently available to distributed multiple users, sup-
porting effective collaboration sessions among the members of
a development team. This paper addresses the new challenges
of such requirements. The problems of concurrency and syn-
chronization in a collaborative modeling context can best be
handled if a client-server architecture is adopted. Moreover, a
web-based approach gives the most advantages, although this
requires a careful balance between the conflicting requirements
of good client interactivity and low network load.

A new web-based collaborative modeling system, web-
SPIFF, is presented that provides a solution for many issues in-
volved in collaborative feature modeling systems, including
concurrency, synchronization and user interaction. The pro-
posed distribution of functionality between the server and the
clients has resulted in a well-balanced web-based system. On
the one hand, the full functionality of an advanced feature mod-
eling system is offered by the server. On the other hand, all de-
sirable interactive modeling functionality is offered by the cli-
ents, ranging from display of sophisticated images of feature
models to interactive selection facilities.

All functionality described in this paper has been implemented
in the webSPIFF prototype system. The webSPIFF server runs on
a HP B180L Visualize workstation, and its performance during
a modeling session is satisfactory. This is mainly due to the
well-balanced distribution of functionality and model data be-
tween server and clients. The Java-based client application is
quite simple. So far, webSPIFF clients running on Unix, Win-
dows and Linux platforms have successfully participated in
collaborative sessions. The only requirement at the client side is
that it needs to have a Java -enabled web browser, with the
Java3D API installed. The webSPIFF portal has a demo version
available on Internet for users to experiment with, at www.
webSPIFF.org.

Model data files at the web server are small, and therefore
download times acceptable. For example, each sophisticated
model image takes less than 10 Kbytes, and the selection model
less than 5 Kbytes per feature. The visualization model of a
moderately complex part is typically smaller than 100 Kbytes.
Moreover, the VRML models are downloaded in background,
further reducing waiting times at the client. Taking into account
the size of these files, it can be questioned whether compressing
them before transmission to the clients would further improve
system throughput, due to the overhead introduced by the com-
pression and decompression algorithms. It would probably be
more effective to use techniques for incremental or progressive
transmission of the VRML data; see, for example, Gueziec et
al. (1999).

Secure transmission and data protection are important is-
sues in any collaborative modeling environment. Although they

were not directly considered in the scope of this project, they
should receive careful attention in future research.

As Internet technology rapidly improves, faster and better col-
laboration becomes possible. It can therefore be expected that,
although the development of collaborative modeling systems is
still at its early stages, such systems will soon play an important
role in the product development process.

REFERENCES
Ames, A., Nadeau, D. and Moreland, J. (1997) The VRML 2.0

Sourcebook. Second Edition, John Wiley & Sons, New
York

Autodesk (2000) AutoCAD 2000 Online. Autodesk Inc., San
Rafael, CA, USA. http://www.autodesk.com

van den Berg, E., Bidarra, R. and Bronsvoort, W.F. (2000)
Web-based interaction on feature models. Proceedings of
the Seventh IFIP WG 5.2 International Workshop on
Geometric Modelling: Fundamentals and Applications,
University of Parma, Italy, pp. 113–123

Bidarra, R. and Bronsvoort, W.F. (1999) Validity maintenance
of semantic feature models. Proceedings of Solid Model-
ing '99 – Fifth Symposium on Solid Modeling and Appli-
cations, Bronsvoort, W.F. and Anderson, D.C (Eds.),
ACM Press, NY, pp. 85–96

Bidarra, R. and Bronsvoort, W.F. (2000) Semantic feature mod-
elling. Computer-Aided Design, 32(3): 201–225

Bidarra, R., de Kraker, K.J. and Bronsvoort, W.F. (1998) Rep-
resentation and management of feature information in a
cellular model. Computer-Aided Design, 30(4): 301–313

Bronsvoort, W.F., Bidarra, R. and Noort, A. (2001) Feature
model visualization. Submitted for publication

Chan, S., Wong, M. and Ng, V. (1999) Collaborative solid
modelling on the WWW. Proceedings of the 1999 ACM
Symposium on Applied Computing, San Antonio, CA, pp.
598–602

CoCreate (2000) Shared engineering. http://www.cocreate.com/
onespace/documentation/whitepapers/shared_eng.pdf

CollabWare (2000) An introduction to GS–Design Beta.
https://www.prodeveloper.net/ downloads/whitepaper.pdf

Comerford, R. (2000) Software, piecewise. IEEE Spectrum,
37(2): 60–61

Gueziec A., Taubin, G., Horn, B. and Lazarus, F. (1999) A
framework for streaming geometry in VRML. IEEE Com-
puter Graphics and Applications, 19(2): 68–78

Hoffmann, C.M. and Joan-Arinyo, R. (1998) CAD and the
product master model. Computer-Aided Design 30(11):
905–918

Kagan, P., Fischer, A. and Bar-Yoseph, P.Z. (1999) Integrated
mechanically-based CAE System. Proceedings of Solid
Modeling '99 – Fifth Symposium on Solid Modeling and

11 Copyright © 2001 by ASME

Applications, Bronsvoort, W.F. and Anderson, D.C (Eds.),
ACM Press, NY, pp. 23–30. Also in: Computer-Aided De-
sign, 32(8/9): 539–552

Kaon (2001) HyperSpace-3DForum. Kaon Interactive Inc.,
Cambridge, MA, USA. http://www.kaon.com

de Kraker, K.J., Dohmen, M. and Bronsvoort, W.F. (1997)
Maintaining multiple views in feature modeling. Proceed-
ings of Solid Modeling '97 – Fourth Symposium on Solid
Modeling and Applications, Hoffmann, C.M. and Brons-
voort, W.F. (Eds.), ACM Press, NY, pp. 123– 130

Lee J.Y., Kim, H., Han, S.B. and Park, S.B. (1999) Network-
centric feature-based modeling. Proceedings of Pacific
Graphics '99, Kim, M.-S. and Seidel, H.-P. (Eds.), IEEE
Computer Society, CA, pp. 280–289

Lewandowski, S. (1998) Frameworks for component-based
client/server computing. ACM Computing Surveys, 30(1):
3–27

Nam, T.J. and Wright, D.K. (1998) CollIDE: A shared 3D
workspace for CAD. Proceedings of the 1998 Conference
on Network Entities, Leeds. http://interaction.brunel.ac.
uk/~dtpgtjn/neties98/nam.pdf

Parametric (2000) Pro/ENGINEER 2001i. Parametric Tech-
nologies Corporation, Waltham, MA, USA. http://www.
ptc.com

Stork, A. and Jasnoch, U. (1997) A collaborative engineering
environment. Proceedings of TeamCAD '97 Workshop on
Collaborative Design, Atlanta, GA, pp. 25–33

Spatial (2000) ACIS 3D Modeling Kernel, Version 6.2. Spatial
Technology Inc., Boulder, CO, USA. http://www.spatial.
com

Sun Microsystems (2000) The Sun Java Technology Home-
page. http://java.sun.com

	INTRODUCTION
	SURVEY OF COLLABORATIVE MODELING
	Client-server architecture
	Current research prototype systems
	Conclusions

	webSpiff: A BALANCED SOLUTION
	Overview of webSpiff architecture
	Model data distribution
	Textual data
	Graphical data
	Geometric data

	Data communication

	THE SERVER
	The Session Manager
	Concurrency handling
	Event management
	Downloading data using HTTP
	Conflicting modeling operations

	THE CLIENTS
	The Communication Manager
	Synchronization
	Updating feature model information
	Updating state information

	RESULTS AND CONCLUSIONS

