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Preface

The research described in this thesis has been performed at the Computer Graphics and Visualization
Group of Delft University of Technology. It was part of a large national research program entitled
GATE (Game Research for Training and Entertainment, see http://gate.gameresearch.
nl) aimed at advancing the state of the art in four different research themes: modeling the virtual
world, virtual characters, interacting with the world, and learning with simulated worlds.

Within this first theme, Delft University of Technology investigated automatic creation of virtual
worlds in two complementary PhD projects, started in parallel in the summer of 2007: the first project,
in collaboration with TNO, focused on intuitive methods for procedural content generation, and was
performed by Ruben M. Smelik [80]; the second project, focused on the role of semantics in game
worlds [88], was performed by myself, under the supervision of Rafael Bidarra, and resulted in this
thesis.

Put shortly, Ruben’s work, of which SketchaWorld [85] is an excellent exponent, was directed at
assisting designers to better create content; my work, instead, was centered on assisting designers to
create better, richer content. The clear complementarity among the projects has led to a very natural
and fruitful collaboration, the best example of which is the work described in Chapter 6, on a method
for the generation of consistent building models, performed in cooperation with both Ruben Smelik
and Ricardo Lopes. Ricardo is now continuing the research on virtual worlds in the group, focusing
on automatically creating game worlds that are adapted to the player [52].

v
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CHAPTER 1

INTRODUCTION

The visual quality of game worlds increased massively in the last three decades. Representations
evolved from pixelated two dimensional drawings to stunning, beautifully lit, and highly detailed
three dimensional visualizations.

Figure 1.1: ‘La trahison des images’ (The treachery of images) by René Magritte (1928-1929).

1



1. Introduction

However, looks can sometimes be deceiving. In his painting ‘The treachery of images’ (Figure
1.1), René Magritte portrayed a pipe with the, at first glance, contradictory message this is not a pipe.
The message, however, is clearly true since it is only an image of a pipe: there’s no place to put the
tobacco and you cannot smoke it. Game worlds suffer more and more from this problem: the visual
resemblance with real life objects is great, but not when it comes to their behavior.

The closer game worlds depict reality, the more noticeable it is for gamers when objects do not
behave accordingly. And the better graphics get, the bigger this gap between visual and behavioral
realism becomes. As stated by Roger Chandler [14]:

I do not expect a blocky, pixelated tree to sway in the wind or splinter realistically when
I blow it to bits with a rocket launcher. But if that tree looks nearly identical to the one in
my front yard, then it will be a noticeable distraction if it does not act like the real thing.

This feeling of distraction is somewhat comparable to the negative feeling that is caused by represen-
tations of people (e.g. robots or virtual humans) that look and act almost, yet not entirely, like actual
humans, expressed by Masahiro Mori in the uncanny valley hypothesis [62].

Moreover, this lack of coherence between the visual representation of the world and the way it
feels, behaves or reacts, hinders the immersion when playing a game. More specifically it breaks
spatial immersion, which Bjork and Holopainen [9] explained as the experience when playing in a
perceptually convincing game world, i.e. when it both looks and feels real.

When we interpret natural language, similar problems arise: there are often ambiguities in the
meaning of words, e.g. the same word can mean different things. In the field of linguistics, the
study of meaning and the relation between words or symbols and the concept they describe is called
semantics. In other fields this concept is used as well, one of the best-known ones being the semantic
web. This is a web of data that aids machines in mapping information on the Internet to its meaning.

In this thesis we want to set a first step towards applying this concept to game worlds. Gradually
throughout this work, our idea of game world semantics will become more concrete, however as
for now, the following working definition can suffice: “game world semantics is all information
on a game world and its objects beyond their mere visual representation, including how they are
constructed, what materials they are made of and how they behave towards other objects.” We will
derive a number of guidelines that are essential to any form of semantics used to describe game
worlds. Furthermore we will investigate new methods and applications for semantics specifically
targeted at game worlds. Ultimately, we want to get a step closer in bridging the gap between the
look and the feel of game worlds.

1.1 Problem statement

To better understand why this gap is present in many games, it is important to take a look at how a
game engine is typically structured. A game engine is an integrated software system of many different
components. These components can be 2D or 3D rendering engines, physics engines, sound engines,
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1.1. Problem statement

scripting interfaces, artificial intelligence (AI) components to steer agents or handle pathfinding,
networking components, scene graph control and many others. Developers often assemble a game
engine as a patchwork of new components, components created for previous games and middleware
components providing ready-to-use solutions for particular elements of game development. Next to
the many technical issues involved in integrating all these different components, it is a challenging
task to create and maintain the coherence between all the different representations of an object in the
game world.

These objects are represented in the first place as a set of properties used for both development
and gameplay purposes. One can think, for example, of a unique ID, the maximum amount of ammo
(in case of a gun), or the price (in case of a shop item). In addition, an object is presented in the
game, whether that is visible by means of a geometric model, a particle system, or an icon, or audible
through the use of sounds and music. Increasingly often, some physics information is present as
well, like a mass value and a bounding box, which can be used by a physics engine to properly apply
physics (e.g. gravity) and detect collisions. Finally, a game object can show some basic behavior,
usually defined by scripts that, for example, can prescribe how to move, what animation to trigger, or
how to cause damage to the avatar of the player. Although presentation, physics, and behavior make
use of some properties, they are usually stand-alone, and only defined for their particular purpose.
There is, therefore, a general lack of coherence between the properties used by all different game
engine components.

This coherence is nowadays more difficult to maintain, as the popularity of exploration and
sandbox-style games is pushing the demand for bigger and more detailed game worlds. Because it
would be too expensive and time-consuming to manually create every possible detail in these game
worlds, the importance of procedural modeling techniques that can automatically generate parts of
game worlds, has significantly increased. However, these procedural modeling techniques often use
vague parameters which are quite unintuitive. Moreover they are only able to generate limited and
specific parts of a game world. In order to integrate all these different techniques to generate coherent
worlds, many issues need to be overcome, as addressed by Smelik [80]. In general terms, there is a
lack of an intermediate language that allows structured communication among different techniques in
order to combine their output into one coherent whole.

Interactivity is perhaps the most distinguishing element of games compared to other art forms.
However it makes it all the more difficult for their creators to deliver a spatially immersive, consistent,
and believable product. It is one thing to design, or generate, a coherent game world, it is yet another
to keep it coherent. A game world is not only changing and responding to a player’s or agent’s
actions but also to objects and other entities in the game world. For example, when it starts raining,
the earth will become wet and turn into mud. This will affect the attributes of that patch of land as
well: walking in the mud will become more difficult and slow, requiring more effort. Maintaining a
consistently realistic game world is a major challenge for any game developer.

We argue that what is truly missing here is a glue to keep everything together: glue to combine
the different components of a game engine, and more specifically the different representations of the
objects used by these components; glue to integrate different procedural generation techniques; and
glue to maintain the coherence when the game world is evolving over time.

3



1. Introduction

As mentioned before, semantics is often used as a way of expressing meaning, often specifically
for virtual environments, as we will discuss in Chapter 2. However, such efforts present a lack of
integration between semantics for the purpose of VR applications (often geometric in nature), agent
control or interaction. Therefore it seems that an integrated semantic representation is necessary to be
applied in the context of game worlds. Moreover, to combine with procedural generation techniques,
specific requirements on a semantic specification language have to be considered, because of (i)
the geometric nature of such techniques and relationships, (ii) the specific demands on meshes and
structures due to the high-performance nature of games, and (iii) the procedural generation process
itself.

It is important to consider why such a powerful idea of a single semantic representation for all
game components is not yet used today. Most game developers only add object and world data in
an ad-hoc way, specific to their current game and specific for the component that requires it. An
obvious reason is the extra work it involves. It clearly involves more efforts of the designers to add
this generic semantic information discussed above. It is therefore important that specifying semantics
is not too time-consuming, and that such specifications are reusable between different development
projects. Up until now, there is also no uniform way to represent semantics for game worlds, let alone
reason over it. In this thesis we attempted to introduce a uniform model for game world semantics,
based on a number of guidelines. Next to this, we worked out several applications for this semantics.

1.2 Research question

All of this leads us to the following main research question:

How can semantics improve the creation and consistency of game worlds?

To answer this question, we will answer the following key questions:

1. What is the role of semantics in the generation of coherent game worlds, both manual and
procedural?

2. How can game designers be assisted in the specification of semantics?

3. How can the semantic consistency of a game world be maintained in an evolving context?

4. How can this integration of semantics influence gameplay?

1.3 Methodology

In this research project, the first step in answering these questions was identifying some major
challenges in the game development process where semantics, as it exists in many different research
fields, could play an important role. We particularly looked at fields where semantics is considered as
a knowledge representation that allows applications to reason over it. The information gathered from
these different research fields, combined with a detailed look at the current state of the art in game
development, were distilled into a set of guidelines for any semantic model targeted at game worlds.
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1.4. Contributions

From these guidelines we derived a novel specification model aimed at semantic game worlds,
which are game worlds that are populated with objects enriched with semantics. This model can be
seen as a specific game world domain ontology. We then used this semantic model in many different
fields of game development and gameplay, to investigate what impact this semantic representation
had in each of those fields. We took a particular focus on procedural content generation, both when
creating the specification model and when researching novel applications for it. As mentioned in the
previous section, this brings forth very specific requirements to the structure of the semantics that
should be used. Therefore, our model combines both geometric and non-geometric information about
the game world.

All this was integrated in a game prototyping system, that we presented to game designers in order
to discuss their views and evaluation of this work.

1.4 Contributions

In answering the above research questions, we made the following contributions to the field of game
technology:

• A set of guidelines for any semantic representation of game worlds.

• An extension of previous semantic modeling research to represent semantic game worlds.

• A demonstration of how semantics can enable designers to create more coherent game worlds.

• The use of a shared semantic representation to integrate procedural generation techniques.

• The application of semantics to maintain the consistency of evolving game worlds.

1.5 Thesis outline

A visual overview of the outline can be seen in Figure 1.2. After this introduction, Chapters 2 to 4
propose how semantics for game worlds can be specified. Chapter 2 explains in more detail what
semantics means in the context of game worlds, Chapter 3 sets out some guidelines for semantic
game world representations and Chapter 4 proposes our semantic model for game worlds.

The next four chapters discuss how semantics can be used. Chapter 5 shows how semantics can
improve procedural modeling techniques for game worlds by applying it to layout solving. We used
the vocabulary from our semantic model to allow designers to create descriptions that specify how the
resulting layouts should look like: what objects needs to be available and how they should be placed
relative to one another. Such high-level semantics is translated into a set of concrete instructions that
steer a general-purpose layout solver.

Chapter 6 discusses the use of semantics to integrate different procedural building modeling
techniques. The semantic model serves as a vocabulary that allows multiple procedural modeling
techniques to construct a single, shared representation of the scene or the world they are operating
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on. The relationships defined in the semantic model are used to spot conflicts between elements
constructed by the procedural modeling techniques. These conflicts are flagged and left to the
individual techniques to handle.

In Chapter 7 procedural filters are introduced, which provide semantics-based customizations of
game worlds. Just like imaging filters can give particular twists and effects to images, procedural
filters are able to customize the appearance of game worlds, without changing the basic structure of
the world. As in the previous chapters, the semantic model provides an intuitive vocabulary to specify
the behavior of the filters.

Chapter 8 focuses on the use of semantics at runtime, i.e. when a game is actually being played. We
introduce the concept of dynamic semantic game worlds, which are semantically-rich game worlds in
which object interaction, influences of objects on their surroundings and other dynamic changes are
consistently represented and automatically handled in the game world.

The next two chapters show some applications of semantics. In Chapter 9 we introduce the notion
of procedural prototyping. The ideas discussed in the previous chapters are implemented into a set of
tools and integrated in an environment aimed at rapid prototyping of games aided by both semantics
and procedural generation. We use this environment to perform an evaluation of the concepts in
this research work. Chapter 10 includes several examples of applications of our semantic model in
external projects.

In Chapter 11, we evaluate our semantic model and some of the tools we built to test it. A number of
developers were asked to share their opinions on both the concept of semantics in game development
and some of the applications that were created. Their hands-on experience with some of our tools is
shared in this chapter as well.

Finally, in Chapter 12, we end the thesis with the conclusions drawn from this research project.

1.6 Related publications

Parts of this thesis were previously published as follows:

• Chapter 2: The role semantics can play in games, simulations and object modeling is first
published in [88] and later in [10].

• Chapters 4 and 8: The semantic model and in particular the concept of services is discussed in
[45] and [46].

• Chapter 5: Semantic layout solving is described in [89], [91] and [90].

• Chapter 6: Consistent building generation joint research with Ruben M. Smelik and Ricardo
Lopes and is published in [92].

• Chapter 7: Procedural filters are presented in [93].
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Figure 1.2: Visual outline of this thesis.
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• Chapter 10: Specifying semantics for large sets of 3D models is presented in [101], semantic
crowds are presented in [48], and the simulation of urban area development is presented in
[19].
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CHAPTER 2

SEMANTICS IN GAMES AND RESEARCH

The following chapter provides an overview of the state in the art of semantics and procedural content
generated in both research and games.

We will start by discussing a number of examples of research on the concept of semantics in
different fields, and especially in virtual environments. This chapter is specifically focused on
research work that can be applied to game worlds, both in the development phase and the runtime
phase of a game. The chapter follows by surveying procedural content generation, mainly focused on
layout solving techniques, façade generation and floor plan generation, since these are the topics that
will be covered in later chapters.

For both subjects, we will give an overview of how far these concepts have been used in games.
We will also discuss why many of the research achievements are still underused and in what ways
they could benefit from using it.
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2.1 Semantics in game worlds

The first section of this chapter will discuss a number of related work in academia on topics like
smart objects and semantics in VR. We will also overview what kind of information on objects and
especially on their behavior is used in games and where they could still learn from the research topics.

2.1.1 Smart objects

When talking about knowledge on the behavior and interactivity of virtual objects, one of the first
works that springs to mind is that on smart objects [42], [43], [41]. Kallmann calls an object smart
when it

“has the ability to describe in details its functionality and its possible interactions, being
also able to give all the expected low-level manipulation actions. This can be seen as
a mid term classification between reactive and intelligent behaviors. A smart object
does have reactive behaviors, but more than that, it is also able to provide the expected
behaviors from its users, so that this extra capability makes it to achieve the quality of
smart.”

This work was mainly performed in the context of physical interaction in virtual environments.
Therefore objects included information on the actual gestures one needed to make to operate them,
like performing a pulling motion when opening a drawer. While this is not that important in
traditional gameplay, this information is very important in motion-based gameplay, e.g. for games
using Nintendo’s Wiimote, Microsoft’s Kinect or Sony’s Move controllers.

Peters et al. [70] take the notion of smart objects further by creating objects with information
about their functionality, how NPCs (non-player characters) can interact with them, and where
important features of the object are situated. The objects include information about the location
where a character needs to stand to interact with the object and where he or she should look at while
performing a specific action (e.g., when interacting with a computer, the character should look at the
screen while typing something on the keyboard).

The concept of smart objects was applied in Maxis’ The Sims franchise. Moreover, the objects
in the The Sims 2 were structures containing all relevant information with regards to that object,
including:

“Localized string lists, executable scripts, common definition meta data, animation lists,
routing information, advertising information, interaction definitions, model information.”
[79]

“A one-stop resource for any information relating to objects is very useful to have both
during development and at runtime. It makes the whole game much more modular, which
explains how easy it is for EA to build expansion packs” [13]
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according to Alex J. Champandard, creator of the influential game AI website aigamedev.com.

While the idea of smart objects is a very powerful one and already contains a great deal of
information that is useful in game design, it is still very much targeted at a single domain, namely
object interaction. In any case, it is important that a more complete semantic model, like the one that
is proposed in this work, does not fall short on the object interaction domain to this technique, but on
the contrary expands on the idea, integrates it with other object information and links it with other
domains.

Gutiérrez et al. [31] have presented an object representation based on the semantics and functional-
ity of interactive digital items within a virtual environment. They consider every object not only as a
3D shape, but as a dynamic entity with multiple visual representations and functionalities, allowing
for dynamically scaling and adapting the object’s geometry and functions to different scenarios.

As more information is represented, the design of such objects will initially take more time and
effort than the usual design of plain geometric objects. To avoid having to define each property of
each object in the virtual world, Ibanez-Martinez and Delgado-Mata [36], [37] introduce a system
that defines object data more efficiently. They introduced an architecture that provides a general
common level on which to build specific semantic representations. The common-level data bundles
information that is useful in all virtual environment applications, such as the position and dimensions
of an object. Another advantage of this approach is that it takes work out of the hands of designers by
automatically calculating some of these application-independent properties (e.g., the dimensions of
an object based on the object model). This decreases the time a designer needs to spend manually
annotating features. To remain application-independent, the common level only contains low-level
information and the designer can later add more specific data, depending on the application. Basically,
the user needs to enter the object type, which is used to automatically generate properties like width,
height, location and orientation, based on the geometric model of the object.

This is a very important aspect from a user perspective, in this case, that of the designer creating the
semantic information. Automatically generated (or derived) attributes and properties for objects and,
in general, ideas to automate the definition of semantics will be a key requirement when constructing
our semantic model in Chapter 4 and especially when creating tools to define semantics (see Section
9.2.1).

Objects containing interaction information, for example the smart objects by Peters et al. [70],
could aid in the creation of vast and highly interactive virtual worlds. If designers could be provided
with fast and efficient tools to incorporate actions in objects, game worlds could be created that are
much more interactive. For this, all objects should contain information about the ways a user can
interact with them: what actions can the user perform on the object (e.g., pick up, throw, drink, read,
wear) and what other objects are necessary to perform this interaction (e.g., a key to open a door or
a striking surface to light a matchstick). When performing an action on an object, this object will
provide services to the user or to its surroundings. Wearing a coat will provide warmth only to the
one who is wearing it, but a campfire will provide warmth to everyone within a certain range. A
detailed classification of these properties and services is necessary to explicitly define them. It can
also be integrated in tools to quickly edit the properties of an object by allowing the designer to pick
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a related object class. From this related class, information can be inherited to eliminate the need to
define every detail over and over again.

In related research, smart objects have already been used for planning purposes [1], by defining
scripts and actions. A planning algorithm is used to make the agent move through and interact with
the world. To do so, it collects relevant information about the state of the world, prepares a planning
step, makes a plan, and executes it, where the agent’s actions are taken from the plan. In another
system [4], Teletubbies have been turned into intelligent agents by giving them drives, like hunger.
Now, if an agent gets hungry, it will search for objects that have the effect of decreasing the level of
hunger, make a plan to reach the object, and use it. Afterwards, its other drives will guide him to the
next location/object.

2.1.2 Object relationships

An important relationship is that of inheritance. Two different objects that have the same ancestor
will share some similar properties but will be in another child branch in a hierarchy tree. This kind of
relationship can be expressed in a taxonomy, of which a very detailed example can be found in the
feature classification model of Bitters [8]. But next to a hierarchy based on properties, more detailed
relationships can be defined.

In Levison’s PhD dissertation [51], we see an example of a functional hierarchy. The dissertation
describes a system that enables the decomposition of a high-level task into a set of action directives.
The objects have information about how they can be manipulated. They contain sensible knowledge,
which is basic knowledge like its size, position or temperature, but also symbolic knowledge (e.g.,
about its functionality). The system uses a hierarchical class structure where every child class inherits
all functionality of its parent classes. The lower a class is in the functional hierarchy, the more
specialized the functionality becomes. An example of this is the class Thing. This class is broken up
into Object and Artifact. Artifact, in turn, is subdivided in Tool, Container, Cover, and Support.
Artifact is the category that defines all man-made objects. Tool is a tool that contains a function it
can perform, for example a hammer or a screwdriver. Since the functionality of an object is important
information in a virtual environment, such a functional hierarchy is another key element of any
semantic model for games.

Huhns and Singh [35] use ontologies with different types of relationships between objects. Next
to the basic data-modeling relationships, i.e. inheritance, aggregation, and instantiation; they also
cover relationships like owns, causes, and contains. The system for which they proposed this idea
was intended to handle communication between software agents with different knowledge domains.
This could be a customer agent communicating with a travel agent about a trip. The travel agent can
give details about a certain flight with a 777 type plane that might not be present in the knowledge
base of the customer agent. But because of the relationships, the travel agent can inform the customer
agent that this 777 has airplane as a parent object, and since the customer agent will have the general
term airplane in its knowledge base, he will understand the information of the travel agent. This
kind of information can be used by the AI system of a game or simulation, but it could also be a
source to provide meaningful and life-like interaction to the user. For example, when the user needs
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to find a power source and the virtual world contains information that a car contains an engine and
that an engine is a type of a power source, this car engine could be used without the designer having
to define that explicitly. In this way, virtual worlds become more interactive, and can thus lead to
more emergent behavior.

In the IConS modeling system [29], relations between objects are described as surface constraints
with offer and binding areas, in order to place objects automatically at correct (logical) positions. An
example is a lamp, of which the bottom can be placed on the top of a table. Although useful for scene
composition, they also lack semantic behavior. In a related work by Xu et al. [98], surface constraints
indicate how objects can be placed on surfaces of other objects, proximity constraints indicate how
close objects should be to others, and support constraints are used to indicate whether an object can
support other objects, or the other way around. A difference with the IConS system is that all objects
are classified, resulting in a hierarchic semantic database. Instead of defining constraints over and
over again, constraints can be defined once for a class, after which it can be assigned to objects that
are similar. This way, for example, all kinds of tables (coffee table, dining table, etc.) will know that
they can support other objects, such as lamps. These examples show the importance of semantics
in the design phase: such relationships can aid the designer when manually creating scenes or even
perform object placement automatically.

2.1.3 Semantics on a world level

Next to the object level we can also define semantic information on a higher level, surpassing single
objects. To identify vegetation types inside a region, parameters like soil fertility and soil nutrients
play a role, but also climatic circumstances, like temperature and rainfall, should be taken into account.
These parameters are not related to specific objects but to an area in the world or perhaps the entire
world.

We see this approach in the work of Deussen et al. [20] that consists of an ecosystem simulation
model to populate an area with vegetation. The input of this simulation model is terrain data,
ecological properties of plants, and, optionally, an initial distribution of plants. Based on this data
and taking into account rules for competition for space, sunlight, and soil resources, a distribution of
plants inside an area is generated. When a designer has the ability to include these kinds of properties
in the world, many physically-based models could integrate them to create a more realistic world.

Semantic world data is also very useful when designing adaptive virtual worlds, i.e. worlds that
adapt to (i) the properties of the world (e.g., weather conditions and time), (ii) the behavior of objects
inside it or (iii) the user interaction (e.g. clearing forests and constructing buildings in strategy games).
These higher-level, global, world parameters like weather and time have a huge influence on the
virtual world in its entirety as well as on the individual objects. When we look back at the vegetation
example above, we see that an ecosystem model could, for example, also be applied to calculate
changes in a virtual forest. Trees become older, new trees and plants appear, and others die. In a
strategy or empire-building game where resources need to be gathered from forests, this could add
not only realism but also strategic difficulties (cutting down trees faster than the growth of the forest
will deplete wood resources). Depending on seasons, the geometric appearance of plants and trees
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change but also their properties, for example the resources they offer. In summer time, fruit grows
in trees and can be gathered to feed the population in a strategy game. Corn fields can provide an
excellent hiding place from enemies when the crops are fully grown.

Weather and time also have an influence on materials, for example surfaces begin to reveal cracks
in the paint, unprocessed wood becomes weaker, and metallic objects start to rust. These parameters
can be taken into account just to add visual realism: for example, modeling paint cracks [66] or aging
and weathering effects on textures [54]; but at the functional level, they can also alter the role of an
object in a game. A young, strong, wooden plank will be perfect to attack an enemy, while an old,
mossy branch will break more easily, and is therefore useless as a weapon.

Finally, we can also include contextual information in world semantics. Examples are parameters
like the economic or living conditions, or how safe inhabitants feel. This kind of information is more
important in games such as city-builders or strategy games; but also in military simulation safety
levels and, in general, whenever the state of the global economy can play a role.

2.1.4 Semantics in VR applications

The use of semantics in virtual environments has also been a recurring topic in the field of VR. Bille
et al. [7] explain an approach for designing VR applications at a conceptual level and in terms of
concepts from the application domain. They realized this using a Domain Ontology, which captures
the domain knowledge. The advantage of using domain knowledge is that it opens up the use of VR
to a much broader community since it is easier and more intuitive for a non-VR-specialist to design
his VR application. This idea was improved and extended with ways to facilitate users in creating
object behavior and user interaction in the VR-DeMo project [18].

Vanacken et al. [94] introduced the use of semantic information in the modeling process of interac-
tion for virtual environments. This work extended NiMMiT, a notation for multimodal interaction
modeling, with semantics. They extended a driving simulator with semantic Concepts to better
express the virtual world. Those Concepts were queried to know what objects the car could not
collide with and what road type the car is on at any given time.

Latoschik et al. [50] introduced the integration of knowledge based techniques into simulative VR
applications. They proposed an abstract Knowledge Representation Layer (KRL) that needed to be
expressive enough to define all necessary data for several simulation tasks and which additionally
provides a base formalism for the integration of AI representations. They created a knowledge base
defining entities, attributes, relations and concepts, and proposed to use the semantic entities as
unified object models to uniformly access the KRL at runtime. This is somewhat similar to the needs
in a game engine: there needs to be a common knowledge structure that can be accessed by multiple
components of the game engine.

2.1.5 Semantics in current games

Although there is a trend towards more open and explorable worlds, most games still have a strict,
linear story behind them. The blend between games and movies is becoming more vague and the
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story of games is becoming much more of a driving factor for gameplay. In many shooters the story
is often merely a short explanation of just why killing hundreds of characters is helping to save the
world.

In other genres, however, the stories are becoming much more important, e.g. Team Bondi’s 2011
L.A. Noire or Remedy’s 2010 Alan Wake. The themes in these stories are becoming more mature
as well: Quantic Dream’s 2010 Heavy Rain, for example, placed the player in the shoes of a father
having to deal with the loss of child. Characters are becoming more complex (instead of just being
good or evil) as well as putting more importance to the relationships between the player’s character
and others, which is the main concept of the role-playing game genre, e.g. Bioware’s RPG franchises
Mass Effect and Dragon Age. All in all, gaming experiences are becoming much more cinematic in
nature, with probably the most notable example to date Naughty Dog’s 2011 Uncharted 3.

Although there are also examples where the player is granted much more freedom, e.g. Bethesda
Softworks’ 2011 The Elder Scrolls V: Skyrim, most game worlds still consist of little more than
geometric representations of the environment and of the objects embedded in it. Using rigid object
representations, as for example pure geometric mesh models, hinders current attempts to achieve
dynamic object behavior in the virtual world.

Visual immersion is getting less of a problem, since the boundaries of visual realism are continu-
ously being pushed forward by on the one hand better graphics techniques to simulate materials and
natural phenomena and on the other hand improved methods to capture real life elements; e.g. Team
Bondi’s 2011 game L.A. Noire used 16 cameras to accurately capture detailed facial animations (see
Figure 2.1).

However, immersion through realistic interaction often falls short. As mentioned in the previous
chapter, games quite often break spatial immersion, which is the experience when playing in a
convincing game world that not only looks but also feels real [9]. Gamers have come to expect, and
accept, that in some games, certain reasonable actions are not available to them, although they seem
logical in the context of the game. Sometimes a knee-high fence is impossible to jump, while other,
higher, walls are scaled without a problem. Or some doors in the game can be opened, while others
always remain closed without any apparent reason. Again, gamers learned to live with these illogical
constraints without getting distracted, but this can hardly be called an immersive experience. It is, of
course, impossible to create a game where all thinkable actions a person can perform have a virtual
counterpart; however, it is important to make sure there is consistency in what is possible and what is
not.

A similar experience is found in the behavior of the virtual objects in game worlds. On first glance,
one might be quick to dismiss this: why would a player want to use an appliance or pick up a book
from a bookcase in a shooter game, where such actions seem futile? It is obvious why such actions
are important when gameplay is directly influenced by them (e.g. in the Maxis’ franchise The Sims),
but why would other genres benefit from adding such behavior?

Next to the aspect of the immersion (breaking the feeling of realism by not being able to perform an
action that seems logical), another more important aspect is that the absence of basic object behavior
cripples the player’s creative thinking. A player might want to turn on a TV to distract a guard, or use
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Figure 2.1: To the left, an image of actor Aaron Staton (playing the role of detective Cole Phelps in
Team Bondi’s 2011 game L.A. Noire) in a recording room where 16 cameras captured every detail
of his head and facial movements. To the right, a rendering of the captured data. (Picture source:
http://3danimationcgi.com)

Figure 2.2: The destruction of a house in the game Battlefield: Bad Company 2 from developer EA
Digital Illusions CE. (Screenshot source: http://battlefield.wikia.com)
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the timer on a microwave to create a delayed distraction. Or, when lost for ammo, the player might
want to spray the contents of a fire extinguisher in an enemy’s face to make him temporarily blind or
knock him unconscious by hitting him on the head with it (or with any other heavy object). Not to
mention the multitude of options to create explosive devices with little more than some household
products, as we remember from high-school chemistry lessons or from the fictional TV character
MacGyver.

One notable exception of object behavior that is present more and more in games is destruction.
The game series that became quite famous for the level of destruction available in their game worlds
is the Battlefield series by EA Digital Illusions CE (from Battlefield: 1942 onwards). Vehicles
and buildings can be completely destroyed, often showing quite realistic behavior upon destruction
(see: Figure 2.2). Destruction physics remains not limited to shooters, however, but is also used
in realtime strategy games (e.g. Ensemble Studios’s 2005 Age of Empires III), racing games
(e.g. the Codemasters’ Dirt series), action-adventures (e.g. LucasArts’ 2008 Star Wars: The
Force Unleashed), action-stealth games (e.g. Platinum Games’ still unreleased Metal Gear Rising:
Revengeance), etc.

As mentioned in the introduction, we believe that a deeper semantic representation can be of
significant use in solving all issues described in this section, especially looking at what has already
been achieved on this topic in academia before in this section.

2.1.6 Discussion

Careful consideration needs to be given to creating the methods for generating and editing semantic
data. For this, the use of a system as that proposed by Ibanez-Martinez and Delgado-Mata [36] can
be interesting, since it tries to automatically generate numerous values of the semantic data level
to reduce the design time. The types of calculated data should however be extended. If a designer
did not only choose the object type but also the material of the parts, the weight and other physical
properties of the object could be generated. This way, without the designer having to enter a huge
amount of parameters for every single object, the game would know, for example, if an object picked
up by the player’s character is heavy enough to injure an opponent (and, in the first place, if it is not
too heavy to be picked up).

Algorithms simulating physical phenomena, as for example, the ecosystem simulation model
of Deussen et al. [20], can be significantly improved in semantically rich worlds. When detailed
information about the soil of a terrain, the climatic conditions, the growth cycle of the plants, and
information about other plants in the environment are included into these kinds of algorithms, a more
realistic effect can be achieved.

We also noticed the importance of relationships between objects. Not only physical, geomet-
ric relationships (although these are obviously very important when considering automatic object
placement for example) but more importantly inheritance relationships or functional relationships
between object classes. It is clear that our semantic model should be carefully constructed with
the relationships between classes and their properties, whether they are visual, material, behavioral,
interactive or functional.
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2.2 Procedural content generation for game worlds

Procedural generation techniques have been proposed for almost every aspect of virtual worlds,
ranging from vast landscapes (see e.g. [65, 21]) to urban environments (see e.g. [67, 44, 95, 96]).
For the research in this thesis, we focused mainly on the content generation for buildings and scene
layouts. A full survey on the topic of procedural content generation can be found in [81].

2.2.1 Automatic layouting techniques

In this section, we review a number of systems used to automatically create layouts, specifically
targeted at object placement, e.g. furniture layouts, or room placement for building floor plans.

Rau-Chaplin et al. [73] and [74] present a shape grammar to layout the different areas in a house.
The authors use a large number of room units, which they call tiles, instead of automating the entire
layout process. A shape grammar is similar to other grammar-based rewrite system (e.g. L-systems)
however, instead of using rewrite rules to transform symbols into strings, the authors describe how to
transform shapes into more detailed shapes (e.g. by splitting a shape into two parts or by inserting a
particular model instead of the basic shape).

Martin [57] proposes a different method to automatically creating floor plans. First a graph is
generated in which every node represents a room and every edge corresponds to a connection between
rooms. Next, these nodes are given an actual location on the floor plan and the rooms are formed
from there using growth rules and room weights.

Hahn et al. [32] show an important advantage of procedurally generating building interiors. This
research focused on generating only the rooms that are visible from the current viewpoint. This is
obviously an efficient way of handling large buildings with many different rooms (e.g. office sky
scrapers). To maintain changes made in the world, all changes are tracked and stored. When a room is
removed from memory at one point, and is regenerated later on, the stored changes are again applied
to the regenerated room.

Layout solving based on object rules is also applied in manual scene editing systems. Xu et al.
[98], describe a framework in which objects contain rules describing which type of objects their
surface supports. For example, food, plates or cups can be supported by a table or a counter. Smith et
al. [86] use similar links, but applied to areas. Offer and binding areas between objects are defined,
e.g. the area underneath a table can be an offer area that is linked to the binding area of a chair.

Gaildrat et al. [25], [77], combine constraints and semantic knowledge in the form of implicit
constraints, to help the user generate a scene. In the description phase, the designer can express how
a scene should look like. These descriptions are translated into constraints that are then fed to some
constraint solver.

A number of constraint solving techniques have already been investigated to create room layouts
in the form of space planning problems. Charman [15] gives an overview of how existing constraint
solving techniques that are not specifically focused on space planning can be applied to these problems.
The author discusses the efficiency of the solving techniques and compares several space planners.

18



2.2. Procedural content generation for game worlds

Many improvements for the discussed constraint solving techniques have been researched in the years
following this study, so the results concerning the efficiency are no longer relevant. The discussed
techniques, with their recent improvements, are however still applicable to layout solving. The
proposed planner, steered by the conclusions from the study, works with axis-aligned 2D rectangles
with variable position, orientation and dimensions. Users can express geometric constraints on these
parameters, which can be combined with logical and numerical operators.

Several space planning methods were developed using constraint logic programming (CLP) [71],
[34]. A more recent system that used CLP was created by Calderon et al. [12]. It is a framework that
generates several different layout solutions for objects, through which the user of the framework can
interactively find desirable solutions. The rules for the objects are all expressed in predicate logic
statements. This gives the opportunity to provide users with more or less natural language-like rules.

Automatic layouting has also been used in interactive furniture layout systems. Merrel et al. [60]
present a method that assists users by suggesting furniture arrangements based on design guidelines.
It “incorporates the layout guidelines as terms in a density function and generates layout suggestions
by rapidly sampling the density function using a hardware-accelerated Monte Carlo sampler”. Their
density function contains some functional and visual criteria to judge the layouts. The functional
criteria they used were, among others, clearance and circulation (which is open space around the
furniture to be usable and accessible), while visual criteria included alignment (of objects relative to
each other and to the walls of the room) and emphasis (a desirable focus point in the room around
which other objects are placed, e.g. a fireplace). Using this system, users can loop through some
automatically generated layouts, choose a desired one and, when necessary, make some manual
changes.

Yu et al. [100] present a method that creates furniture arrangements based on several examples of
sensibly furnished rooms. It “extracts, in advance, hierarchical and spatial relationships for various
furniture objects, encoding them into priors associated with ergonomic factors, such as visibility and
accessibility, which are assembled into a cost function whose optimization yields realistic furniture
arrangements.” Somewhat similar to the previously discussed method, this one uses a cost function.
The authors now try to minimize this cost function characterizing realistic and functional layouts.
The criteria used in this cost function are, among others, accessibility, visibility (televisions and
paintings have visibility requirements on their frontal surfaces) and pathways connecting doors. As
opposed to the previous system, this one is intended for full automation. However, adding new rules
to this system requires knowledge of the cost function and also requires users to express their rule as
a term in the cost function. Therefore it is not really suited for non-technical users if extension of the
available ruleset is necessary.

2.2.2 Façade generation

The following two sections focus on the generation of buildings. This section first focuses on the
generation of the façade of buildings, i.e. the outer walls, the doors and windows in the walls, etc.
Sometimes these techniques also include mechanisms to generate the general structure of the building.

In the field of automated generation of building façades, L-systems were among the first techniques
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to be proposed [67]. These rewriting systems create buildings by manipulating an initial arbitrary
ground plan (a lot shape) with transformation and extrusion modules.

To obtain more interesting building shapes, several approaches have been devised. Wonka et al.
[97] introduced the concept of split grammar, a formal context-free grammar designed to produce
building models. The split grammar resembles an L-system where shapes are primitive elements
rather than symbols. Coelho et al. [17] proposed an urban modeling process that is based on L-
systems as well. This process generates, from external data, a tree-like description of the overall scene
structure. L-systems are used to generate detailed building models that emerge from the abstract set
of data.

In recent years, a more specialized approach, the CGA shape grammar, has been applied to building
façades by Müller et al. [63]. Shape grammars have been used and described before, especially in the
architectural domain [47, 11, 49]. Architects have described shape grammars as languages of design,
supported by a vocabulary of shape rules. Shape rules are specified as spatial relations, where a shape
on the right side of the rule is produced and replaces the symbol on the left side (depicting when the
rule can be applied).

In Müller et al.’s case [63] and unlike a split grammar, the shape grammar uses context-sensitive
rules which allow the possibility of modeling roofs and rotated shapes. They start with a union of
several volumetric shapes (the building boundary) which is divided into floors. The resulting façades
are further subdivided, through shape rules, into walls, windows and doors. Yong et al. [99] also use
an extended shape grammar, but they start at the city level, producing streets, housing blocks, roads,
and, in further productions, houses with components such as gates, windows, walls, and roofs. Shape
grammars have become the most accepted technique for generating building façades, as evidenced
by its commercial release [72]. Epic Games also included in their commercial game engine, Unreal
Engine 3 [22], a procedural artist-driven tool for constructing buildings used in the development of
city-based games [40]. The procedural system uses rulesets, similar to shape grammar rules, to split
façades into scopes and automatically place meshes on them.

More recently, Müller et al. [64] used a very different approach for constructing building façades.
Their method takes an image of a real building façade as input and is able to reconstruct a detailed 3D
façade model, combining imaging and shape grammar generation techniques. Chen et al. [16] also
proposed a method for creating building façades from images, but in this case using hand sketches as
input.

On a different direction, Greuter et al. [30] proposed an approach where a primitive form of the
integrated generation of both façades and floor plans was considered. Initially, they create a floor
plan by combining several primitive 2D shapes, which are then extruded to different heights. This
approach is most useful for simple office buildings. Although the concept of a generated floor plan is
present, it is only used for extruding building façades and not as a room layout.

Although all of the above approaches can generate visually convincing building façades, Finken-
zeller and Bender [23, 24] note that semantic information, regarding the role of each shape within
the complete building, is missing. They propose to capture this semantic information in a typed
graph, so that detailed building façades (doors, windows, balconies, cornices, ornaments) can be
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generated, in different styles, and applied to the same building outlines. Starting with a rough building
outline, building style graphs can be applied to this model, resulting in an intermediate semantic
graph representation of the building. In the last step, geometry is created based on the intermediate
model, and textures are applied, resulting in a complete 3D building.

2.2.3 Floor plan generation

After the techniques to generate buildings façades, the next section describes some techniques to
generate the floor plan of buildings. The procedural generation of building floor plans, i.e. suitable
inner room layouts, has been the focus of several researchers.

Rau-Chaplin et al. [73] show that shape grammars, often applied to building façades, can also
create floor plans. In this case, shape grammars are used to create a plan schema containing basic
room units. These individual room units are recognized and grouped to define functional zones like
public, private or semi-private spaces. Individual functions are then assigned to each room, which are
filled with furniture, by fitting predefined layout tiles from a library of individual room layouts.

On a different direction, Hahn et al. [32] present a subdivision method tailored for generating, on
the fly, office buildings. The initial building structure is split up into a number of floors. On each
of them, further subdivisions are applied to create a hallway zone and individual rooms. A notable
feature of this method is that floors and rooms are generated or discarded based on the player’s
position. Re-using the same random seed in the procedure assures that discarded rooms can be
properly restored.

Marson and Musse [56] also introduce a room subdivision method, but based on squarified
treemaps. They start with the basic 2D shape of the building and a list of rooms, with desired
area and functionality. Treemaps recursively subdivide an area into smaller areas, e.g. building
shape, functional zones, and rooms. In a final step, corridors are automatically created to connect
unreachable rooms.

Martin [57] proposes a graph-based method, in which nodes represent the rooms and edges corre-
spond to connections between rooms (e.g., a door). Public, private and stick-on rooms (e.g. closets,
pantries) are gradually added to the graph by a user-defined grammar. This graph is transformed to a
spatial layout, and for each node, a specific amount of “pressure” is applied to make the room expand
to the desired size. Lopes et al. [53] also propose an expansion-based method, which grows rooms
in a geometric grid representing the building lot. The initial placement of room seeds is determined
by a constraint solving algorithm that takes room adjacency, connectivity and functional zones into
account.

In Chapter 5, we show how we applied a semantic layout solving approach to expansion-based
floor plan generation. Every type of room was mapped to a TANGIBLE OBJECT CLASS in the
semantic model and for each of these TANGIBLE OBJECT CLASSES RELATIONSHIPS were defined.
In this context, RELATIONSHIPS will define room-to-room adjacency. However, other constraints
were defined as well, e.g. place the kitchen near the garden, or the garage near the street. For each
room to be placed, a rectangle of minimum size is positioned at a location where all defined relation
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constraints hold, and all these rooms expand until they touch each other.

Charman [15] gives an overview of constraint solving techniques that can be applied to room
layout generation, if seen as a space planning problem. For example, the planner the author proposes
works on the basis of axis-aligned 2D rectangles with variable position, orientation and dimension
parameters, for which users can express geometric constraints, possibly combined with logical and
numerical operators.

Merrel et al. [59] recently proposed a method for generating residential building layouts. Although
this approach creates complete buildings, it is highly focused on floor plan generation. The authors
use a Bayesian network, trained with real-world data, to expand a set of high level requirements (e.g.
number of rooms) into a complete architectural program (e.g. room adjacencies, area and aspect
ratio). These architectural programs are then realized into the 2D shapes of the floor plans, through
stochastic optimization over the space of possible building layouts. 3D models are generated from
different style templates to fit the structure of the floor plan, including external windows, doors and
roofs. Their results are different from our integration approach, since their method: (i) is specific for
generating residential buildings, (ii) cannot create specific façade patterns and appearance and (iii)
the façade always emerges from the floor plan, and, therefore, cannot steer the generation process.
The technique is also not designed to create designs of more complex building grounds (e.g. an army
camp, a motel lot, a shopping area, etc.).

2.2.4 Procedural content generation in current games

The size of game worlds has been ever increasing in the last years. The map for Rockstar’s 2001
game Grand Theft Auto III (a little under 8km2) now seems tiny compared to that of Eidos’ 2010
game Just Cause 2 (over 1000km2). And gamers seem to expect game worlds to become bigger
with every installment of a popular franchise.

One reason for the demand of bigger game worlds is the trend towards open world or sandbox-
style games. Next to the two games just mentioned, there are many other examples, like Ubisoft’s
Assassin’s Creed franchise, Rockstar’s 2010 Red Dead Redemption or 2K Czech’s 2010 Mafia
2 (which is not truly a sandbox-style game, but did allow the player to roam the world in between
missions).

Next to this, there is the constant demand for increasing detail and graphical quality in the game
worlds. Games with slightly dated graphics will find themselves being axed by both public and critics,
sometimes even despite of a high quality of gameplay.

All these trends put a huge strain on game development teams and dramatically increase the
necessary budgets for titles: many current blockbuster AAA titles have budgets of tens of millions of
dollars, with Rockstar’s 2010 Grand Theft Auto IV topping this chart with a 100 million $ budget
[2].

We claim that both procedural modeling into game worlds can aid game developers by decreasing
time and money spent on generating game worlds without losing visual or behavioral details in the
process. In the next two sections, we will ground these claims in some more detail.
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Figure 2.3: Editing huge game worlds in the Crytek Sandbox 2 editor can become very complex.

The increasing demand for bigger and more detailed game worlds triggered a spike in the amount of
time and/or people and therefore money in the creation of game worlds. Although a large part of this
process is creative in nature, the more practical part involves many tasks that are very labor-intensive
and, in essence, resemble high-tech variants of handicrafts. They can become very complex when
editing huge worlds, as we can observe in the screenshot of the Crytek Sandbox 2 editor in Figure 2.3.

The automatic creation of game worlds is not very widespread, except in some important areas. The
generation of heightmaps has been popular for many years. And automatically generating vegetation
like plants and trees has become commonplace: for example, the list of commercial games using the
middleware package SpeedTree, a package that generates virtual foliage for animations, and in real
time for video games and simulations, is huge with around 100 titles [87].

However, many other features of game worlds, like houses or cities, are much less often created
with the help of procedural modeling techniques, although the research results in this topic are quite
impressive.
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It is quite clear why sandbox games, featuring huge open worlds can significantly benefit from
procedural modeling, however many other genres could benefit from it as well. Next to the impact
on time and cost in the development phase, it can also provide welcome gameplay additions. Many
strategy games include a random map option to increase the time a player can spend in the game.
However this option is almost exclusive to this genre.

Shooter games could use this as an option not only to extend the lifetime of the game, but also to
remove the advantage in online mode, where gamers who spend every moment of their spare time
playing the game know the maps inside out. This makes it difficult to gamers who only sparsely have
time to play, to keep up with them. Random maps would at least take the map knowledge advantage
away from the equation. However, it is important to note, that automatic map generation for such
games would involve a set of constraints and rules that are very specific to one game only and need a
considerable amount of balancing.

2.2.5 Discussion

Although procedural content generation has been used quite a lot in games, e.g. random heightmap
generation, procedural texture and vegetation generation, many of the techniques from academia do
not seem to find their way into mainstream, commercial game development.

For that we see two main problems. First of all, there is a lack of user-control in procedural content
generation techniques and their parameters are often unintuitive. More often than not, the techniques
used have very little to do with the actual domain and therefore parameters that might make perfect
sense to people knowing this underlying technique, have no connection to any of the vocabulary
connected to the goal domain. For example, a Perlin noise map [68, 69], often used to generate
heightmaps, has parameters like the initial frequency or number of octaves, but this has no meaning
in the context of actual terrains or heightmaps, where one might expect terms like terrain roughness,
hilliness or soil type. The concept of declarative modeling as proposed by Ruben Smelik et al.
[85, 80], offers a solution for this problem. Declarative modeling aims at improving the efficiency
of designers, by allowing them to express their design intent more directly and at a higher level of
abstraction. In other words, it lets designers concentrate on what they want to create instead of on
how they should model it. To allow designers with the necessary, goal domain-related vocabulary,
a rich semantic model is necessary to maintain the consistency and to specify all the game world
features and their relations.

The second problem is the difficulty in combining and integrating techniques that produce different
elements of a game world (e.g. urban land use, road networks and buildings). Often different
techniques have overlapping responsibilities: techniques to generate rivers might claim regions that
overlap with regions claimed by forest creation techniques or road network generators. Again, the
work of Smelik et al., specifically with their framework SketchaWorld [83, 84, 82] has solved a
number of these issues, using a rich semantic model to map constraints and solve conflicts between
different techniques.
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2.3 Conclusions

Research projects have been using semantics in many different fields, as we discussed in this chapter.
Physical information might spark the use of physical simulations to improve the game world or
behavioral information can assist the designer in creating consistent interaction with the world. To
speed up the specification process, automation should be used where possible.

In the next chapter we will use the ideas discussed in this chapter to first extract some guidelines
for our semantic model for game worlds. Using these guidelines, we will distill that model and
distinguish the different levels of semantics therein. Next, we will use these guidelines to propose a
semantic representation model in Chapter 4.

In reviewing procedural generation techniques, we came across two important problems: the lack
of user-control and the difficulty in integrating different generation techniques. We will use the
semantic representation model from Chapter 4 to show the instrumental role of semantics in solving
both of these problems. In Chapter 5 and 7 we give examples of how we use the vocabulary from our
semantic model to ease the use of procedural content generation, blocking users from the low-level
parameters of the actual techniques and presenting them with the more high-level domain-related
properties defined in our semantic model. In Chapter 6, an example is given how this same semantic
model serves as an intermediary representation between different building generation techniques to
generate complete and consistent buildings automatically.
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CHAPTER 3

DEFINITION OF SEMANTICS FOR GAME

WORLDS

The previous chapter gave an overview of the current state of game worlds both in the design and in
the runtime phase. We also discussed related research on semantics that shows how the quality of
game worlds can be improved in both these phases.

From examining the current limitations of game worlds and studying the related work, we identified
several possible improvements to the design and quality of game worlds. This chapter derives some
guidelines for the specification of game world semantics for both phases. These guidelines need to
make sure the proposed semantics specification will help provide those improvements.

In the previous chapter, we noticed a clear necessity for an intermediary language to integrate
procedural modeling techniques, which often contain vague parameters that do not easily connect
to real world concepts. These are the main gaps that our semantics specification needs to fill in the
design phase.

In runtime phase, the lack of behavioral consistency can disconnect a player from the game’s
universe, breaking spatial immersion. We propose a number of guidelines to achieve more consistency
in the game worlds, especially when it comes to dynamic game environments. Based on these
guidelines we propose a three-tier specification of game world semantics: (i) the individual object
level, (ii) a relationship level between different objects and (iii) an all-encompassing world level.
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3.1 Guidelines for a semantic model for game worlds

When trying to apply research on semantics to video game worlds, we notice that much of the
important information to store in a semantic representation of a game world is already present in some
form or another. Bits and pieces of information are scattered throughout the different components of
the game engine. Models are linked to scripts that describe their behavior upon interaction, the AI
component stores information about agent behavior, the textures of a model often hold a clue to what
materials the model is made of, etc.

Most of this information can be interpreted by computers, e.g. the scripts, however other infor-
mation like filenames, comments or descriptions are only meant to help people working on these
components. This means that a wealth of knowledge is not tapped to its full potential.

More often than not, there is no real cohesion between the data in these different components. A
wooden table might have a ‘wood.jpg’ texture attached to it, but the physics engine will likely have no
way of using that information to actually treat that object as made of wood. This means that designers
and programmers need to define repetitious data and, moreover, this could lead to inconsistencies in
the gameplay that break the player’s immersion, as we mentioned in the previous chapter.

A centralized knowledge base of a semantic game world representation is therefore the basis for
many important benefits. This semantic representation should be a consistent source of information
that needs to be accessible by all components of the game engine and that is understandable by both
man and machine.

A semantic model fit to be used for game worlds should, at least, allow designers to express all of the
following aspects of game worlds:

• What a geometric model actually represents: what type of object it represents, what classes it
belongs to.

• The essential characteristics of the objects in the game world, e.g. the damage that can be dealt
by a sword, the amount of experience of a character or the weight of a particular object.

• The way a player (and other characters) can interact with the game world and its objects.

• How objects relate to each other: how they are placed relative to each other, what their
dependencies are, ownerships etc.

• The physical characteristics of an object: e.g. what material it is made of, how it looks, how it
sounds, where and how it was damaged, etc.

• How the objects behave over time, possibly influenced by other objects in the world.

This information will make it possible to have the different game components to gather information
from a single, centralized and consistent knowledge base, but it will also allow people working on
the game, whether they are artists or programmers, to have a better understanding of the game world
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they are working on and to have a more expressive language at their disposal when communicating
with the machines they work with, e.g. to more easily express their intent when creating procedural
content generation algorithms.

The following two sections contain guidelines to which any semantic model should adhere to.
We distilled these guidelines from (i) the current state of game design (see Chapter 2), (ii) ideas
and remarks from industry professionals after a number of interviews and talks, (iii) current game
development standards and practices, (iv) research in the field of semantics, and (v) basic common
sense.

3.1.1 Design guidelines

We will now further mark out the requirements to which a semantic model for game worlds should
adhere to.

We want to make a clear distinction between guidelines for the design phase and the runtime phase
of game worlds. The first set of guidelines, targeted at design phase, focuses on:

• the design of the semantics themselves, and

• using semantics to aid designers in creating the game world.

Within these guidelines, we look at the design of game worlds from both a conceptual and a
practical point of view, i.e. these guidelines are targeted at the semantic model itself and at its
practical use by designers.

The first two design guidelines will target the specification of semantics, while the two other design
guidelines will focus on its use during the design phase.

Guideline 1 Inclusion of semantics should have a low impact on the design pipeline

We mentioned in Chapter 2 that budgets for game titles have increased because it takes more people
to create them and gamers expect more detail. It is quite obvious that it would be unacceptable if the
inclusion of semantics would put an additional strain on development teams. This is also the most
major concern developers brought up when explaining such a semantic model in interviews. Defining
and using semantics should fit in smoothly in existing design pipelines and should require minimal
changes.

Reusability is key in achieving this goal. It is impossible to add more information (in the form
of semantics) without requiring some extra effort. However, if the semantic model highly favors
reusability, these efforts could be significantly reduced. When objects share characteristics or behavior,
these need to be defined only once. New objects that share characteristics with existing ones, should
build on top of the existing information instead of requiring any kind of duplication.
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Going from regular game worlds to semantic game worlds is quite a large step, or at least it appears
to be. Therefore the impact should be reduced by integrating the definition of semantics in the existing
pipeline as much as possible. Artists should be able to define necessary parts for a particular object
while they are modeling it, or they should be able to assign a material to an object while texturing
that model. Ideally, the tools for specifying the semantics should be integrated in the artists’ preferred
modeling tools.

This obviously impacts the setup of the semantic model. It should (i) include important concepts
favoring reusability, like inheritance and aggregation - as many other semantic models do, (see
Chapter 2), and (ii) allow for the use and integration of existing game world assets (e.g. models,
sounds, textures and shaders).

However, because of the difference in scope and in gameplay, games will often require a different
approach for the same concept. A good example of this is the damage model for the player (or enemy
characters): in all games, being hit by a gun will injure a character, but some strategy games take into
account where a player got hit and hinder the character’s movements and speed accordingly, while
many shooters use the more simple system of reducing health points when hit. This means that not
all semantics is necessarily reusable between games, but that many of the basic relationships and
connections between components are, e.g. getting hit by a gun leads to an injury (regardless of how
an injury is designed for a particular game). Therefore the model should allow designers to override
particular elements without breaking up the existing information.

We find it important that game world semantics allow for a kind of semantic level of detail that
allows designers to specify certain behavior or information depending on the level needed for a
particular game. This will allow for even more reusability between different games. Designers will be
able to specify core concepts for their game into great detail, while reusing less detailed information
for additional concepts, which is easier to share between games. The promising notion of semantic
level of detail was not further elaborated within the scope of this research project, but is left as future
work in Section 12.3.

Guideline 2 The semantic model should provide a wide expressive range to designers

We mentioned before that to keep up the illusion and to immerse players in the world, it is necessary
that the world behaves as expected. When games play out in realistic worlds, gamers will expect the
objects they find to behave realistically. Designers need to be able to express these behavioral rules.
The concepts and objects found in the real world have already been defined in great detail. Therefore
existing technologies can form a perfect base for any semantic game world model.

Providing an existing ontology based on the real world will not completely cover it for games,
though. Game worlds are only limited by the creativity of their designers. Therefore a semantic
model for game worlds should allow designers to create their own concepts, objects and behavior.
Even games playing in realistic looking worlds often use a fictive ruleset. However, sometimes the
entire game world is fictive, e.g. fantasy worlds or futuristic worlds.
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There is also a huge difference in scope between games and sometimes even within the same game.
A great example of this is Maxis’ 2008 game Spore: the player led an ever-evolving creature from
the cell stage, where the game focused on single-celled organisms, to the space stage, where the
player could visit an entire galaxy with their creature. Designers need to be able to express concepts
and behavior on any scope in a seamless and consistent way. This was another concern raised in
our interviews with game designers who thought a semantic representation model might stifle their
creativity.

In general the semantic model should allow designers to express their full intent without any
limitations: they should never feel semantics is hindering their expressive power.

Guideline 3 Semantics should further enable procedural generation

We already mentioned how the sheer size of current game worlds will drive the need for new
and improved procedural generation techniques. However, as we explained before, these procedural
techniques often contain unintuitive parameters which makes them difficult to tweak without knowing
the heart of the algorithm behind them. This is a result of the nature of many of the procedural
generation techniques used at the moment. Often these techniques have no immediate connection
with the target domain. In Chapter 2 we mentioned how Perlin noise [68, 69] is often used to generate
heightmaps. However the parameters for that noise function have no immediate connection to the
domain of terrain heightmaps.

A good semantic model for game worlds can help others to understand the procedural techniques:
by hiding the unintuitive parameters and linking them to clear, understandable, goal domain related
and intuitive semantic attributes, states and characteristics, the techniques can become understandable
by any user.

Procedural techniques have been developed that can build up part of the game world (e.g. cities,
streets and buildings). To allow the semantic model to be used within such generation techniques, it
is important that we can express information about how the structure of the world looks like in the
model. For example, we should be able to express which furniture is typically found in a room, which
rooms in a house, which buildings in a city, etc. Also interrelationships between objects, i.e. how an
object is usually placed relative to others, would provide these procedural generation techniques with
a wealth of information.

As mentioned before, a semantic model should also allow for communication between existing
techniques, to allow designers to combine and integrate multiple techniques to generate a consistent
and coherent whole. Because of the geometric nature of most procedural content generation, any
semantic model for game worlds should specifically allow the specification of geometric information,
e.g. on the structure of objects or geometric relationships between them. Quite often, semantic
models or ontologies do not have specific mechanisms or concepts to do this, making it much harder
to combine them with procedural generation techniques. Because of the growing importance of
procedural generation, we think that a semantic model for game worlds should allow easy specification
for geometric information.
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Guideline 4 Deploying semantics should reduce, not increase, design efforts

Based on the work we discussed in Chapter 2, we found that using information at hand, we can
considerably reduce design efforts. One of the main examples we gave, was using physical information
to assign values automatically: based on the material (and its density) and the volume of a model,
we can automatically calculate the weight of an object. This does however require that the semantic
model should be physically sound, as we will discuss in one of our gameplay guidelines.

However, from a practical point of view, it is also important to try and derive semantic characteristics
from the assets used in the game. Simple techniques like using the name of a model to decide (or at
least suggest) what type of object this model represents or find out the material based on the textures
used in the model can significantly reduce the effort involved in designing semantically enriched
game worlds.

Most of the work lies in the actual implementation of the semantic model in design tools, but
for the model, this guideline has practical consequences as well. As mentioned in guideline 1, all
game assets and content need to be part of the specification model. However, it becomes clear that it
is crucial to have clear links between these game assets and the abstract, semantic concepts of the
semantic model ontology.

3.1.2 Gameplay guidelines

This section provides guidelines to improve the gameplay quality for worlds built with the semantic
model.

Guideline 5 Designers should be able to define physically sound game worlds

We briefly mentioned this in guideline 4: it should be possible to define physically sound systems
within the semantic model. It should be possible to mathematically express dependencies between
object characteristics.

Note that this does not mean that all game worlds need to adhere to real world physical laws. On
the contrary: the semantic model should allow designers to build their own system of physical laws
that are present in their own imaginative world, whether it is simplification of real-world laws or a
completely fictive fantasy world.

For many years, games have been using more and more sophisticated physical simulation engines.
We’ve seen many examples where these physical simulations led to new gameplay, a recent example
being Ubisoft Montpellier’s 2011 From Dust where the player indirectly controls the life of some
island inhabitants by altering the terrain, mainly by picking up earth, water or lava and dropping it
elsewhere.

Since we want to be able to build game worlds that use the same semantics for many game engine
components, these physics engines are an important candidate to use the information expressed by
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the semantic model. Careful consideration needs to be taken when creating this model in order to
accomplish this goal.

Guideline 6 Designers need to be able to approach game worlds and objects from different perspec-
tives

There are many ways one can regard an object: we can look at its shape, the texture, the composition
or other visual qualities, but we can also regard it based on its function or behavior. In Chapter 2,
we gave a number of examples on how different ontologies and models are used to express many of
these aspects of a world.

An important way of handling this in a semantic model is allowing multiple inheritance, which
is one of the ways to enable designers to discern objects based on multiple types of characteristics
(functional, visual, material...).

Each of these characteristics needs their own set of concepts to be defined. It is important for the
semantic model to include all these concepts.

Guideline 7 The semantic model should provide a consistent way to define interaction with game
worlds

The clearest distinction between games and other types of entertainment is the clear focus on
interactivity, making the way a player interacts with the game world one of the most important aspects
of the game.

We therefore deem it very important for any semantic model for game worlds to have a detailed
language to express this interaction, obviously seamlessly integrated with all other concepts of the
model.

One of the most widely used semantic concepts for interaction is that of smart objects, discussed
in great detail in Chapter 2. We think it is necessary that a semantic model for game worlds should
have at least the abilities of this concept with regards to interaction, perhaps even more focused on
specific gameplay-related interaction.

Guideline 8 The world should be kept semantically consistent throughout the whole game

It is not enough to just define a semantic game world. While playing the game, the semantic
consistency of that world should be maintained. This means that the semantic model should include
mechanisms that allow for this semantic consistency maintenance in a generic and intuitive way.

When a player interacts with the objects in a game world, the effects of that (inter)action should be
applied to the game world. This can, in turn, spark more objects to react to these effects, triggering
a chain reaction. A great example of a game series that heavily relied on this subject is Dynamix’
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1993-1995 series The Incredible Machine, (a.k.a. TIM). The player needed to solve some puzzles
by using the behavior of a number of provided objects like treadmills, balloons and different kinds of
balls (each with their own weight and behavior).

We mentioned a number of times the notion of immersion: having a world behave as it is supposed
to and in a consistent manner throughout the entire gameplay session is a very important focus point
and since semantic game worlds are ideally suited to achieve that, this is an important guideline.

Guideline 9 Semantically modeled game worlds should enable emergent gameplay

Another guideline to keep in mind when creating a semantic model is one we discussed in great
lengths in the previous chapters already: the search for emergent gameplay.

This guideline is closely connected to some of the other guidelines. For example, a consistent
physical simulation (guideline 5), or a detailed method of interaction (guideline 7) can both lead to
more emergent behavior.

3.2 Three levels of semantics

Parallel to these guidelines for a semantic model for game worlds, we distinguish three different
levels of semantic information. An important distinguishing factor to organizing the information is
the scope of the information.

The first level is what we call intra-object semantics. These are characteristics that are proper to
that object, and that object only.

The second level comprises the object interrelationships. This includes all sorts of relationships
between two or more objects. These can include part/whole relationships, placement relationships,
ownership relationships, etc.

The third and final level is world semantics. This is information that is not specific to just some
objects and rather holds for the entire world.

We will now give a more detailed description of these three levels and give some examples of the
type of information that we can regard at each of them.

Level 1 Intra-object semantics

Under intra-object semantics, we understand all characteristics and behavior of an individual object.
One of the main characteristics of an object is clearly its physical attributes, e.g. the weight of an
object or its volume, but also material characteristics, e.g. whether it is flammable or can be penetrated
by bullets. This is important information for guideline 5 on physical systems.

For guideline 7, on interaction possibilities, it is important to describe functional characteristics of
an object, e.g. the purpose of an appliance, how it responds to user interaction or the general behavior
of the object.
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Obviously, more abstract, qualitative characteristics are equally important. These are characteristics
that are not clearly measurable or are not to be expressed in objective values, e.g. the comfort level of
a chair, the morale of an athlete or the quality of certain goods.

Level 2 Object interrelationships

Objects in a scene are subject to certain relationships among each other. Different objects may share
properties, e.g. have the same material, but they may also be similar on a functional level, e.g. a
candle and a flashlight can both offer light. Inheritance relationships are therefore clearly one of the
most important ones in any kind of semantic model, as we already mentioned in guideline 1.

We also mentioned relationships based on game world structure: which objects are part of another
object, e.g. a graphics card is part of a computer, a furnace is part of a kitchen or a ticket booth is
part of a railway station. These objects might also have placement relationships with others, e.g. a
cooker hood (or extractor hood (UK), range hood (US)) can be found at roughly one meter above a
furnace or the ticket booth should be placed at the entrance of the railway station. These types of
relationships are very important with regard to guideline 3.

In the previous level, we mentioned qualitative characteristics, like the quality of certain goods.
While it is quite possible (and often done in games) to have qualitative characteristics that are constant
throughout the game, this does not need to be the case. For this additional relationships can play
an important role. The health level increase upon eating a piece of fruit will be the same for every
characters, however the increase in satisfaction upon eating them, might very well depend on the
appreciation of that character towards that particular type of food.

Instead of relationships between characters and objects, another often found example from games
(mainly strategy games and role-playing games) is the addition of relationships between different
nations or factions and between characters. These need to be expressible at the object interrelationships
level of the semantic model.

Level 3 World semantics

Next to the object level, we can also define semantics at a global level, which we call the level of
world semantics. We already mentioned in Chapter 2 that adaptive virtual worlds would greatly
benefit from a generic source of information regarding the soil: e.g. nutrients in the earth or the
amount of surface water. This could be used to create virtual ecosystems. A good example of this type
of behavior is Rockstar’s 2010 Red Dead Redemption where the player played a cowboy character
roaming a huge open world with a living ecosystem.

Obviously time plays an important role here as well. In springtime, fully grown crop fields can be
used as camouflage, and frozen rivers, in winter, can suddenly be traversed by vehicles. This could,
for example, increase the strategic possibilities in strategy games.

It is clear that, although this information is not attached to any specific object in the world. But the
main point to realize when designing the world semantics level in our semantic model is that attribute
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values do not need to be uniform for the entire game world: temperatures and soil information will
differ per region in the world. This is a clear distinction between the intra-object semantics level,
where each object has a single specific value for its characteristics. This should be taken into account
when creating the semantic model. Another important characteristic is that the world itself, including
its characteristics, needs to be accessible by any entity in the game world. This means that when
specifying characteristics for a particular type of object, concepts defined at the world semantics need
to be referable.

3.3 Conclusions

This chapter contains a number of important guidelines, which we distilled from the current state
of game design and research. We split these up into design guidelines on how semantics can
assist designers when creating a game, and gameplay guidelines on where semantics could improve
gameplay.

We also distinguished three distinct levels in game world semantics: intra-object semantics, object
interrelationships and world semantics. We discussed the specific needs these levels pose on a
semantic model for game worlds.

Now that we marked out the necessary requirements for a semantic model, including the levels at
which the semantics needs to be specified, we will propose our semantic model for game worlds in
the next chapter. In the course of this work, we will often check back in with these guidelines and
assess where and how the solutions adhere to these guidelines.
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CHAPTER 4

SEMANTIC MODEL FOR GAME WORLDS

In the previous chapters, we reviewed the state of the art of game world semantics in both commercial
games and research and we set out some guidelines to which game world semantics should adhere to.

This chapter proposes our specification model for game world semantics. This model can be used
as a ruleset to build ontologies, or alter existing ones, specifically to be used in the context of game
worlds.

In this model, we define some concepts, both based on real world subdivisions of objects and based
on common elements often found in games. Rules and constraints between these concepts are set and
discussed.

We will also look back at the guidelines proposed in Chapter 3 and to the related work reviewed in
Chapter 2. Examples from games are used to point out the importance of a concept or a rule to game
worlds.

Some of the concepts we define are common in most ontologies and semantic models, however
others are specifically focused on game worlds, either from a design perspective, i.e. what information
can aid game developers in designing game worlds, or from the gaming perspective, i.e. what
information can improve the gameplay quality. Where necessary, we will mention the importance of
these concepts for game worlds and we will draw from examples from existing games to back up
those claims.

The backbone of the model is based on the three levels of semantics we distinguished in the
previous chapter. The main element is the entity, which can be used to specify any kind of entity one
can think of in a game world: objects, characters, scenes, spaces but also more abstract, non-physical
entities, e.g. a government, a company or a skill. This represents the intra-object semantics.

For these entities, we can now define characteristics or attributes, e.g. the comfort level of a
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sofa, the magazine size of a gun, the happiness level of a character or the engine power of a car.
Additionally we can define behavior for entities, i.e. the purpose of the entity, the ways one can
interact with them and the services they provide.

For the tangible entities, we can also define the matter of which they are made, e.g. wood,
metal or water. Since attributes and services can be defined for matter as well, entities can ‘inherit’
characteristics and behavior from the matter of which they consist.

For the next level of object interrelationships, the model allows the creation of one-to-one relation-
ships between entities. Each relationship has a relationship type and a source and target entity. For
example, we can define an ally relationship between two nations, an owns relationship between a
knight and a sword or a has knowledge of relationship between a character and a skill.

The highest level of world semantics is represented in the model by the semantic game world itself.
Since this world needs similar characteristics and behavioral information as any entity, we treat the
game world as an elevated entity that is accessible by all other entities and contains all entities and
relationships related to that world.

The chapter begins by elaborating on the main structure of this semantic game world. After that
we further detail entities and matter by distinguishing some different categories. Attributes, services
and relationships are discussed in more detail as well as the link of all concepts from the semantic
model with game content like 3D models, textures and sounds.

4.1 Main structure of a semantic game world

The overarching concept that encapsulates every detail of a game world is called SEMANTIC GAME
WORLD in our semantic model. It contains entities, which are instances of ENTITY CLASSES, and
RELATIONSHIPS between these entities. Characteristics and behavior of ENTITY CLASSES are
expressed in ATTRIBUTES and SERVICES. Since we want to define behavior for the world itself,
a SEMANTIC GAME WORLD is an instance of an ENTITY CLASS as well. We formally define a
SEMANTIC GAME WORLD in the following way:

SEMANTIC GAME WORLD
A SEMANTIC GAME WORLD is a virtual environment that is populated with semantically-rich
entities, i.e. instances of ENTITY CLASSES, possibly connected to each other by RELATION-
SHIPS. The SEMANTIC GAME WORLD is in itself an instance of an ENTITY CLASS elevated
to a world level for a specific game.

The structure of the SEMANTIC GAME WORLD reflects the three levels of semantics, distinguished
in Section 3.2. Each game, or at least each level of a game, contains exactly one SEMANTIC GAME
WORLD, enriched by information on its behavior and characteristics, but this will be discussed later
on in this chapter. The SEMANTIC GAME WORLD represents the world semantics.

The SEMANTIC GAME WORLD consists of a number of entities, again enriched with semantics.
These entities are instances of ENTITY CLASSES which represent not only objects but also abstract
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Figure 4.1: The structure of a SEMANTIC GAME WORLD containing multiple entities and RELA-
TIONSHIPS between entities. Relationships have a source entity and target entity. Both entities and
the SEMANTIC GAME WORLD are instances of ENTITY CLASSES.

entities, and represent the intra-object semantics. The characteristics and behavior of a SEMANTIC
GAME WORLD are, in essence, equivalent to that of entities and therefore we define it as an entity as
well, more specifically an instance of an ENTITY CLASS elevated to the world level.

Through RELATIONSHIPS, representing the object interrelationships, entities can be linked together:
each RELATIONSHIP has one source and one target entity.

In Figure 4.1 the structure of a SEMANTIC GAME WORLD is presented. In the following section,
we will further define and distinguish the ENTITY CLASS concept.

4.2 Entity classes

Every game world is populated with objects, from flowers, plants and trees, over streets, cars and
buildings, to people and animals. More than these pure, tangible objects, we can also think of
‘invisible’, yet physically present entities like the inventory of backpack, a parking lot on a street or
the check-in space of an airport. However, a game world can contain also more abstract, non-physical
entities like a government, a skill, an idea, a story or a clue. We combine all these objects and entities
underneath one concept of the ENTITY CLASS. Based on these different types of entities we notice in
game worlds, we created the following division of this concept:

ENTITY CLASS
ENTITY CLASSES represent the classes for all possible game world entities. We distinguish
PHYSICAL OBJECT CLASSES and ABSTRACT ENTITY CLASSES. In our semantic model
we will consistently use the term class when talking about objects, since the model does not
describe individual instances of a class, but rather classes of objects, i.e. descriptions of a
collection of objects all sharing similar characteristics. There is a hierarchical structure, i.e.
parent-child relationships, between classes in which children inherit the characteristics of the
parent class.
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Entity Class

Abstract Entity Class Physical Object Class

*
* inherits from

Tangible Object Class Space

*
* contains

Figure 4.2: ENTITY CLASSES contain all ABSTRACT ENTITY CLASSES and PHYSICAL OBJECT
CLASSES. These PHYSICAL OBJECT CLASSES are further split up in TANGIBLE OBJECT CLASSES
and SPACES.

PHYSICAL OBJECT CLASS
PHYSICAL OBJECT CLASSES are all classes that represent entities that have a physical presence
in the world. We split these up into TANGIBLE OBJECT CLASSES and SPACES. PHYSICAL
OBJECT CLASSES can be composed of other PHYSICAL OBJECT CLASSES to create compound
objects.

TANGIBLE OBJECT CLASS
TANGIBLE OBJECT CLASSES are objects made up of a single type of MATTER; e.g. a solid
wooden chair or a brick wall.

SPACE
SPACES are regions bounded by a 3-dimensional shape that can contain instances of PHYSICAL
OBJECT CLASSES. Examples are: inventories or parking lots. These SPACES do not have a
direct physical representation other than the representation of the PHYSICAL OBJECT CLASSES
inside them.

ABSTRACT ENTITY CLASS
In contrast to PHYSICAL OBJECT CLASSES, that all have a physical presence (even if not
always visible in the case of SPACES), ABSTRACT ENTITY CLASSES are meant to describe
entities that do not have a physical presence at all. An example of this is a government. The
government can have physical members (presidents, ministers), but the government itself has
no physical presence in the virtual world. Another example is a company. This company
might have physical assets like factories or office buildings, but again, the company itself is an
abstract entity. However we do want to describe characteristics for these ABSTRACT ENTITY
CLASSES like we do with PHYSICAL OBJECT CLASSES.

The structure explained in the definitions is represented in Figure 4.2. Important to note is
that ENTITY CLASSES can inherit from other ENTITY CLASSES. This includes inheriting all
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characteristics and behavior.

Since next to these conceptual hierarchies (e.g. a table inherits from furniture, which in turn
inherits from physical object), there can also be physical hierarchies to form compound objects.
For example, a car is built up of some TANGIBLE OBJECT CLASSES like wheels, doors, a chassis,
bodywork, but also SPACES like trunk space, multiple seating spaces and a gas tank. We therefore
define that PHYSICAL OBJECT CLASSES can contain other PHYSICAL OBJECT CLASSES. This
way, complex compound structures can be defined, like the example of the car. Another example is
an airport. The TANGIBLE OBJECT CLASS airport contains, among others, a check-in SPACE, a
waiting SPACE and a security check SPACE. The check-in SPACE contains a queue SPACE and the
TANGIBLE OBJECT CLASS check-in counter, which in turn is composed of the TANGIBLE OBJECT
CLASSES counter desk, chair and conveyer belt.

These TANGIBLE OBJECT CLASSES are all composed of a particular type of MATTER, which has
characteristics as well. In the next section, we take a closer look at this MATTER.

4.3 Matter

In the definition of TANGIBLE OBJECT CLASS, we mentioned the term MATTER. Comparable to the
real world, each tangible object is composed of a particular MATTER. Like the entities themselves,
MATTER has particular characteristics. Entities composed of MATTER inherit these characteristics,
e.g. a wooden table becomes flammable, since wood is flammable, and drinking a container filled
with water, quenches the thirst, since that is a service defined for water. We define MATTER as
follows:

MATTER
MATTER is anything that has mass and occupies space. MATTER consists of chemical elements;
e.g. Hydrogen or Oxygen.

The MATTER of which an object consists plays an increasingly large role in modern games. The
physical characteristics of an object, based on its MATTER, can have an important impact on the
gameplay. A popular genre, the cover-based shooter, allows players to duck behind objects to cover
from incoming enemy fire. However, depending on that object’s MATTER, enemies can shoot through
the cover, also depending on the weapon they use. Machine guns can rip through wooden crates,
but it might take a bazooka to hit a character hiding behind concrete structures. We can state that
destruction in general, which is obviously heavily dependent on MATTER, is becoming more and
more important in games (also see Chapter 2).

A more widespread form of physics simulation in games is rigid-body collisions. Almost all games
incorporate some form of these collisions. Again the physical characteristics of the object’s MATTER,
define how that object should respond to a collision, e.g. a rubber object will behave differently than
a concrete one.
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Matter

Substance

consists of multiple

MaterialMixture
consists of multiple

Figure 4.3: We split up MATTER in three categories: SUBSTANCES like water, MIXTURES composed
of multiple substances like milk and MATERIALS composed of multiple types of MATTER like cotton.

Based on the many different types of MATTER, each with unique characteristics, we distinguish
the following categories (also see Figure 4.3).

SUBSTANCE
SUBSTANCES consist of either pure chemical elements or combinations of multiple elements
or other SUBSTANCES through chemical reactions; e.g. water or sugar.

MIXTURE
MIXTURES are two or more SUBSTANCES that are blended together (i.e. not chemically
combined); e.g. milk or sugar water.

MATERIAL
MATERIALS are a composition of multiple types of MATTER. These can be:

• Raw materials; e.g. cotton or ore.

• Semi-finished materials; e.g. steel.

In the definition of SUBSTANCE, we mentioned how a SUBSTANCE can be created by chemically
binding different elements or SUBSTANCES. MIXTURES can be composed of different SUBSTANCES
or MIXTURES as well as MATERIALS can be composed of different MATTER, however, the main
difference with SUBSTANCES is that through the chemical reaction, a SUBSTANCE is a completely
new type of MATTER with unique characteristics and behavior. However, in a MIXTURE for example,
the characteristics of the SUBSTANCES are maintained, e.g. the MIXTURE milk contains among
others, the SUBSTANCE water. Since water can be used to extinguish flames, milk will do the same.
However, two SUBSTANCES chemically bound, will not necessarily take over all characteristics. It is
also much easier to break up MIXTURES into the SUBSTANCES they are composed of. In the case of
a SUBSTANCE a chemical reaction will be necessary to break it up again.

We have been talking a lot about characteristics and behavior of ENTITY CLASSES and MATTER.
The following section introduces the concepts of ATTRIBUTES and SERVICES which are used to
specify this.
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4.4 Attributes and services

Almost every object present in a game has at least some characteristics defined, or as we call them in
our model ATTRIBUTES: from the rate of fire of a gun in a shooter to the dexterity level of a character
in a role-playing game. Obviously also ABSTRACT ENTITY CLASSES can have ATTRIBUTES, e.g.
the book value of a company, the required level of a skill (i.e. the level a character should be at
before able to learn the skill) or the popularity of a government. Therefore, in our model, they are
linked to ENTITY CLASSES to enable ATTRIBUTES to be defined for all types of entities. Next to
ENTITY CLASSES, also RELATIONSHIPS and MATTER need to have ATTRIBUTES. For example,
a character can have a knows RELATIONSHIP with a skill, but the proficiency of the character in
a particular skill can be expressed in a RELATIONSHIP ATTRIBUTE (more examples are given in
the section on RELATIONSHIPS). MATTER ATTRIBUTES can be the fire resistance or density of a
material, the nutrition value of edible substances or the hardness of wood. We define them formally
as follows:

ATTRIBUTE
An ATTRIBUTE is a characteristic either of an ENTITY CLASS (e.g. the comfort level of
chairs, occupied value of a parking lot, or the net worth of a company), a RELATIONSHIP
(e.g. the strength of an ally relationship) or MATTER (e.g. the density of milk). TANGIBLE
OBJECT CLASSES made up of a particular type of MATTER inherit the ATTRIBUTES from that
MATTER.

An ATTRIBUTE value can be either a numerical value, a boolean value, a character string, a vector
or a formula in terms of other ATTRIBUTES, e.g. the ATTRIBUTE Gross weight of a truck is defined
as the sum of its Tare weight and Net weight.

In the real world, entities have particular functions and serve certain purposes, which should also be
the case for entities in a virtual world; for example, a jacket has the SERVICE of providing warmth
to the person wearing it or a bomb will deal damage to the entities in its surroundings. Some of
these SERVICES are inherited from the MATTER the entity is made of: a wooden table will fuel
fire because this is a SERVICE of the MATTER wood, while water on the other hand will have the
SERVICE to extinguish fire.

In Chapter 8 we will give a detailed description about the composition of SERVICES, their role in
game worlds and the possible requirements and effects one can define for SERVICES. We will also
give an in-depth discussion of the framework we built to handle SERVICES at runtime and how this
can be used to maintain semantic consistency in game worlds. For now, we define them as follows:

SERVICE
A SERVICE is the capacity of an ENTITY CLASS or of MATTER to perform an ACTION,
possibly subject to some requirements.

ACTION
An ACTION is a process performed by an ENTITY CLASS, yielding some ATTRIBUTE value
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changes or yielding new instances of ENTITY CLASSES; e.g. a vending machine providing a
can of soda or an oven that heats up objects inside it.

That last example can be formalized in the following way:

The TANGIBLE OBJECT CLASS oven has a SERVICE that performs the ACTION heat
which increases the value of the ATTRIBUTE temperature of objects inside it, but only
if the condition “value of ATTRIBUTE state of the oven equals on” is satisfied.

The concept of SERVICES allows designers to describe the basic behavior and the interaction
possibilities of objects in a game world in a generic way. The interaction and object behavior plays
an important role in the communication between player and game world. In the previous chapters
we already mentioned this importance and some examples from gameplay as well. One well-known
game series where object behavior and the impact thereof on the player is a vital element of the
gameplay is Maxis’ The Sims.

Such SERVICES are often present in other games as well, but usually more sporadically and, above
all, more inconsistently. Examples of these are almost all first person games, e.g. Eidos Montreal’s
Deus Ex: Human Revolution. In this game, players can pick up a vending machine, but they cannot
get any products from it. There are however some objects that do allow some form of interaction,
e.g. the player can turn on a water faucet or hack into a computer. Hacking is useful for gameplay,
however turning on faucets is not. It is therefore quite unclear why this interaction is available, while
others are not, e.g. turning off lights. We argue that a more generic and consistent way of expressing
the SERVICES provided by objects, will stimulate reusability, making it easier to add them to many
different games without much additional work.

4.5 Relationships

Objects and other entities in a game world are not necessarily individual entities combined in one
world. Often there exist relationships between them, which we define as follows.

RELATIONSHIP
A RELATIONSHIP is a connection of a particular type associating two or more entities or
ENTITY CLASSES; e.g. there might exist an ally RELATIONSHIP between two nations or an
on top of RELATIONSHIP between a desk and a pen. As mentioned before, ATTRIBUTES can
be defined for a RELATIONSHIP; e.g. the ally relationship might have a strength ATTRIBUTE
defining the intensity of the ally relationship.

An example of such RELATIONSHIPS can be found in many strategy games involving diplomacy,
e.g. the Firaxis series Civilization or many of the Paradox Interactive games like the Europa
Universalis series. In these games nations or regions have RELATIONSHIPS defined where a score
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parameter defines the strength of that RELATIONSHIP, which defines whether they are allies, neutral
or enemies.

We already mentioned how conditions or requirements are defined for SERVICES. By using condi-
tions RELATIONSHIPS can be defined implicitly. A classic example is: the is father of RELATIONSHIP
between two person entities, applies when a is parent of RELATIONSHIP is available between these
two entities and the value of the sex ATTRIBUTE of the source entity of the RELATIONSHIP is male.

Conditions for both SERVICES and RELATIONSHIPS can also be combined into the following
concept:

CONTEXT
A CONTEXT of a particular type is a collection of preconditions that describe a particular
situation. In our semantic model, CONTEXTS are used (among others) to define when and how
a SERVICE applies and to define implicit RELATIONSHIPS.

The concept of CONTEXT is important with regards to reusability. We will explain this using
the following example. For each TANGIBLE OBJECT CLASS inheriting from electronic device, we
want to define that it only provides SERVICES when the CONTEXT operational applies. Now we
can define different conditions for this CONTEXT for different children of the TANGIBLE OBJECT
CLASS electronic device. For example: for all electronic devices this CONTEXT would contain the
condition “value of state ATTRIBUTE notequals damaged”, battery powered devices would extend
that with the condition “contains x number of instances of the TANGIBLE OBJECT CLASS battery
for which a value for power level ATTRIBUTE higher than zero”, while electric powered devices
would extend that with “connected to instance of TANGIBLE OBJECT CLASS power cable, which is
in turn connected to instance of TANGIBLE OBJECT CLASS power socket”.

4.6 Game content

Now that we discussed the semantic game world model in the previous section, we need to link these
entities to actual game content. Therefore, we first have some basic concepts like AUDIO, MODEL,
ICON or GAME MATERIAL. Instances of these concepts can be linked to specific files, in whatever
format the game requires. For example, the MODEL might link to a .collada file for a 3D game but
also a .bmp file for a 2D game. We will refer to all these concepts as CONTENT. Now we will discuss
some concepts that will link this CONTENT to the concepts described in the previous section.

GAME-SPECIFIC CLASS
A GAME-SPECIFIC CLASS is an object, used in a specific game that is linked to a TANGIBLE
OBJECT CLASS and a type of MATTER (or a PHYSICAL OBJECT CLASS consisting of several
TANGIBLE OBJECT CLASSES). A collection of CONTENT can be defined, for which each item
of CONTENT is defined for a specific CONTEXT and for a specific GAME VIEW. Values (or
value ranges) can be set for the ATTRIBUTES.
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PHYSICAL OBJECT CLASS:
 Dining chair
ATTRIBUTE ‘Comfort’:
 12

Part of Dining chair:
 TANGIBLE OBJECT CLASS:
  Chair leg
 MATTER:
  Red oak wood

Part of Dining chair:
 TANGIBLE OBJECT CLASS:
  Cushion
 MATTER:
  Leather

SPACE of Dining chair:
 Seat space

SPACE of Dining chair:
 Backrest space

Figure 4.4: A GAME-SPECIFIC CLASS for a wooden dining chair with leather seat. It inherits from
PHYSICAL OBJECT CLASS Dining chair and consists of several TANGIBLE OBJECT CLASSES and
SPACES and has values specified for its ATTRIBUTE.

Before a 3D model can be used in the game, its semantics needs to be specified. ENTITY CLASSES
need to be assigned, ATTRIBUTE values need to be filled and SPACES need to be marked. Figure
4.4 shows a GAME-SPECIFIC CLASS of the PHYSICAL OBJECT CLASS Dining chair. It consists of
several parts, e.g. a TANGIBLE OBJECT CLASS Cushion of MATTER Leather and a TANGIBLE
OBJECT CLASS Chair leg of MATTER Red oak wood. The value for ATTRIBUTE Comfort is 12.
Also some 3D shapes are defined that mark the SPACES, e.g. one for the backrest of the chair and
one for the seat of the chair. 3D shapes marking SPACES can be points, lines, polygons or volumes.

GAME VIEW
A GAME VIEW defines a particular game-specific view. Examples of these can be 3D view,
map view, inventory view or minimap view.

The concept of a GAME VIEW, comes from the fact that games often have different representations
for the same object instance in a game. For example, a particular weapon might be represented by
a dot on the minimap of the game, in the 3D view it might be represented by a complex geometric
model, but when the player picks up the weapon and it disappears into the player’s inventory, it might
be represented in that inventory’s screen with a weapon icon.
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The CONTENT is not only dependent on the view, but also on the CONTEXT. For example, when
an object is damaged (i.e. state ATTRIBUTE equals damaged), perhaps a different model (or icon)
might be used for the same instance.

It is important to note, that the semantic representation of this object is the same throughout all
CONTEXTS and GAME VIEWS.

4.7 Use of semantic information

We will now discuss how the semantic information is used in the applications that are described in
chapters 5 through 8. These chapters describe procedures for layout solving, generation of buildings,
procedural filters to enhance or modify objects and specifying behavior using services.

In the case of semantic layout solving, see Chapter 5, designers create descriptions with a vocabulary
composed using our model. As explained previously, a GAME-SPECIFIC CLASS is created from a 3D
model and can consist of SPACES. To these SPACES, 3D shapes are associated and the underlying
layout solving technique will use these 3D shapes together with the RELATIONSHIPS associated to
the ENTITY CLASS or its SPACES.

The layout solver uses this geometric information, so a step is needed to filter this geometric
information from the semantic concepts in the descriptions. For example, a particular shape of a chair
can be defined as the seating SPACE, where a pillow can be laid on by specifying a RELATIONSHIP
between the seating SPACE of a chair and the TANGIBLE OBJECT CLASS pillow.

In Chapter 6 a similar approach is in place. In this case, several procedural content generation
techniques create geometry for the game world and can register these, after associating the geometry
with semantic information, to a semantic moderator . This process creates a semantic world
representation which is shared by all procedural generation techniques. This moderator will now
check all RELATIONSHIPS specified for the newly registered object with the objects that already
exist in the world at the moment of registration. When the RELATIONSHIPS are associated to a
geometric constraint, the geometric information is again filtered from the semantic representation and
this information is used to check these constraints. If a newly registered object is not compliant to the
rules specified, this is signaled to the procedural generation technique that registered it.

Procedural filters, introduced in Chapter 7, enable designers to create filters that change the look
and feel of a game world. Different types of building blocks exist to perform these changes, and one
of these is the semantic query block. The entire game world can be filtered for objects that match
these queries, after which other building blocks can perform operations on those filtered objects.

In all these applications, a designer can use the high-level semantic information to easily and
intuitively create descriptions or make queries of the game world. When solving on a geometric level
is needed, the necessary information is filtered and passed along to the layout solver.

For the services in Chapter 8, the processing is a bit different. A SERVICE is a capacity of an
ENTITY CLASS or MATTER to perform an ACTION. Once the object is inserted in the game world,
a semantics engine continuously checks whether the conditions of its SERVICES are satisfied or not.

47



4. Semantic model for game worlds

Once certain conditions are satisfied, the ACTIONS may be performed. So, a table will burn when
exposed to fire, if the MATTER is specified as burnable above a certain temperture and there is an
ACTION defined to create fire. It will not automatically create a fire knowing the property of the table.
The fire of one object may have the effect that the temperature of another object increases to above
the specified level, in which case the other object is also set on fire.

4.8 Discussion

Next, we will discuss how the proposed semantic model adheres to the guidelines set in Chapter 3.

We will start by discussing the design guidelines. Design guideline 1 expressed the need for
the inclusion of semantics to have a low impact on the design pipeline. Our proposed semantic
model favors reusability, mainly through inheritance, wherever possible. The most important one
is the parent-child inheritance of ENTITY CLASSES. ATTRIBUTES will only need to be defined on
the lowest common class and by using multiple inheritance, repetitive tasks become unnecessary,
e.g. a flashlight can inherit ATTRIBUTES like battery level and the CONTEXT operational from
a common class battery powered device, while inheriting the SERVICE light surroundings from
another common class light provider.

An important downside of using multiple inheritance is the fact that it becomes impossible to
prevent users of the model from creating inconsistent or ambiguous semantics. Therefore, checking
the relevance and validity of the work remains the responsibility of the designer. Obviously, speci-
fication tools can help designers with this task by warning for potential inconsistencies. Semantic
specifications should also allow methods to disambiguate results. In our model, we allow items, e.g.
ATTRIBUTES, to have multiple names, or different items sharing names. This allows a designer to
differentiate between ATTRIBUTES that were otherwise shared between two parents of the same
ENTITY CLASS. Moreover, the ability of multiple inheritance is important in our views on semantic
game worlds. Objects in the real world can often be regarded in different ways: a can of gasoline can
be perceived as a type of fuel, but also as a potential bomb, a sofa can be used as a sitting surface, but
also as a bed or as an obstacle to hide behind. It is important that designers can specify all these views
on objects using semantics, even though this requires the designers to watch over the correctness and
consistency of their creations.

Another point of guideline 1 was the ease of integration with existing game assets like models
and audio. In the Game content concepts, we explained how many different types of CONTENT can
be linked to underlying semantic entities and how different types of assets can be defined based on
CONTEXT and GAME VIEW without changing this underlying entity. The fact that the semantic
model handles all content equally, no matter what the associated file format is, makes it independent
from any game engine, asset formats or target device.

Design guideline 2 demanded a wide expressive range. Our semantic model provides designers
with a variety of options, e.g. one can express MATTER to the most minute detail based on the actual
chemical elements of a SUBSTANCE, or instead use less defined MATERIALS or a combination of
both. The limited subdivision of ENTITY CLASSES allows designers to distinguish all entities of their

48
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game world however they like, while still providing them the necessary elements to describe their
characteristics through the use of ATTRIBUTES, the definition of MATTER, the idea of SERVICES, etc.

Design guideline 3 expressed the need to further enable procedural generation techniques. Our
semantic model, especially through the definition of ATTRIBUTES for MATTER and ENTITY CLASSES
makes sure procedural generation techniques can be fully customized to any characteristic of an
object. These ATTRIBUTES provide an effective solution to the problem of vague parameters of
procedural techniques. By mapping these ATTRIBUTES to the low-level technique parameters, these
techniques open up to a wide range of users that do not need to know the actual algorithms, but simply
need to understand the ATTRIBUTES.

Furthermore, the addition of RELATIONSHIPS enables designers to express the structure of the
world in any way that seems fit. A designer can create placement relationships to define how furniture
is placed relative to each other or composition relationships can be used to define how structures need
to be subdivided, e.g. to be used in split grammars or other procedural subdivision techniques.

Design guideline 4 asks for a reduction of the effort to design game worlds. However, the techniques
to do this are mainly independent from the semantic model, we want to note that the fact that all
CONTENT can be linked to semantic concepts (textures and shaders can be linked to MATTER, models
to TANGIBLE OBJECT CLASSES...), makes it easier to create techniques that try to automatically
assign semantics based on this CONTENT. We will further discuss this topic in the chapters about the
practical implementation of this semantic model (Chapters 9 and 10).

Next, we will discuss the gameplay guidelines. Gameplay guideline 5 asked for the ability to create
physically sound game worlds. For this the semantic model provides an extensive way of describing
MATTER including all its characteristics through ATTRIBUTES. Linking the semantic physical and
materialistic information to any physics engine will allow game worlds to be physically sound without
too much effort.

Gameplay guideline 6 expressed the need for designers to approach objects from different angles. It
asked for multiple inheritance and the ability to discern objects based on many different characteristics:
functional (SERVICES), visual (CONTENT) and materialistic (MATTER). We feel that our proposed
semantic model allows for a wide range of angles on any entity available in game worlds.

Gameplay guideline 7 asked for a consistent way of expressing interaction with objects. This
interaction is elaborately expressible in our semantic model through the concept of SERVICES. We
will discuss SERVICES in more detail in Chapter 8. This chapter will also focus largely on gameplay
guideline 8 asking for a semantically consistent game world at runtime.

The final gameplay guideline 9 focused on emergent gameplay. As explained in the previous
chapter, this guideline can be linked to many of the previous guidelines. Both the detailed physical
representation of objects through MATTER, or a detailed method of interaction through SERVICES
are excellent opportunities for designers to create emergent gameplay.
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4.9 Conclusions

The semantic model discussed in this chapter is a knowledge representation model. It bears most
resemblance with a frame-based knowledge representation, rather than with first-order logic represen-
tations. It is an ontology, specifically targeted towards game worlds, to represent classes and their
attributes. We did not choose an existing frame-based language to implement our model, however
we believe that it can serve as an ontology in many of these existing languages, some of which may
bring advantages in the specification of or reasoning on game world semantics. We decided to leave
that option open for future research.

In conclusion, our proposed model for SEMANTIC GAME WORLDS provides designers numerous
ways of enriching any game world and any object within these game worlds with information
in numerous different categories ranging from the relationships between objects to their physical
representation.

The close link between these semantic model concepts and CONTENT will enable designers of any
sort of game, no matter how the game world is represented (whether they are text-based adventures,
2D or 3D worlds), to semantically express that game world in design time and use the available
information to improve gameplay at runtime.

In the next four chapters, we will describe some applications we developed using this semantic
model. The first one is semantic layout solving. Based on descriptions created by designers using
concepts from our semantic model, procedures are generated to automatically produce layouts for
scenes.
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CHAPTER 5

DECLARATIVE MODELING OF SCENES USING

SEMANTIC LAYOUT SOLVING

In the following three chapters we will focus on the design experience of game worlds and how
semantics can improve this. In this first chapter, we elaborate how semantics can improve layout
solving techniques. Automatically creating layouts can help in the procedural generation of game
worlds, for example, to subdivide factory lots into separate areas or to place furniture in rooms.

This chapter proposes a semantic layout solving approach that is steered by the semantics in the
specification model introduced in the previous chapter. Building on top of this, we present a semantic
scene description language which allows designers to easily and intuitively steer the semantic layout
solver into automatically generating scenes. This language captures a generic description for a
particular type of scene (e.g. bathroom, factory floor, office). This description is automatically
transformed into a step-by-step procedure that feeds the semantic layout solver, allowing for the
generation of an infinite number of variations on the described scene type.

Finally, by maintaining the semantic consistency after manual edits are made to scenes, we can
present designers with a hybrid manual and procedural editing environment, combining the strengths
of both approaches.

The proposed approach in this chapter follows the principles of declarative modeling. Declarative
modeling aims to improve the efficiency of designers, by allowing them to express their design intent
more directly and at a higher level of abstraction. In other words, it lets designers concentrate on what
they want to create instead of on how they should model it [6]. Instead of modeling all scenes by
hand, or use traditional procedural modeling techniques, which often use parameters and procedures
that are unconnected to the object or scene one is trying to generate, the scene description language

This chapter is a summary of our previous work, published in [89], [90] and [91].
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5. Declarative modeling of scenes using semantic layout solving

enables designers to declaratively express what scenes they want to create in terms directly connected
to the target domain.

This chapter has been compiled from three of our publications, where more detailed information
can be found. In particular, in [91] we describe in greater detail our whole semantic solving approach.
For the implementation of this approach we used a geometric layout solving technique which is fully
explained in [89]. Finally, the semantic scene description language is introduced in [90].

5.1 Semantic layout solving

The goal of our semantic layout solving approach is to automatically generate scenes, based on a
designer’s description thereof. In these descriptions, one can use the TANGIBLE OBJECT CLASSES
and RELATIONSHIPS between classes or their SPACES, defined in the semantic model (see Chapter
4), which makes this process intuitive and accessible to a wide range of users, both technical and
non-technical, since the vocabulary is directly connected to the scene that is to be generated. This, as
opposed to disconnected algorithms using unrelated parameters. These descriptions are automatically
transformed into procedures, which are step-by-step recipes defining which objects need to be placed
in the scene. The underlying layout solving technique will place the objects based solely on geometric
relationships between 3D shapes that are associated with either the entire TANGIBLE OBJECT CLASS
or its SPACES. The semantic layout solver follows this procedure, one by one adding the objects to
the scene based on the RELATIONSHIPS defined in the semantic library. Based on one description, as
many variations as necessary can be generated all matching the intent of the designer. An overview of
this approach can be seen in Figure 5.1. It is important to note that a scene itself is also an instance of
a TANGIBLE OBJECT CLASS. Therefore, scenes can be placed as objects of a bigger scene, allowing
the creation of hierarchic scenes.

TANGIBLE OBJECT CLASSES, and RELATIONSHIPS between them, can easily be reused in new
development projects, but designers can extend on it as much as they like. It is however important to
note, that to allow for new types of relationships, the translation to instructions for the underlying
layout solver needs to be implemented, and if necessary the layout solver needs to be extended with
new functionality. This being said, we noticed that the set of relationship types we used for all the
examples in this chapter, and that are therefore readily available in our approach, was more than
sufficient to express our needs.

Inspired by some of the techniques surveyed in Section 2.2.1 we developed a new rule-based layout
technique [89]. This technique can calculate all possible locations for a particular object, based on its
features and the already available features in the scene. We use this technique as the underlying core
for the application of our proposed approach.

This section first explains the detailed workings of this technique and then describes our semantic
layout solving approach and how it uses the explained technique.
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Semantics level

Physical object class

Content

3D model Procedure

Description

Procedural level

Procedure

- Step A
- Step B
- Step C
- ...

Layout solver
Add object

Update scene

Get class relationship

Output

Designer

extends creates descriptions

Created scene

Figure 5.1: The main workflow of our semantic layout solving approach: in the semantics level
a designer uses (or creates) TANGIBLE OBJECT CLASSES and CONTENT (e.g. 3D models) from
the semantic library to create descriptions of particular types of scenes. These descriptions are
transformed into procedures (see Section 5.2.3). In the procedural level these procedures are executed
to step by step add objects to a scene based on the RELATIONSHIPS defined in the semantic library.
The example output in the picture show a single desk, an office, a kitchen and a factory.
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5. Declarative modeling of scenes using semantic layout solving

5.1.1 A rule-based layout technique

The rule-based layout technique we developed is based on two elements: shapes and rules. Shapes
are basic 3-dimensional geometric representations (e.g. a box or an extruded line) and rules are
geometric relationships between shapes. Shapes can also be given a special function in the solving
process, either off limits or clearance. Off limits shapes designate regions that cannot overlap any
other shape, and clearance shapes designate regions that need to remain empty, but that can overlap
with other clearance shapes. The rules are geometric relationships to shapes already placed in the
scene, e.g. shape X on top of shape Y and next to shape Z. When adding an object to the scene, all
the shapes related to that object are placed in the scene, for example, a cupboard might have an off
limits shape surrounding the cupboard, to make sure no other objects overlap, a clearance shape in
front of the cupboard to designate an empty area where one can interact with the cupboard and other
shapes that designate the top, left, back... of the cupboard, to be used in rules that link other objects
to this cupboard.

Shapes and rules are used to find all suitable locations for a new object in a particular scene. The
first step of the technique, involves finding all possible locations for a new object in the scene, based
on the object’s rules. For each geometric relationship type that can be used in the rules, specific
methods are required to calculate all possible locations for which the relationship holds. For the on
relationship, for example, a Minkowski subtraction is performed between the shape of the new object
and the target shape on which it should be placed, resulting in a shape that encompasses all positions
for which the new object is on top of the target shape. Applied to an example, a vase that needs to be
placed on top of a cupboard, the shape surrounding the vase is subtracted from the top shape of the
cupboard.

Minkowski subtraction (or Minkowski difference) is the Minkowski sum (or Minkowski addition)
between two sets of points, where one of the sets of points is negative. The Minkowski sum of two
sets of points is a set of the summed points from both the original sets. Formally, the Minkowski
sum of two point sets A and B is defined as A⊕ B = {a+ b : a ∈ A, b ∈ B}. Minkowski minus
of A and B is then defined as A 	 B = A ⊕ − B. When these point sets are the points of two
convex polygons, then the convex hull of their Minkowski sum contains each point that, used as a
translation for the second polygon creates a collision between the two original shapes. In other words:
A ⊕ B is the set of all translations for B that cause a collision between A and B. Conversely, the
Minkowski subtraction A	B is the set of all translations for B for which polygon B is completely
inside polygon A. We use both the Minkowski sum and subtraction in our layout technique.

The second step, involves removing all invalid locations from the list of possible locations calculated
in the first step, based on the off limits and clearance shapes of both the new object and the scene.
For each pair of object shape types and scene shape types, there are three possible cases in which
overlap is not allowed and one where it is allowed, shown in Table 5.1.

For each pair of shapes for which an overlap is not allowed, the Minkowski sum between the scene
shape and the object shape is calculated and subtracted from the list of all possible locations. After
this step, only valid locations remain in this list.
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Object shape type Scene shape type Overlap allowed
Off limits Off limits No
Off limits Clearance No
Clearance Off limits No
Clearance Clearance Yes

Table 5.1: Table showing which scene shape types can and cannot overlap.

This algorithm is presented in pseudo code below:

/ / F u n c t i o n g e t P o s s i b l e L o c a t i o n s r e t u r n s a l l p o s s i b l e l o c a t i o n s
/ / f o r newObject t o be p l a c e d i n t h e g i v e n s c e n e
f u n c t i o n Shape [ ] g e t P o s s i b l e L o c a t i o n s ( newObject , s c e n e )
{

/ / −−− FIRST STEP −−−
/ / C r e a t i n g t h e l i s t o f p o s s i b l e l o c a t i o n s o f t h e new o b j e c t
/ / based on t h e o b j e c t ’ s r u l e s and t h e s h a p e s a l r e a d y p l a c e d
/ / i n t h e g i v e n s c e n e .

/ / Be f o r e any r u l e s a r e a p p l i e d , t h e e n t i r e volume encompass ing
/ / t h e s c e n e i s deemed a v a l i d l o c a t i o n

p o s s i b l e L o c a t i o n L i s t = s c e n e . boundingBoxShape

f o r each o b j e c t R u l e i n newObject . Ru les
{

/ / Based on t h e g e o m e t r i c r e l a t i o n s h i p t y p e e x p r e s s e d i n t h e
/ / r u l e : t h e p o s s i b l e l o c a t i o n s based on t h i s r u l e a r e
/ / c a l c u l a t e d and t h e s e new l o c a t i o n s a r e merged wi th t h e
/ / c u r r e n t l i s t o f p o s s i b l e l o c a t i o n s

n e w L o c a t i o n L i s t = o b j e c t R u l e . G e t P o s s i b l e L o c a t i o n s ( s c e n e )
p o s s i b l e L o c a t i o n L i s t = I n t e r s e c t ( p o s s i b l e L o c a t i o n L i s t ,

n e w L o c a t i o n L i s t )
}

/ / −−− SECOND STEP −−−
/ / Now we prune t h i s l i s t o f p o s s i b l e l o c a t i o n s based on t h e
/ / o v e r l a p r u l e s o f t h e s h a p e s i n t h e new o b j e c t and t h e
/ / a l r e a d y p l a c e d s h a p e s i n t h e c u r r e n t s c e n e

f o r each o b j e c t S h a p e i n newObject . Shapes
{

/ / Each shape i n t h e c u r r e n t s c e n e t h a t c a n n o t o v e r l a p wi th t h e
/ / c u r r e n t l y a s s e s s e d shape i s s u b t r a c t e d from t h e l i s t o f
/ / p o s s i b l e l o c a t i o n s
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f o r each sceneShape i n s c e n e . Shapes
{

i f ( ! o b j e c t S h a p e . Over lapAl lowedWith ( sceneShape ) )
{

/ / Using t h e Minkowski Sum , we c r e a t e an a r e a t h a t c o n t a i n s
/ / a l l l o c a t i o n s f o r which t h e o b j e c t shape would o v e r l a p
/ / w i th t h e s c e n e shape and we s u b t r a c t t h i s a r e a from t h e
/ / l i s t o f p o s s i b l e l o c a t i o n s

i l l e g a l A r e a = MinkowksiSum ( sceneShape , o b j e c t S h a p e )
p o s s i b l e L o c a t i o n L i s t = S u b t r a c t ( p o s s i b l e L o c a t i o n L i s t , i l l e g a l A r e a

)
}

}
}
re turn p o s s i b l e L o c a t i o n L i s t

}

Now the object can be placed on one of these suitable locations: either a randomly chosen position
(for automatic layout solving) or one picked by the user (in an assisted manual editing environment).
This way a scene consisting of multiple objects can be filled one object at a time.

Performance is always an important issue for any solving approach. However, a generic approach
will not be able to take advantage of many optimizations available for more specialized solving
methods. In the algorithm above, it becomes clear that the number of shapes available in the scene
could create an important bottleneck. Every time an object is added to the scene, all related shapes
are added and the pruning of possible object locations based on the scene shapes will take longer and
longer. In the worst-case, i.e. when every shape cannot overlap with every other shape in the scene,
the complexity is near O(n*m) with n the number of shapes in the new object that need to be added to
a layout and m the number of shapes available in the scene.

5.1.2 Using semantics to steer layout solving

In our semantic layout solving approach, we use the layout technique described above and the
semantic model introduced in Chapter 4 to accommodate an easy and intuitive way to assist designers
in creating layouts. Since the approach can generate all suitable locations for a particular object, it
can be used both in a manual design environment and in a fully automatic approach:

1. In a manual design application, the user adds the new object. The locations deemed suitable
by the solver, can either be shown as guidance to the user, or the application can snap the new
object immediately to the nearest valid location.

2. In an automatic application, the objects need to be added to the scene by means of a procedure.
Based on such a procedure, objects are step by step provided to the solver, which in turn
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generates a new valid layout. The planner will be discussed in more detail in the next section.

As explained in Chapter 4, in our semantic library a TANGIBLE OBJECT CLASS contains RELA-
TIONSHIPS with other TANGIBLE OBJECT CLASSES. Each TANGIBLE OBJECT CLASS also consists
of a number of SPACES. As defined in Chapter 4, a SPACE is a region bounded by a 3D shape. The
shape of a TANGIBLE OBJECT instance is its bounding box. When a placement RELATIONSHIP
exists between two TANGIBLE OBJECT CLASSES, a geometric relationship is generated between the
shapes of their respective TANGIBLE OBJECT instances. This way, the layout technique discussed in
the previous section can be used to find all suitable locations for any TANGIBLE OBJECT instance in
a particular scene.

For example, let us assume we have three TANGIBLE OBJECT CLASSES defined: Floor, Wall,
and Cupboard. Each of these TANGIBLE OBJECT CLASSES has some SPACES defined like Bottom,
Left side or Top. Assume also that there are two RELATIONSHIPS defined:

• a RELATIONSHIP of type On between Cupboard and Floor, and

• a RELATIONSHIP of type Against between the Back SPACE of Cupboard and Wall.

When an instance of Cupboard needs to be added to the scene, geometric relationships of type On
are automatically added between the bounding box shape of the Cupboard instance and the shapes
of all Floor instances in the scene and geometric relationships of type Against between the shape
of the instance of SPACE Back of the Cupboard instance and the shapes of all Wall instances in
the scene. Based on these relationships, the layout solving technique can find all suitable locations
for this Cupboard instance. After choosing a random location among these suitable locations, the
Cupboard instance and its related shapes are added to the scene.

5.1.3 Semantic layout solving using constraint solvers

In our implementation of the semantic layout solving approach, we used the layout solving technique
explained above. However, the semantic layout solving approach can work independent of the used
solver.

The important factor here is the fact that the types of placement RELATIONSHIPS in the semantic
model need to be translated into low-level instructions for the solver. When using a geometric
constraint solver, the Against relationship, e.g. “back against wall”, can be expressed as constraints
on one or more points of the source SPACE (in the example the back of the cupboard), to be on
the target SPACE (in the example the wall). Additionally, distance constraints on those points need
to preserve the shape of the source SPACE. RELATIONSHIPS dealing with orientation, e.g. sofa
facing TV, can be expressed using angle constraints on the lines of the source object. These types of
constraints are readily available in many geometric constraint solving systems.

When someone would want to use a different constraint solver, the conversions between the
types of semantic placement RELATIONSHIPS and the related constraints need to be rewritten. All
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other elements, such as defined RELATIONSHIPS and TANGIBLE OBJECT CLASSES or specified
descriptions for layouts can be maintained without a problem. When more functionalities of a
particular constraint solver are wanted by the user, the semantic library does need to be extended with
new RELATIONSHIPS types to reflect those functionalities.

5.2 Automatic scene generation

We can use the semantic layout solving approach, introduced in the previous section, to automatically
generate scenes, e.g. room layouts, factory floors or office buildings. We use so-called procedures to
guide the layout solving in adding objects to a scene, thereby creating complete scenes automatically.

To create such procedures, we developed a semantic description language that allows designers
to easily describe what particular scene classes (e.g. kitchens, factories, parks) consist of. This
description language is context sensitive and uses the vocabulary from the semantic model to enable
designers to quickly create generic descriptions for a particular scene type in an intuitive way.

This section first discusses the concept of procedures and how they are used to automatically
generate scenes. After that, the semantic description language is introduced and finally the conversion
process from descriptions to procedures is described.

5.2.1 Layout planner and procedures

To use the approach for procedural generation of (parts of) game worlds, a layout planner was created
that iteratively provides the solver with new objects, for which the solver finds a valid position and
orientation. We mentioned that the solver finds all suitable locations for a new object in a scene, and
when used in combination with the planner, a certain position is selected.

The planner works based on a procedure: a list of statements and rules that need to be executed in
order. The types of statements available in these procedures are:

Pick statements are queries to find suitable GAME-SPECIFIC CLASSES in the semantic library.
Queries can contain TANGIBLE OBJECT CLASSES the GAME-SPECIFIC CLASSES need to
inherit from, conditions on the ATTRIBUTE values, SERVICES they need to provide, MATTER
they should consist of or PREDICATES they should contain.

Place statements trigger the placement of an instance of the last picked GAME-SPECIFIC CLASS.
Additional scene-specific RELATIONSHIPS can be added to these statements.

Conditional and loop statements are similar to if-then-else statements and for- or while-loops
available in programming or scripting languages.

Backtrack statements force the algorithm to backtrack a given number of statements. These can
be used to redo part of the placement, if at one point no suitable locations can be found for a
particular object.
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Execute procedure statements can trigger sub-procedures to allow for hierarchically built up scenes.
A building lot, for example, consists of a house and possibly a garden; the house consists of
multiple rooms, etc. For a designer, most of these hierarchies are obvious, so he or she can
employ this knowledge by creating sub-procedures. The designer can make a procedure to
layout rooms in a house and another procedure to layout objects in a room, for example.

Next is an example procedure for a simple kitchen scene:

1. Pick a TANGIBLE OBJECT CLASS Refrigerator

2. Place instance in scene

3. Repeat until sum of Storage volume ATTRIBUTES exceeds 1.3 cubic meters

a) Pick a TANGIBLE OBJECT CLASS Kitchen cabinet

b) Place instance in scene

4. Pick a TANGIBLE OBJECT CLASS Table, made of MATTER Wood

5. Place instance in scene

6. If previous statement failed

a) Backtrack 2 statements

7. Pick a TANGIBLE OBJECT CLASS Chair

8. Repeat 6 times

a) Place instance in scene

9. Pick a TANGIBLE OBJECT CLASS Appliance, providing the SERVICE Cook food

10. Place instance in scene, on top of TANGIBLE OBJECT CLASS Kitchen cabinet

In this example, first a refrigerator is placed in the scene. After that kitchen cabinets are added
until the total Storage volume exceeds 1.3 cubic meters. Now a table made of wood is added to the
scene. A backtrack statement is added to ensure that this table can be placed. If not, the procedure
will backtrack to the pick statement for the table, thereby picking a different table. This is repeated
until a table is picked that fits the scene. Now a chair is picked and an instance thereof is placed 6
times. Finally an appliance that can cook food is placed, adhering to the scene-specific relationship
that it should be placed on top of a kitchen cabinet.
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5.2.2 A semantic scene description language

We propose a semantic scene description language that is a visual language aimed at allowing a
designer to define the different elements of which scenes of a particular type consist.

The main goals of this language are:

1. describing which objects or components can or should be present in a given scene;

2. describing the relationships between the available objects; and

3. discerning scene variations depending on time and context.

In other words, it allows designers to specify which and how objects should occur in every scene
instance of a given type. And, provided we manage to convert descriptions into procedures, the latter
can then be used to automatically generate various instances of the described scene. That conversion
process will be dealt with in the next subsection after we discussed the main features of the language.

The main building block to achieve the goals above consists of description entities, defining which
objects need to be present and how they should be placed. Therefore each description entity consists
of two components:

Object component: a detailed description of which types of objects need to added, e.g. which
TANGIBLE OBJECT CLASSES they should inherit from or the MATTER they consist of. This
also includes the amount of objects, which can be a fixed number or a distribution (X per
square meter of scene area). One entity can group multiple types of objects that need to behave
similarly in the described scene.

Placement component: a description on how the objects should be placed by defining scene-specific
RELATIONSHIPS the objects described in the object component need to adhere to when being
placed. These RELATIONSHIPS are either additional to the RELATIONSHIPS defined in the
semantic library or they can override the ones in the library.

These two components are analogous to the Pick and Place statements from the procedures (see
previous subsection).

Every scene can have a main shape constraint: this can be an area, a path or just a point that defines
the general shape of the scene. For example, a kitchen or forest is constrained by the outline of the
room or forest area and a street is constrained by the path line it follows. The descriptions allow
selecting shapes from the scene as shape constraints of child objects and some basic transformations
on these shapes. This allows us, for example, to select the border of a scene, split it up in points two
meters apart and place fence poles on the points and barbed wire between them, to generate a fenced
area.

A collection of description entities makes up a semantic scene description, i.e. a generic, high-level
definition for a specific class of scenes. In other words, it describes not one particular scene but all
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scenes of a certain class, e.g. a dining area, an office, a street, a dungeon, a spaceship interior, a forest
or an industrial zone.

To discern more specific cases in a scene class, we use the notion of CONTEXT, described in
Section 4.5. We described a CONTEXT as a “collection of preconditions that describe a particular
situation”. Designers can define context-specific behavior by changing the basic description for each
particular CONTEXT. The possible preconditions for CONTEXTS can be (but are not limited to) (i)
conditions on the scene or on the ATTRIBUTES of the scene (since a scene by itself is also an instance
of a TANGIBLE OBJECT CLASS, as explained in the previous section), (ii) the presence or lack of a
particular PREDICATE, or (iii) global semantic data (e.g. safety conditions of the neighborhood).

For example, when creating the description of a Residential house scene, we might want to
create, e.g. the CONTEXTS Apartment, Small, Large and Villa. In the CONTEXT Large, we will
want to place more bedrooms and bathrooms, we need a larger dining room, perhaps two garages
instead of one, etc. Once the conditions for which the CONTEXT holds are defined, the designer
can adjust the description to fit that CONTEXT. This is done by marking changes to the default
description. Depending on the CONTEXT, entities specified in the description can be altered in any
way: e.g. adding RELATIONSHIPS, changing the number of instances needed or adding or removing
PREDICATES in the description entity. Entities can also be completely removed or new entities can be
added.

Since the scene described in a semantic description, in itself defines a new TANGIBLE OBJECT
CLASS, descriptions can follow a hierarchic scene composition, e.g. we can create a description for
an Office building, which specifies entities of the TANGIBLE OBJECT CLASS Office room, which in
turn specifies entities of a Desk setup. This allows designers to focus on the core elements of every
scene, while incrementally specifying the structuring of each child element in a separate description,
making the entire approach much more scalable and reusable.

The semantic description language is aimed at providing designers with an intuitive way to specify
particular types of scenes that can be regarded as a layout solving problem, e.g. placing furniture in a
room or trees and plants in a forest, laying out objects on a desk or creating the layout of an industrial
zone. Designers merely have to focus on the different elements that make up a particular type of
scene; in keeping with the declarative modeling principle, designers can express what they want the
scene to look like, instead of how the scene should be built or in what order the different objects are
added.

In informal interviews with designers regularly using procedural modeling, it became clear that
especially our hierarchic approach to the generic definition of scenes is well suited to their way of
thinking. They tend to break up every element to its key components and then, in turn, design these
different components as separate elements. In addition, the ability to create scenes constrained by a
base shape also fits very well in their normal working methods.
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5.2.3 Converting a description to a procedure

After we have created a semantic scene description, we need to convert it to a procedure, which
are suitable to steer our layout solving approach. This involves three steps: (i) sort the description
entities and add them to the procedure, (ii) encompass these procedure statements with loops to
handle amounts defined in the entities and with conditional statements to handle context-specific
operations, and (iii) perform an optimization (e.g. add some additional checks) to ease the workload
of the solver when executing the procedure.

The first step, sorting the description entities, is the most complex one since many criteria need to be
taken into account. In general terms, we need to make sure that all objects can be placed, complying
with the dependencies that are present because of the RELATIONSHIPS between TANGIBLE OBJECT
CLASSES. The output of this step will be an ordered list of the description entities. To accomplish
this, first a dependency graph is created, in which the TANGIBLE OBJECT CLASSES of the entities
are represented as the nodes, and every placement RELATIONSHIP between two TANGIBLE OBJECT
CLASSES as a directed edge: outgoing edges point to TANGIBLE OBJECT CLASSES on which a
node’s placement will depend. Step by step the ordered list is filled. In every iteration, one entity
is added to the ordered list and it is flagged as ‘ordered’, while entities that are not yet added to the
ordered list are referred to as ‘unordered’. Each iteration, the following four criteria are taken into
account to choose the next entity to be added to the ordered list:

First criterion Least outgoing edges to nodes of unordered entities: when an entity depends on an
ordered entity, there will be no problem in the generation phase (i.e. when a scene is being
generated based on the created procedure) since the entity on which it depends will already
be placed in the scene. Therefore, we only take edges to unordered entities into account in
this first criterion. In case of multiple nodes with the minimum amount of edges to unordered
entities, the second criterion is considered.

Second criterion Most incoming edges: we pick the object with the most incoming edges, since
most other objects depend on its placement, therefore making the ordering in the next iterations
easier. Again, in case of a tie, the next criterion is considered.

Third criterion Most outgoing edges to nodes of ordered entities: we pick the entity with the most
outgoing edges to ordered entities, because the more dependencies an entity has, the more
restricted the choice for possible locations is. In case of a tie, the fourth criterion is used.

Fourth criterion Largest object: when entities are not discernable based on the previous three
criterions, we use the size of the entity’s objects as the final decider. Since a description and a
procedure work with object queries, and the actual objects are picked only in the generation
phase, we do not have an exact size for each object at the conversion phase. Therefore the
average size of all possible objects that match the entity’s object description is used as an
estimate.
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5.2. Automatic scene generation

Figure 5.2: Creating an order for objects based on the dependency graph.

To clarify this process, it will be applied to the following example. Suppose we want to create a
scene with a desk, a chair in front of the desk, a PC on the desk and facing the chair, and a pen on the
desk. We start with an empty list and a starting graph as depicted in Figure 5.2a.

Iteration 1 The desk is the only independent entity, i.e. an entity without any outgoing edges.
Therefore, based on the first criterion, the desk is added to the ordered list in the first iteration
and is therefore flagged as ‘ordered’.

Iteration 2 Both the chair and the pen now only have outgoing edges to ordered entities (see Figure
5.2b). Therefore, we need to decide based on the second criterion. Since the chair has one
incoming edge and the pen has none, the chair is added to the list in the second iteration.

Iteration 3 In Figure 5.2c, both the PC and the pen have no outgoing edges to unordered entities
and no incoming edges, so we move on to the third criterion. The PC has the most outgoing
edges to ordered entities, so it is added to the list.

Iteration 4 Since there is only one unordered entity left, which is the pen, it is added to the list
immediately.

In the sorting process, we could run into conflicts if circular dependencies are found in the graph,
e.g. a scene with a cupboard next to a standing clock, which should be placed next to a couch, which
in turn should be placed next to the first cupboard, all along the same wall. In this circular reference,
none of the objects can be placed. To solve this, we (i) pick one of the entities that create the circular
dependency based on the above criteria, and (ii) remove the relationship connected to the outgoing
edge of the picked object that creates the circular dependency. The object will be placed without
maintaining that relationship, and since the circle is now broken in the graph, all other objects can be
ordered without any problems.

Once object sorting is finished, a procedure is created with pick and place operations (as explained
in Section 5.2.1) for every object in the list.
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The second step of the conversion is relatively straight forward: it adds control statements where
necessary. The amount defined in each description entity (this can be an exact amount, a range or a
distribution) is handled by a repeat loop in the procedure. The CONTEXT-dependent elements of a
description are encompassed by a conditional statement in the procedure, based on the conditions
defined for the corresponding CONTEXT.

The above two steps result in a procedure that adequately reflects the scene description. However,
adding some additional rules will improve the solving process for that procedure, which is the third
step of the conversion. An object query can return objects of varying sizes. It would be useless to
pick the largest of objects from the query, when trying to fill a small scene. Therefore some additional
procedure statements, based on the available size in the scene, are added to handle these situations
appropriately: when trying to fill a small kitchen, we do not want the solver to pick a giant refrigerator,
since it will be impossible to fill the entire scene. The same idea could be applied to entities with a
ranged amount, e.g. between three and six kitchen cabinets. In small scenes, the lower end of the
range could be used, and in bigger scenes the higher end. That way, we are also less likely to end up
with a giant kitchen with only a few cabinets and a small refrigerator.

5.3 Results

As an example of our semantics-based layout solving approach, we discuss a living room procedure.
This procedure is a list of fifteen statements, mainly to add a number of instances of a particular
TANGIBLE OBJECT CLASS, with some constraints specified on its ATTRIBUTES, such as a table
with a 50 cm maximum height for the coffee table, minimum comfort level for the seats, etc. Figure
5.3 shows an example of a living room based on this procedure and automatically laid out with this
approach. On the left of Figure 5.3 is the 2D floor plan of the house (also generated using semantic
layout solving, similar to the second example in this section) with the living room, showing also the
clearance and off limits shapes (used by the solving technique), e.g. in front of the sofas, behind the
chairs and on both sides of doorways.

Because of the integration with the semantic model, our solving approach is generally usable for
many different layout problems. To apply the solver to a different style of scene, one only needs to
add the necessary TANGIBLE OBJECT CLASSES to the library (should they not be available yet). As a
second example, the solver was used for the automatic generation of a building floor plan (Figure 5.4).
For this, some different room types were added to the semantic library, containing RELATIONSHIPS
about e.g. the neighboring rooms, and some specific RELATIONSHIPS, e.g. requiring the hallway
to be connected to a wall facing the street. In the plan, areas for each room are created with the
minimum dimensions and a suitable layout for these areas is generated. After this is generated, we
apply two post-processing steps, which are not included in the semantic layout solving approach and
are specifically developed for generating building floor plans. A first post-processing step is applied
that grows the rooms to fit the building shape, as can be seen in Figure 5.4. A second step is used to
generate a basic connection between doors within a room. This connection was then used to create
a virtual corridor of clearance SPACES to make sure there remained a clear passage between these
doors.
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Figure 5.3: Automated generation: (left) 2D floor plan of a house created with our solving approach;
(right) 3D visualization of the living room (from viewpoint indicated by camera in the left image).

Figure 5.4: Three floor plans generated with the semantic layout solving approach. First areas for
the rooms (see colored rectangles with room names) are placed within an empty building, with the
minimum dimensions for each particular room and according to the RELATIONSHIPS defined between
them. Afterwards these areas are grown to create the actual rooms that fit the building shape.
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Figure 5.5: Some example scenes built with descriptions (top: factory floor, center: office, bottom: a
road through a forest).
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Figure 5.6: A description for a single desk setup with four entities. Arrows show the common
relationships between entities present in the semantic library. Since the ‘desk objects’ entity overrides
the class RELATIONSHIPS, no edge to the desk is shown.

The scenes in Figure 5.5 were created based on descriptions created with the semantic description
language: a factory floor, an office and a road running through a forest.

The factory (Figure 5.5 top) consists of an area for the pallet racks, a vehicle area and a fenced
area for dangerous goods. The fence and pallet racks are created using shape constraints as explained
in Section 5.2.2. For example, the area shape for the pallet racks is split up in a number of rows,
and on each row an empty pallet rack is created that contains pallet storage SPACES. The factory
description contains an entity for some pallets to be placed inside these pallet storage SPACES.

The road geometry (Figure 5.5 bottom) is created using a system, unrelated to the semantic layout
solving approach. It functions based on a path and profile: the path is considered to be the center of the
road, which is offsetted to generate the different elements described in the profile (e.g. 1m sidewalk,
3m lane, a second 3m lane, 1m sidewalk, 0.5m grassy bank). We extended this road geometry system
to place SPACES such as roadside or bicycle path based on the profile. For example, in the bottom
example of Figure 5.5 a lamppost is placed every 20 meters on the roadside SPACE, facing the center
of the road. Trees in this example are placed using a description entity with a distribution.

The next paragraphs describe the building of an office scene (Figure 5.5 center) from the user
perspective. The basic building block for the office scene is a description for a single desk setup.
This setup includes entities for a desk, a desktop computer and a comfortable office chair, for which
common RELATIONSHIPS are defined. A fourth entity groups multiple objects, all with similar
behavior: some pens, a mug and a binder. The main RELATIONSHIPS for these TANGIBLE OBJECT
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CLASSES are overridden and an additional RELATIONSHIP defines that they should be placed on
top of the desk. This description, which is shown in Figure 5.6, is now ready to be exported to a
procedure.

Once the TANGIBLE OBJECT CLASS desk setup is defined, with its associated procedure, some
RELATIONSHIPS are defined: the desk setups should be preferably placed next to other desks or
opposed to other desk setups. In the office description, this TANGIBLE OBJECT CLASS is used in an
entity containing either a fixed amount of desk setup instances or e.g. a distribution based on the room
size. Finally entities for some closets and a coat rack are included. Again, the RELATIONSHIPS for
placing these last two TANGIBLE OBJECT CLASSES are already defined. This example demonstrates
that using our semantic description language, in combination with our layout solving approach, one
can create a description for any office space in a matter of minutes. And since one description can
be used to generate countless variations, a whole office building can be filled with office spaces
without copying the same space over and over again (as is often the case in many game worlds).
Moreover, context-sensitive changes to the description will make it even more powerful and usable
under different circumstances. In the office example, we can quickly adjust the description for the
CONTEXT in which the owner of the office is the boss: e.g. changing the amount of desk setups to 1,
adding the antique predicate to the furniture entities and adding an entity defining two seats in front
of the desk (for visitors). This context-sensitive approach therefore allows many opportunities for
reusability, again relieving some of the efforts involved in creating game worlds.

5.4 A hybrid approach: combining manual and automatic modeling

We already explained that the layout solving technique (described in Section 5.1.1) is specifically
developed with both manual and automatic modeling in mind: the technique can compute all valid,
suitable locations for a particular object.

Procedural content generation cannot, and should not, take over the job of a game world designer,
but it can alleviate it by automating some tasks. For example, we can use the description (and
corresponding procedure) for an office desk setup, explained in Section 5.3, as a building block to be
used by designers in a level editor. A designer can drag and drop an abstract desk setup block into
the game world and have the planner place a desk, a chair, a computer, etc. Instead of using fixed
blocks of objects, one gets unique blocks every time you drop one. This is somewhat comparable to
the nowadays common function of terrain editors, with which the designers can brush a region that is
automatically filled with randomly placed trees and shrubs. In other words, the designer maintains
full control over the end result, but some common, boring tasks, e.g. laying pens and other items on
every desk in the entire game world, is automated.

A hybrid manual and automatic modeling environment includes other features as well. The
environment can present users with multiple suggestions for a particular scene. The user chooses one
of these suggestions and continues from that suggestion.

The user can lock certain regions and ask to regenerate the remainder of the scene. In our layout
solving approach, this can be handled by removing all objects outside the locked region from the

68



5.4. A hybrid approach: combining manual and automatic modeling

scene and try to add them again to the scene based on their previously used RELATIONSHIPS.

Obviously every automatically positioned object should also be manually moveable as well.
Applying manual moves to automatically placed objects might however break up the semantic
consistency in a scene. For example, objects placed on top of another object should be moved together
with it. In general terms, if an object is automatically placed with a dependency to another object, it
should be repositioned when this other object is moved.

A consequence of the above is that it is crucial to maintain the semantic consistency after manual
edits. Upon a basic transformation (translation or rotation) of an object, we perform the following
algorithm: (i) find all objects directly or indirectly dependent on the transformed object, (ii) perform
the same relative transformation on all dependent objects, (iii) remove any objects that are no longer
on valid locations, (iv) add these removed objects to the scene again using the layout solver.

This algorithm is presented in pseudo code below:

/ / The sub−f u n c t i o n g e t D e p e n d e n t O b j e c t s r e t u r n s a l l o b j e c t s
/ / d e p e n d e n t on t h e g i v e n o b j e c t ( i . e . a r e l a t i o n s h i p e x i s t s
/ / be tween t h i s o b j e c t and t h e g i v e n o b j e c t )
f u n c t i o n O b j e c t [ ] g e t D e p e n d e n t O b j e c t s ( o b j e c t )
{

O b j e c t [ ] d e p e n d e n t O b j e c t s = [ ]

/ / Loop t h r o u g h a l l e s t a b l i s h e d p l a c e m e n t r e l a t i o n s h i p s o f
/ / t h e g i v e n o b j e c t
f o r each r e l a t i o n s h i p i n o b j e c t . P l a c e m e n t R e l a t i o n s h i p s
{

i f r e l a t i o n s h i p . Source == o b j e c t
d e p e n d e n t O b j e c t s . add ( r e l a t i o n s h i p . T a r g e t )

e l s e
d e p e n d e n t O b j e c t s . add ( r e l a t i o n s h i p . Source )

}

re turn d e p e n d e n t O b j e c t s
}

/ / F u n c t i o n m a i n t a i n S c e n e C o n s i s t e n c y m a i n t a i n s t h e c o n s i s t e n c y
/ / o f a g i v e n s c e n e upon a t r a n s f o r m a t i o n o f a g i v e n o b j e c t
f u n c t i o n O b j e c t [ ] g e t P o s s i b l e L o c a t i o n s ( scene , o b j e c t ,

r e l a t i v e T r a n s f o r m a t i o n )
{

/ / −−− FIRST STEP −−−
/ / F ind a l l o b j e c t s d e p e n d e n t on t h e g i v e n o b j e c t
O b j e c t [ ] d e p e n d e n c i e s = g e t D e p e n d e n t O b j e c t s ( o b j e c t )

i n t nrOfDependenc i e s = 0
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/ / As long as t h e l i s t o f d e p e n d e n c i e s grew i n t h e p r e v i o u s
/ / i t e r a t i o n , keep g e t t i n g t h e d e p e n d e n t o b j e c t s o f t h e newly
/ / added o b j e c t s
whi le ( n rOfDependenc i e s < d e p e n d e n c i e s . l e n g t h )
{

O b j e c t [ ] newDependen tObjec t s = [ ]
f o r ( i n t i = n rOfDependenc i e s ; i < d e p e n d e n c i e s . l e n g t h ; ++ i )
{

/ / Merge t h e l i s t o f d e p e n d e n t o b j e c t s o f t h e c u r r e n t l y
/ / a s s e s s e d one wi th t h e l i s t o f new d e p e n d e n t o b j e c t s
newDependen tObjec t s = Union ( newDependentObjec ts ,

g e t D e p e n d e n t O b j e c t s ( d e p e n d e n c i e s [ i ] ) )
}

nrOfDependenc i e s = d e p e n d e n c i e s . l e n g t h

/ / Merge t h e l i s t o f new d e p e n d e n t o b j e c t s w i th e n t i r e l i s t
d e p e n d e n c i e s = Union ( d e p e n d e n c i e s , newDependen tObjec t s )

}

/ / The l i s t ’ d e p e n d e n c i e s ’ now c o n t a i n s a l l o b j e c t s t h a t a r e
/ / d i r e c t l y o r i n d i r e c t l y d e p e n d e n t on t h e g i v e n o b j e c t

/ / −−− SECOND STEP −−−
/ / The r e l a t i v e t r a n s f o r m a t i o n i s e x e c u t e d on a l l d e p e n d e n t
/ / o b j e c t s
f o r each ( O b j e c t o i n d e p e n d e n c i e s )
{

o . E x e c u t e T r a n s f o r m a t i o n ( r e l a t i v e T r a n s f o r m a t i o n )
}

/ / −−− THIRD STEP −−−
/ / Check i f a l l o b j e c t s a r e s t i l l i n v a l i d p o s i t i o n s , o t h e r w i s e
/ / t h e o b j e c t i s removed
O b j e c t [ ] removed = [ ]

f o r each ( O b j e c t o i n d e p e n d e n c i e s )
{

i f ( ! o . r e l a t i o n s h i p s S t i l l H o l d ( ) | | s c e n e .
o v e r l a p s O f f L i m i t s O r C l e a r a n c e S h a p e s ( o ) )

{
s c e n e . remove ( o )
removed . add ( o )

}
}
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/ / −−− FOURTH STEP −−−
/ / Add t h e removed o b j e c t s t o t h e s c e n e a g a i n
f o r each ( O b j e c t o i n removed )
{

/ / F i r s t t r y t o add m a i n t a i n i n g e x i s t i n g r e l a t i o n s h i p s .
/ / Th i s i n c l u d e s u s i n g t h e same t a r g e t o b j e c t s , e . g . a compute r
/ / which was p l a c e d on a desk , w i l l t r y t o be p l a c e d on t h a t
/ / same desk a g a i n .
i f ( ! s c e n e . a d d O b j e c t A c c o r d i n g T o E x i s t i n g R e l a t i o n s h i p s ( o ) )
{

/ / I f t h i s f a i l s , add t h e o b j e c t i n a normal way , i . e .
/ / a c c o r d i n g t o d e f i n e d r e l a t i o n s h i p s i n t h e s e m a n t i c l i b r a r y ,
/ / b u t n o t r e g a r d i n g p r e v i o u s t a r g e t o b j e c t s . In t h e p r e v i o u s
/ / example : t h e compute r w i l l be p l a c e d on a desk , b u t n o t
/ / n e c e s s a r i l y t h e o r i g i n a l desk
s c e n e . p l a c e O b j e c t A c c o r d i n g T o L i b r a r y R e l a t i o n s h i p s ( o )

}
}

}

An issue we run into, when running this algorithm is that when objects are dependent on the objects
that were removed, the semantic consistency might be broken again for these objects. To handle this,
this entire procedure is repeated for each object in list “removed” (and recursively for the removed
objects in the new iteration of the algorithm). If a circular dependency is found, i.e. if an object is
added to the list “dependencies”, that was already an element of any of the “removed” lists, then
we immediately remove it from the scene and just add it based on the RELATIONSHIPS, without
maintaining the object dependencies. This way all objects still end up on valid and suitable locations
in the scene.

5.5 Conclusions

This chapter introduced the notion of semantic layout solving that effectively applies our semantic
model for game worlds to automatically generate scene layouts. Our semantic layout solving approach
consists of two main components:

• A scene description which defines what objects need or can be available in a particular type of
scene,

• RELATIONSHIPS to define how objects need to be placed relative to each other.

Moreover, the generally known concepts from the semantic model, make extending and reusing
both descriptions and RELATIONSHIPS quite easy. By using SPACE instances of objects in the
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RELATIONSHIPS, one can specify the placement of objects relative to a particular feature of another
object, e.g. “an office chair should be placed facing the front of the computer monitor”. The concept
of CONTEXTS can assist in creating variations and customizations on the layout descriptions to adapt
the results to specific characteristics of the environment (e.g. the size and accommodations of a
building, or the personality of the inhabitants).

An important feature of semantic layout solving is that it does not require using our rule-based
layout technique. It can be integrated with any technique that can output all suitable locations, based
on a number of one-to-one geometric constraints. Therefore, employing optimized layout solving
techniques can increase the performance of our approach, making it possible to apply the approach
for real-time generation. Currently, using our non-optimized layout solving technique, the approach
requires between 2 and 5 seconds to generate a relatively complex scene of about 20 objects, each
with 2 to 4 defined RELATIONSHIPS.

We can conclude that our semantic layout solving approach is suitable for generating scene layouts
both automatically and semi-automatically in a hybrid approach. Its integration with the semantic
model makes specifying layouts intuitive and easily extendable. Moreover, the use of CONTEXTS
makes descriptions easily adaptable to specific circumstances. In tune with the concept of declarative
modeling, we allow designers to focus more on what they need, i.e. describe what objects they want
in the scene and how they should relate to one another, instead of having to focus on how to model or
build the world.

The semantic layout solving approach is one of many approaches and techniques to automatically
generate parts of game worlds. However, the integration of these different techniques can be quite
hard, especially when different techniques are responsible for overlapping structures. In the next
chapter, we will describe the use of a semantic moderator to integrate several procedural generation
techniques to create consistent buildings.
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CHAPTER 6

GENERATING CONSISTENT BUILDINGS

USING SEMANTICS

In Chapter 5 we discussed an approach to procedurally generate scene layouts based on intuitive
descriptions using the vocabulary from our semantic model. Next, we will discuss a method to create
complex structures by integrating multiple procedural techniques that generate nested components.

Several procedural techniques exist to generate very specific elements of a virtual world. However
it is sometimes difficult to blend different techniques into a consistent whole. For example, several
techniques can create a specific component of a building like the façade, the floor plan or the room
layout (e.g. using semantic layout solving explained in Chapter 5). Still, it is impossible to simply
combine the outputs of these different techniques, since they are not tuned to each other. For example,
the floor plan generation techniques might add an inner wall cutting right through the middle of a
window placed by the façade generation technique, or the latter might place a window in the wall of a
room that the layout generation technique has marked as a storage room.

In general terms, separate procedural content generation techniques have no knowledge about
elements created by other techniques. Furthermore, there is no knowledge on the rules and constraints
that exist between the different elements that make up a game world. Therefore we propose to use
semantics to moderate between multiple procedural generation techniques and to detect conflicts
based on a set of semantic constraints.

Just like a semantic model can be the glue that binds different components of a game engine,
it can also serve as the glue to combine multiple procedural generation techniques that generate
overlapping components of a virtual world. The semantic model provides a vocabulary in which
multiple techniques can communicate in a similar way about the elements of the game world they are

This chapter is a summary of our previous work, published in [92].
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generating and based on rules and constraints in the model, conflicts can easily be found and flagged
to the separate techniques in order to handle them. Not only can semantics serve as a language to
construct a consistent representation of the combined model, it can also aid in resolving conflicts
that may arise when multiple generation techniques want to create new entities conflicting with ones
already present in the model.

This chapter introduces a semantics-based integration approach between procedural generation
techniques. This approach was implemented using our semantic model and applied to several
techniques that generate nested elements of buildings, resulting in complete and consistent buildings,
demonstrated in an example of a North American style villa.

6.1 Semantic integration approach
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Figure 6.1: Framework for integrating procedural techniques: moderator (with semantic library and
generic interface), components, wrappers, conductor and plan

Typically, each procedural technique is able to generate one specific architectural element of a
building (e.g. façade, floor plan, furniture, lot shape), but mostly without much regard for other
building elements. Therefore, the main challenge of integrating those individual components is
foremost to watch over the consistency of the building, either avoiding or properly handling any
conflicts arising among building elements.

The main idea behind our approach is to establish a semantic moderator, which shares relevant
building information with the individual procedural components, so that they can make good and
timely decisions. This information, combined by the moderator into a unified semantic representation
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of the building, forms the basis for the advice that it provides to individual components in order to
avoid conflicts, i.e. inconsistent results. In our approach, we distinguish three categories of building
elements conflicts:

• intersection conflicts, occurring when building elements that should not intersect each other,
overlap in some way. For example, façade windows should not intersect inner walls, furniture
should not obstruct inner doors, etc.

• functional conflicts, occurring when building elements with incompatible roles are associated.
For example, bathrooms should not have the same type of window as bedrooms.

• exclusion conflicts, occurring when a required unique building element is placed such that it
becomes impracticable in the resulting building, and has to be removed from it. For example, a
required fireplace should only be placed on one of the possible locations where it has a feasible
path to the (façade or roof) chimney. This conflict is particularly problematic with components
that do not allow any backtracking, which unfortunately is often the case.

Figure 6.1 outlines the framework architecture to support this integration approach. The various
procedural components are made available through a wrapper interface and are invoked according to
a building plan. The moderator, in turn, helps prevent the conflict types mentioned above, managing
the communication with the procedural components, and providing them with building advice. In the
following paragraphs, we discuss this framework in detail.

6.1.1 Semantic moderator

The semantic moderator is responsible for watching over the consistency of the integrated building,
by examining and approving the requests of each procedural component. For this, it maintains a
semantic building representation using the vocabulary available in our semantic model. The semantic
building representation integrates therefore a flexible and rich representation of building elements
(e.g. floors, rooms, windows, walls, chairs), including their attributes (e.g. the area of a room),
constraints (e.g. an outer door should lead to a public room), roles (e.g. public and private rooms)
or relationships (e.g. adjacency between rooms). This semantics, as we will see, is instrumental
in the consistency maintenance performed by the moderator, particularly for conflict detection and
identification. Semantic elements are also associated with some minimal geometric data, including a
position, an orientation and a primitive shape, which is an abstracted representation of the building
element’s actual 3D geometry (e.g. a line, polygon, extruded line or extruded polygon).

Each procedural component, in its generation procedure, can resort to the moderator in a number
of ways, which we now describe in detail.

Register a building element

A procedural component can register a new building element with the moderator. This can either
approve the registration, meaning that the new building element is deemed valid for integration in
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the building representation, or reject it, meaning that the new building element causes a conflict that
cannot be handled in any other way. In the latter case, the component should retract its conflicting
element. For each registered building element, a corresponding semantic element is instantiated and
inserted in the semantic building representation, possibly with specific values for some of the class
attributes; for example, a window instance could have a Boolean attribute value indicating whether or
not the window glass is tinted.

Register a constraint

Besides new building elements, components can also register new constraints, to be satisfied between
two building elements. A variety of different constraint types can be devised, enforcing e.g. con-
nectivity, proximity, adjacency or non-adjacency between elements. Constraints as these have two
operands, indicating the two semantic elements they act upon; or, more precisely, those operands
consist of the respective TANGIBLE OBJECT CLASSES, possibly containing some ATTRIBUTE values
to narrow down the constraint definition. For example, we can declare that non-tinted windows cannot
be adjacent to private rooms with the constraint non adjacency(window{tinted:false}, private room).
These constraints are used in building inquiries, as discussed next.

Inquire about a building element

First of all, components can inquire the moderator about registered building elements. Such inquiries
provide components with advice based on up-to-date information on the integrated building represen-
tation, which they can incorporate in their decision process for creating new building elements. For
example, components can inquire about which room is adjacent to this exterior wall, which rooms
share this interior wall, what is the function of this room, etc.

Inquiries can also be used to find out whether a potential building element could be successfully
registered, i.e. approved as valid by the moderator. Such an inquiry does not imply registration, or
even creation, of elements, and it can be generically defined as follows: can an instance of class c,
with attribute values a1 . . . an, with shape s be placed at position p and orientation o? In order to
answer such inquiries, the moderator first gathers all constraints mentioning class c and, for each of
them, evaluates whether they are satisfied for shape s at position p and orientation o. For example, say
we want to inquire whether we can place a non-tinted window of shape s at position p with orientation
o, i.e. inquire(window{tinted:false}, s, p, o). The example constraint defined above references a
window class with attribute tinted equal to false. Therefore, the moderator checks whether shape
s, with the given position and orientation, is adjacent to the shape of any private room. If so, that
non adjacency constraint is not satisfied, and, therefore, the building advice is negative. This same
constraint evaluation mechanism is used to evaluate the previously described inquiries, e.g. to inquire
which type of room is adjacent to a particular wall.

The methods to evaluate these constraints were initially built for the semantic layout solving
approach (see Chapter 5). In the semantic moderator these methods are used to identify whether or
not a building element at a given position in the scene is placed according to its related constraints, as
is explained above. If the position for the building element conflicts with the related constraints, then
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a negative building advice is given, which should be handled by the component, e.g. by retracting the
element.

These constraints are represented using the RELATIONSHIP concept in our semantic model: source
feature (i.e. a PHYSICAL OBJECT CLASS) - the relationship type (i.e. RELATIONSHIP) - target
feature (also a PHYSICAL OBJECT CLASS), with a number of ATTRIBUTES (depending on the
RELATIONSHIP). For example: PHYSICAL OBJECT CLASS vase - RELATIONSHIP on - top SPACE
of PHYSICAL OBJECT CLASS cupboard, represents that a vase should be placed on the top of a
cupboard. These declared constraints can be mapped in a straightforward way to the actual constraints
used by the layout solving methods (as explained in Chapter 5).

Since semantic elements use primitive shapes to represent the shape of building elements in the
moderator, the required geometric tests (adjacency, overlap) are relatively simple and have therefore
very little impact on the overall performance at the expense of a marginal amount of accuracy.
Typically, it is safe to assume that building elements, such as windows, can be reasoned with using
a primitive shape instead of a highly detailed mesh including e.g. the ornamentation of a window
frame.

Select valid positions for a building element

Finally, a procedural component can approach the moderator with a list of candidate positions for
a given building element, requesting it to select a given number of valid positions for that building
element. This is typically used for specific types of building elements that need to be placed once
(or any fixed number of times) in the entire building, such as an external ventilation unit, satellite
dish or chimney. Explicitly selecting a valid location to later place the element is a useful advice for
procedural components that do not allow backtracking. This function is particularly suited to handle
exclusion conflicts, explained at the beginning of this section. Validation of each candidate position is
handled in the same way as described above: for each of the candidate locations, the moderator will
check whether the existing constraints are satisfied, in which case the location is deemed valid. From
the valid candidate locations, it selects the requested number of positions at random. These selected
positions are marked within the semantic building representation.

Using the above moderator functionality, procedural components are indirectly made aware of the
results of each other’s actions, through communication with the moderator. By registering, inquiring
and selecting, components are provided valuable building advice, to which they can timely react and
thus prevent the occurrence of intersection, functional and exclusion conflicts.

6.1.2 Wrapping components

The integration of existing procedural components within the same framework has attractive ad-
vantages, since it allows the generation of more complex structures (e.g. a complete house with
interior and exterior instead of simply a façade). Even when techniques exist to completely create
such complex structures, allowing the integration of more atomic techniques results in a lot more
flexibility: the most suitable technique can be chosen for every individual element of the game world.
The counterpart of this integration, of course, is that there is some implementation effort involved.
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We now describe the implementation steps required and the impact of the integration process on each
procedural component.

The main two implementation steps that need to be taken are (i) implementing a wrapper interface
for the component, and (ii) modifying its generation procedure to include the proper semantic
moderator queries (i.e. registering elements and constraints, inquiring about building elements and
requesting and inquiring about marked positions).

The main purpose for a component wrapper is to provide access to the functionality of the moderator
using a generic interface, as shown in Figure 6.1. Such a wrapper only needs to be implemented once
for each procedural component, regardless of the number of other components or the type of building
being generated.

The secondary purpose of the wrapper is to allow components to be notified, through the moderator,
of the results of actions performed by another component. For this, the moderator has a notification
mechanism that informs all components of changes in the semantic building representation. Through
its wrapper, in turn, a component can handle specific notification events, triggering their own actions
when another component performs a specific action. For example, a texture generator can create
appropriate wallpaper when an inner wall is registered by a floor plan generation component.

The final purpose of the wrapper is to handle the conversion between a component’s specific shape
representation (i.e. data structure, coordinate system, etc.) and the common shape format used by
the moderator. Whenever a new building element is registered, a notification event is provided to
all other components. However, not all components will necessarily have to do something with it;
e.g. a facade grammar component typically does not need to know the positions of all the furniture
placed by a layout component. Only the components that require information on that element need to
convert it to their internal format. As a result, introducing more components will not necessarily have
an exponential impact on the computational efficiency of the building generation.

Of course, a specific wrapper can include more functionality relevant to its procedural component.
After communicating with the moderator, a component might need to perform additional actions.
Typical examples include: (i) what to do when an element cannot be registered, or (ii) immediately
selecting a position and creating a building element after getting a number of marked locations for
this element. These additional actions can be implemented within the wrapper methods or directly in
the existing procedural technique, if that is preferable.

Finally, it should be mentioned that minor alterations will need to be made directly in the compo-
nent’s procedural generation method. At least, the wrapper methods need to be invoked throughout
it at the correct time. An example is the registration of elements with the moderator before they
are definitively placed. Still, the implementation of the wrapper interface is the most important
step required for the successful integration of a new procedural component. After a component’s
wrapper is implemented in the correct way and the mentioned minor alterations to the procedure
have been performed, that component becomes and remains integrated within our framework. All its
functionality, including notification events, remains intact regardless of changes to, and replacements
of, other components.
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6.1.3 Plan and conductor

Our semantic approach described so far enables components to collaborate, through their wrappers, in
the generation of consistent buildings. However, the invocation of the various components still needs
to be orchestrated in such a way that they constructively work together, i.e. following the correct
steps in the appropriate order. The order of invocation of components often has an influence on the
end result, and designers therefore need to have sufficient control over this.

To support this degree of control, we created the concept of a conductor and its building plan.
Plans are simple documents where one can declare which components should be used, when and how
to use them. Designers can create separate plans for different building types using the same integrated
components. Primarily, designers use plans to control the sequence in which components are invoked,
and also to provide values for the input parameters that each component requires. Varying these is
what allows one to define different building types. For example, using different values for the style
and lot shape parameters of a façade grammar allows one to create different building façades. Bear in
mind that multiple executions of the same plan but with different random seeds, typically result in
variations of the same building type, since most procedural techniques are stochastic in nature.

Currently, building plans are specified using a declarative scripting language developed for this
framework. Among other things, this language provides commands for declaring the components
used in the plan, and invoking them in a desired order. The invocation of a component, declared using
the execute command with the respective parameters, is supported through a call to its wrapper. An
example of the syntax of this language is shown in [92].

In particular cases, a straightforward one-step sequential invocation of a set of components can be
sufficient for generating a consistent building. This is especially the case for situations where the
constraints and dependencies between the building elements produced by the different components
are fairly loose. An example is generating the façade of a one-floor building after the complete
creation of a floor plan. If the only constraint is to avoid intersection conflicts between windows and
interior walls, and the invocation of both components follows the standard procedure of registration
and inquiries, then their sequential invocation can create a multitude of consistent building variants.

However, such cases are rare. For the vast majority of buildings, stronger dependencies are present
and step-based execution of components is needed for consistent results. For example, a façade
generator creating a multiple floor building might need to wait for the generation of one floor plan to
complete, before resuming with the next floor’s façade. Plans can include step-based execution of
components if the wrappers are implemented to support it. Note that, although some components
can execute in a step-wise fashion, that is unfortunately not enough to support backtracking, i.e.
undo or redo a step of a specific component that turned out to yield an unsuitable configuration.
The main reason for this is that to support backtracking in our approach, every component should
support backtracking as well, and this would be an unreasonable demand since it would exclude many
interesting procedural techniques.

Plans are also responsible for another mechanism: sharing and passing building elements from
one component to the next, to allow for further detailing by the latter. This is an indirect type of
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communication: the moderator distributes among components the semantic elements representing the
building elements, according to the needs explicitly specified in the plan. A good example of this are
building elements produced by a floor plan component: after registration, floorplan elements could be
passed to a shape grammar to detail its geometry or texture. The plan specifies and controls if and
how registered elements are passed to which other components. For instance, a plan can specify what
the shape symbol of the semantic element (originally created by the floorplan component) should be
and, optionally, which semantic attributes are mapped to shape parameters.

As follows from Figure 6.1, the conductor is responsible for executing plan steps, or items, in the
correct order. The conductor’s function is to parse the plan and, for each item, invoke the correct
component through its wrapper. The conductor automatically maps commands in plan items, such as
execute or resume, to the corresponding wrapper methods.

Finally, the conductor is also responsible for assembling the resulting 3D geometry generated by
each component. For this, the conductor maintains a building representation graph, where each node
contains the geometry of a building element generated by a component. Currently, components are
responsible for supplying this geometry defined in the common coordinate system and scale. After
all geometry has been generated, this graph is optimized for interactive rendering.

6.2 Example of a typical North American style villa

The example proposed in this work is of a typical North American one-storey house with a front porch.
This type of building has a non-trivial floor plan and the façade should be generated accordingly. In
[92] two more examples can be found. One of them is a Greek holiday villa and the other is a motel
lot including rooms, a parking lot and swimming pool.

6.2.1 Building plan

The building plan of this example is quite straightforward, consisting of these four consecutive steps
(executed by the components in brackets):

1. Create coarse volumetric building shape (shape grammar);

2. Layout the house’s rooms (floor plan);

3. Detail the complete building (shape grammar);

4. Add furniture to each room (furniture).

6.2.2 Generation results

Figure 6.2 presents two example results generated for the above Meadowdale building plan. In the
first example, Figure 6.2 (a), we see that the front porch is placed at the front wall segment of the
great room, and an additional door is placed on a side wall segment of the kitchen. Window types
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2: Generation of a North American villa: (a) front view with porch; (b) back view with
different types of windows and side-doors depending on adjacent rooms; (c) top view on the different
rooms (great room, kitchen, bathroom, bed room, laundry); (d) automatically placed furniture based
on room types and object relations; (e)-(f) front view and interior view of the same plan, but now
using another floor plan generation technique, that of Marson and Musse [56].

and patterns match with the function of the adjacent rooms, as can be seen in Figure 6.2 (b): small
windows are placed in the bathroom wall segment; and no windows, but a door and air vent, in the
laundry segments. Figure 6.2 (d) shows that the automatically placed furniture matches well with the
function of the rooms.

In the second example, the floor plan is generated by the technique of Marson and Musse [56].
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Figures 6.2 (e) and (f) show an exterior and interior of the same building. The most noticeable
difference between the floor plans, by comparing Figure 6.2 (d) and (f) is the absence of L-shaped
rooms and the presence of a corridor. Since this technique uses squarified treemaps, it is unable to
produce non-rectangular rooms. To include a corridor, we modified the input parameters for the floor
plan component to add two bedrooms instead of one. This resulted in the creation of a corridor to
link the bathroom and the two bedrooms to the living room.

This second example shows some of the possible variation in outputs of a single plan, including
variation in the façade component (e.g. textures, front porch at a different location) and in furniture
placement. Of course, the same rules for windows types, and the position of doors and the air vent,
apply in the second example as well.

Meadowdale took on average 7 seconds to generate. Most of the computation time was spent in the
shape grammar and layout solving components, each about 40 % of the total computation time. The
grid-based floor plan component took 9% of the total time to generate the fairly straightforward floor
plan of Meadowdale. Less than 1% was spent on the semantic moderation of procedural components.

6.2.3 Plan execution

In the first step of the plan, the shape grammar component determines the building footprint inside
the garden and extrudes and registers its volumetric shape. As no further rule matches are found,
the component halts and the plan proceeds with the floor plan generation. The house has a great
room, a kitchen and laundry room, a bathroom, and either one bedroom (in the first example, Figure
6.2 (a)-(d)) or two bedrooms (in the second example, Figure 6.2 (e)-(f)). In the second example, a
corridor is automatically added by the floor plan generation technique (see [56]).

Several adjacency constraints are defined (e.g. between the bedroom and the bathroom and the
kitchen and the great room). A special type of adjacency constraint requires the great room to be at
the front of the building. Typically, in this type of houses, the front porch is directly connected to the
great room: on the left side of the building in the first example, and on the right side of the building
in the second example.

For both the interior and exterior walls of this building, continuous wall segments are registered
and passed to the shape grammar as separate shapes. Wall segments are used instead of complete side
walls. or buildings as motels and offices, creating a uniform façade pattern is more important. For
residential buildings, the façade is more reflective of the interior layout and room function. Using
wall segments ensures that each wall shape belongs to only one room, making it easier to generate
façade segments that match with the rooms.

Again, within each room, appropriate furniture is automatically placed. For instance, in the kitchen,
bottom and top cabinets, a stove and refrigerator are placed against the wall, while a dining table
surrounded by chairs are placed in the centre of the room.
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6.3 Conclusions

This chapter proposed a novel approach for automatically generating consistent virtual buildings, i.e.
buildings consisting of a variety of plausible architectonic elements, all in harmony with each other.
Among other uses, such ‘enter-anywhere’ buildings are especially suitable for open game worlds and
exploration-based gameplay.

This approach used our semantic model, explained in Chapter 4, for integrating different com-
ponents that implement existing procedural techniques, each of them generating specific building
elements. A semantic moderator communicates with these procedural components, and provides
them with valuable guidance in order to prevent conflicts among the generated building elements. In
this way, we are able to preserve the individual qualities of the integrated components. The moderator
keeps a semantic building model that represents each building element generated by the procedural
components. Based on this model and on a number of constraints, it maintains the consistency of
generated buildings.

The example in the previous section and the additional examples from [92] highlight the central
role of the semantic representation by the moderator, coordinating and advising components towards
the goal of generating consistent buildings. By correctly using the generic interface of the moderator,
procedural components can obtain advice on the impact on building consistency of each of the
elements they propose to include. For this, all building elements generated by different components
are combined in the central semantic building model, to ascertain that their location and semantics do
not conflict with each other. An example of spatial consistency is that the semantic moderator assures
that the walls created by a floor plan generator do not intersect the windows created by a façade
generator. Another example, but now of functional consistency, is that both these same windows and
the furniture (laid out by a third procedural component) are all generated according to the function of
the room.

We showed the applicability of our approach with examples from our prototype system, featuring
the integration of a façade shape grammar, two different floor plan layout generation techniques,
and furniture placement using our semantic layout solving approach explained in Chapter 5. This
integration required small modifications and therefore we can consider these to have a relative low
burden on developers. Wrapping components and writing a building plan, as done for our examples,
are reasonably straightforward implementation tasks. To give an indication of the amount of effort for
integrating a new component, the components used for our examples typically took a single developer
less than one working day to integrate. The shape grammar component required slightly more effort,
as the calls to the semantic moderator had to be made available in the CGA grammar as new shape
operations, but still, it was fully integrated within two days.

This integration also had a low impact on performance. Our results show that performance is
hardly affected by the moderator checks, conversions and operations. In the examples shown, this
overhead lies between 1% and 2% of the total running time (less than 100 ms, in absolute time). This
overhead in computation time for the semantic moderator functionality can therefore be considered
as perfectly acceptable. Of course, if we were to use highly optimized procedural components, the
overhead would be relatively larger, but still minor when compared to the computational cost of most
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individual procedural methods.

This integration approach has valuable advantages over dedicated approaches. These include the
ease of integrating new components and to put them into existing plans. This makes it possible to use
the best technique for each building element, for each specific building type. Examples of building
elements for which we could integrate such dedicated techniques are underground structures and
layouts of gardens. Also, we argue that this approach brings both power and flexibility to the building
generation process. Plans for generating different types of buildings can easily be elaborated, once the
required procedural components have been integrated in the framework. Subsequently, the framework
is able to execute them, invoking the available components in any desired combination. Furthermore,
this approach allows one to focus on improving individual components, without being concerned
with how these internal changes affect the consistency of the final outcome.

In short, our semantic approach allows one to integrate existing procedural techniques, while
preserving their individual qualities, thus allowing for the automatic generation of very detailed and
consistent buildings.

Once a game world is either created by hand or generated using procedural generation techniques,
we might want to alter its appearance to match changing circumstances. Therefore, the next chapter
introduces the concept of procedural filters that can perform such changes, just like image filters
change the appearance of pictures.
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CHAPTER 7

PROCEDURAL FILTERS

In Chapters 5 and 6, we discussed two ideas that can improve procedural or automatic generation
techniques using semantics and thereby aiding designers in creating game worlds: semantic layout
solving and using semantics to integrate procedural content generation techniques.

In this chapter we introduce a new concept that allows for easy scene customization. Once game
worlds are finished, they are usually static and therefore suiting in the context and the situation for
which they were built. But a game might need the same world under different circumstances. In
such cases, instead of forcing designers to manually rebuild every element of the game world all over
again, we propose using procedural filters.

Procedural filters provide a layer of customization that can be applied to a finished game world
and the objects therein. These filters will not structurally change the world, but add or change its
finishing based on a new context, for example, we might want the same game world in springtime
for one level of the game, and in wintertime for another level. Filters use building blocks to alter the
visual appearance of objects in the game world. By using the semantic information available in the
objects, filters can easily fine-tune their appearance to the specific circumstances of the game world
and of the objects themselves.

This chapter will explain the general structure of procedural filters and some results created with
example filters. In Section 2.2.4, we already explained how there is a growing trend towards bigger
game worlds and how this puts a strain on designers. An even bigger problem arises when a game’s
story requires the game world to adapt in some way. An example of this is 2K Czech’s 2010 game
Mafia 2 in which the player takes on the role of Vito Scaletta, son of Sicilian immigrants, who after
returning from fighting in World War 2, gets tangled up in the Falcone crime family. The first part of
the game plays out in the winter of 1945 in Empire Bay, a fictional city based on New York, Chicago,

This chapter is a summary of our previous work, published in [93].
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Los Angeles and Detroit. Vito, however, gets a prison sentence for stealing ration gas stamps from
the Office of Price Administration. After an interlude in prison, Vito rejoins society in April 1951
and finds himself in a new world. Not only is it springtime, Empire Bay has transformed from a
depressing, dark, war time city to a bright, lively, prosperous one. This created an amazing, immersive
experience for players: leaving prison to come back to a city that looks new and full of life proved
to be a memorable experience in the game. The difference in eras was noticeable in the colors, the
music and even in the handling of the new era cars. However, this also meant that the city modeling
and visualization needed a considerable change. Obviously, a lot of new buildings and cars had to be
modeled, however many parts of the world that were kept also required a makeover. Especially the
difference in seasons required a lot of extra effort: for example, in the winter the roads and rooftops
need to be covered with snow and in the spring, outdoor tables and seats are placed in front of cafés
and restaurants.

Recreating a game world under different circumstances can be a time-consuming process, however
the experience can prove to be worthwhile for the player.

In this sense, it would be great to give designers a tool to make the customization of game worlds
easier. We took our inspiration for the notion of procedural filters from 2D image editing tools.
With the advent of digital photography editing software, e.g. Adobe Photoshop or Google Picasa,
the notion of filters has become widely popular. In that context, filters affect an input image in a
large variety of predefined, often parameterized, ways, which mostly have appealing and intuitive
semantics. In this way, for instance, one can apply on a photograph, among others, artistic filters (as
e.g. fresco or watercolor), stylize filters (as e.g. diffuse or emboss), or texture filters (as e.g. grain or
patchwork), as shown in the examples of Figure 7.1.

Inspired by that concept, we developed the notion of procedural filters for virtual worlds, which
we define as: procedures aimed at being applied on (part of) a virtual world, that modifies the
appearance and other contingent visual attributes of its objects, in order to give them a peculiar
desired twist.

Regardless of whether they are created fully manually or using procedural generation techniques,
most game worlds are static, even if they contain dynamic gameplay elements, e.g. animations
or scripted agents. However, the same game world might be needed in different circumstances
or ‘flavors’, as in the example we gave of Mafia 2. If the world is generated procedurally, one
might need to change the techniques used in order to produce the same world under these different
circumstances. The situation is even worse if the game world was completely created manually, in
which case designers will need to manually revamp the entire world all over again matching the new
circumstances. The notion of procedural filters can be used to soften the load of this process. In
particular, it enables designers to incrementally create and fine tune their own procedural filters, and
apply them on (parts of) the game world during the design phase.

Embedding these procedural filters with semantics provides a generic specification scheme in
which a set of instructions can be tied together to describe this customization process of virtual worlds.
Using our proposed semantic model, procedural filters can become both more generic and more
intuitive: generic, because they are able to map high-level semantic attributes of objects to more low
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Figure 7.1: The painting ‘Het meisje met de parel’ (Girl with a pearl earring), by Johannes Vermeer
(1665-1667); from left to right: original image, with an emboss filter applied, and with a patchwork
filter applied.

level object parameters; intuitive, because such attributes are more accessible than the technical, often
cryptic, parameters typical of procedural generation techniques.

In a procedural filter, a designer describes how a scene should be changed to match a particular
situation. For example, you can create a filter to turn a landscape into a winter landscape, to provide
an ordinary office with a party atmosphere, or to turn a street into a gang-led war zone. Each filter
contains a procedure that is to be followed to alter the scene. This procedure can be built up using a
wide range of possible instructions, which in turn can be given parameters based on the semantics of
the world and its objects.

Finally, as we will see, once developed, filters can be used as components for building more
complex filters: for example, a filter to make a building look neglected can be a combination of
simpler filters that add cracks to windows, put graffiti on the walls, and spread some random trash in
the front yard. In this chapter, we discuss the procedural filter approach, and present some examples
generated using a filter editor (which will be explained in Section 9.2.3).

7.1 Procedural filter approach

As stated above, the notion of procedural filters was conceived in analogy with filters used in 2D
imaging software, which in turn have their roots in the optical filters for photo cameras. Attaching a
new filter to your camera lens will not change the content of a photograph, but it will create a different
atmosphere or a different effect for it. Procedural filters should work in a similar way: the actual
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content of the scene should not be changed in a significant way, it will just be “rendered” in different
conditions.

A procedural filter consists of a set of instructions that form a certain procedure. A filter is
represented by a graph, in which the instructions are represented as the graph nodes, and the dataflow
from the output of one instruction, to the input of the next, is represented by directed edges.

7.1.1 Filter instructions

We distinguish the following categories in these instructions:

1. basic operations (e.g. mathematical operations, conditional statements, creation of primi-
tives...);

2. object transformations;

3. material alterations;

4. changing or loading assets;

5. semantic queries; and

6. procedural generation methods.

We will now describe each category in more detail:

• Basic operations are obviously necessary to perform even the simplest procedure. Some math-
ematical operations or conditional statements, loops and the likes are vital. These operations
also include the creation of primitives, which are constant values like Booleans, real numbers
or strings, that can be used as input for other instructions.

• Object transformations are translations, rotations or scalations of objects already present in
the world. These transformations can be used to mess up a scene by, for example, adding
some slight random transformations to objects on a previously neat, tidy office. It is of course
important to use these transformations keeping the philosophy of procedural filters in mind, in
order not to change the world in a significant, structural way.

• Material alterations are changes to the actual materials (colors, texture maps and shaders)
used to render an object. In addition to changing the color or texture, one can add or remove
shaders, alter shader parameters to match the semantic characteristics of the object or the scene
or simply modify or replace the entire material.

• Changing or loading assets could be loading new textures to be used in the previously
described instructions, or switching model assets. This could, for example, be used to change a
model with a broken up version of the same object, or switching fully-leaved trees with empty
trees, to simulate an autumn setting.
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The final two categories are more elaborate than the above mentioned ones, and will be explained
in the next two subsections.

7.1.2 Using semantics in procedural filters

Semantic queries are probably the most important and powerful instructions with regard to the
reusability and generic nature of procedural filters. Querying the semantics of a scene involves
mostly selecting from the scene objects of a particular PHYSICAL OBJECT CLASS and querying
their ATTRIBUTES. When such instructions are available, the filters will be much less ad-hoc and
therefore much more reusable. Moreover, the ATTRIBUTES of an object (e.g. their age or the level
of destruction) can be directly linked to parameters of filter instructions or to variables of shaders
used by the object’s material. Such high-level semantic ATTRIBUTES are also more intuitive and
understandable for a broader range of users. When a filter is created that maps these semantic
ATTRIBUTES to the more vague, lower-level parameters of a procedural instruction, this filter can
be applied by designers, without requiring them to delve into the actual workings of the procedural
technique.

7.1.3 Procedural generation methods in filters

Instructions in this category handle a wide range of procedural functionality like the generation of
noise or other procedural textures, performing procedural destruction on existing models or using
automatic layout solving techniques to displace objects or to place new objects in the world.

The availability of such techniques has a significant impact on the power of the implementation of
procedural filters: the more, and the more varied, the instructions in this category, the more expressive
and therefore powerful procedural filters become. Based on the effect one wants to create, a range of
procedural techniques would be useful in any procedural filter system.

For almost any procedural generation technique, we can find a use in procedural filters. Procedural
textures are an extremely powerful technique for customization. We can add rust to metal objects,
add moss or other kinds of natural phenomena to walls, add stains on various objects, create burn
marks or crackling paint effects, etc. The use of such textures is virtually endless in game world
customization. Procedural destruction could be used to generate effects for scenes of cities during a
war, after riots, after an explosion or demolition. It could be used to smash in windows, tear down
walls or other structures and break up compound objects. For some other effects, we need procedural
geometry generation: we might want to add shrubbery and weed to the yard and planks in front of
windows to create the effect of an abandoned lot. Or as we will see in our examples later on, we
can use it to generate rubbish on a front porch, or to throw around empty cans and bottles to create
an after-party effect. It is clear that the more such techniques are available to a designer, the more
versatile the filters become.
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Figure 7.2: The execution flow of an example filter. See the accompanying explanation for more
details.

7.1.4 Filter execution

To make sure the entire filter is executed, but only that portion which is necessary, the execution starts
from the end and works its way back to find values only for the necessary input, following a depth-first
search approach. Starting from the result, instructions ask results from preceding instructions to
decide their input until no further input is required. In Figure 7.2 this flow is represented in an
example.

Step A When the result of a filter needs to be obtained, we work our way back from the RNode or
result node. In the example, the RNode is connected to the Sum building block.

Step B The Sum building block needs two input parameters. The top parameter is obtained first.

Step C This input parameter is connected to an integer primitive with value 2.

Step D Now the bottom input parameter for the Sum building block is obtained.

Step E This second parameter of Sum is connected to a Multiply building block, and again two
inputs are necessary. We start by obtaining the top one.

Step F This input parameter is connected to a float primitive with value 4.

Step G Now the bottom input parameter for Multiply is obtained.

Step H This input parameter is connected to a UNode, meaning it is dependent of another filter. The
UNode will execute this filter and return its result.
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Figure 7.3: Four versions of the same house: (from left to right) the first one is not filtered, the second
has some cracked windows, the third one has graffiti on the walls and the fourth one has rubbish in
the front porch.

Step I The Multiply building block returns the multiplication between the two obtained input values.

Step J The Sum building block returns the sum of the two obtained input values to the result node.
This will, in turn, pass it along to the caller of this example filter.

7.2 Examples

To show the application of procedural filters we used the editor, discussed in Section 9.2.3, to create a
party filter and several example filters, performing aging and deterioration filters for houses. This
included the creation of scenes, in our case using procedural content generation techniques, collecting
or creating assets (e.g. models, textures, shaders...) and actually creating the filters in the editor,
applying them to those scenes.

The first set of filters was created for an urban environment (a street or a neighborhood). One
filter applies aging effects on a house (e.g. moss growing on the walls or cracks appearing in them)
and another one handles effects having to do with deterioration of buildings because of neglect or
vacancy, e.g. rubbish gathering on the porch, windows getting smashed in and graffiti being sprayed
on the walls. Both these filters are in turn combinations of smaller sub-filters and blocks: e.g. using
crack texture generation block to create smashed windows, using texture composition to add graffiti
to walls, or using the semantic layout solving block to add cans and other rubbish to the front porch.
Images of these three example filters applied to a procedurally generated Dutch-style middle-class
house can be seen in Figure 7.3.

The creation of the cracks is handled by a building block which can create cracked lines to a texture.
A simple crack can be created with a one dimensional midpoint displacement algorithm. To generate
the typical pattern of a smashed in window, the building block allows designers to create multiple
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cracked lines from one center point that can be handed as a parameter to the building block, which, in
turn, is fed a random 2D point on the texture to create a variety of window cracks.

For the texture composition, we use a simple shader that combines a number of textures. By using
the appropriate building blocks to add such a shader and the correct textures to a material, it becomes
possible to create, for example, a wall with graffiti. To create the moss on the roof and walls, the
same building blocks are used, however with a slightly different shader that combines textures based
on a combination texture. In our case we used a building block that creates a Perlin noise texture,
which we used as the combination texture. The age attribute of the building is used as the threshold
value: in the pixel shader, we use the roof texture when the corresponding grayscale value in the noise
texture is above the threshold and the moss texture when below the threshold. In other words: the
higher the threshold, and thus the higher the age of the building, the more moss will be visible.

In Figure 7.4, we see a street with a row of similar houses, generated using the same shape grammar.
In Figure 7.4a, all houses are new. In Figure 7.4b, the houses are given a random age, which defines
their level of deterioration. This attribute is used in filters that apply cracks to the walls, rust on the
drain pipes, and, as explained above, moss on the walls and roof. Finally, in Figure 7.4c, a high
vandalism filter is applied to the street, which uses a number of the previously explained filters as
instructions to add graffiti to the walls, cracks in some windows and garbage on the front porches.

Finally, in Figure 7.5, we see an automatically laid out office room, with a number of desks with
office appliances, all placed using the semantic layout solver discussed in Chapter 5. On that scene,
we applied a party filter which performs a number of operations, mainly spreading around objects
like cans, empty liquor bottles and some balloons. It also adds a small random translation and rotation
to some of the objects to give a more messy appearance to the scene.

It is important to note that the visual quality of the output of the filters also depends on the quality
of the used assets. For example, if we were to use a more complex shader or a higher quality textures
for our moss, the visual quality would be improved, without the structure of the filter having to change
(only the values of a number of parameters like the shader or texture path).

7.3 Conclusions

This chapter proposed our procedural filter approach aimed at assisting designers in customizing
virtual worlds or scenes. We defined procedural filters as sets of instructions to be applied on (part
of) a virtual world in order to customize its appearance or give it a peculiar twist. Procedural filters
are, thus, the 3D virtual world equivalent of 2D digital imaging filters. They provide step-by-step
instructions of how a virtual scene should be customized and how its appearance should change
based on attributes and circumstances. They allow designers to intuitively express the visual changes
proper to a particular situation. We identified and discussed the categories of instructions necessary
or desirable for this purpose. The recursive nature of this approach encourages reusability and allows
designers to incrementally build up a relatively complex filter. We implemented this approach within
a visual editing and testing environment for procedural filters (discussed in more detail in Section
9.2.3), and showed the results of a number of test filters.
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a.

b.

c.

Figure 7.4: The same street but in various conditions: a) all houses are new and intact (no filter
applied), b) the same houses have different ages, achieved using filters that add moss on the walls and
roof, cracks in the walls and rust on the drain pipes, c) the same street, but with a high vandalism
filter that uses additional sub-filters to produce smashed-in windows, graffiti and garbage.
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Figure 7.5: On the left, two views from an office are shown. To the right, we see the same scenes, but
with a party filter applied to them: some balloons, empty bottles and cans are spread around the room,
a few cakes are placed on the desks, and the desks and computers have been slightly rotated to give a
more messy effect.

When semantic attributes are available, filters can be created that are more intuitively parameteriz-
able. By mapping high-level semantic attributes (e.g. ‘level of destruction’) to the more low-level
parameters of procedural techniques (e.g. parameters of a noise function or some threshold value
for texture composition), the use of such filters will become easier and more readable, even without
knowing the exact workings of the procedural techniques involved. We showed this by integrating the
concepts from our semantic model (see Chapter 4 into the implemented procedural filter editor.

Based on interviews with people involved in game development, we noticed that the editor and the
approach in general were perceived as a good addition to the current game development workflow.
Most interviewees were convinced it could save a lot of time and would greatly increase usability. An
evaluation of the procedural filter approach can be found in Section 11.2.4.

The last three chapters have been applications of the semantic model to aid the creation of game
worlds. In the next chapter, we will introduce the concept of SERVICES to enable designers to specify
behavior of game objects.
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CHAPTER 8

SERVICES

Up to this point we have looked at how our semantic model can be used to help designers build up a
game world more easily by using (i) semantic layout solving, (ii) a semantic moderator to integrate
procedural generation techniques and (iii) procedural filters.

We now focus on the runtime phase of the game. In Chapter 4 we briefly discussed the concept of
SERVICES that can be used to describe functional information of objects, i.e. the way they behave
and respond to interaction of the player, characters and other objects.

This chapter will explain in detail the structure of SERVICES, their components and their relation to
other entities. We will take a closer look at how the interactions and effects of SERVICES are handled
at runtime, and how this helps maintaining the semantic consistency of the game world. We also
show some practical applications of services to simulate and handle particles and agents in a dynamic
game world.

By expressing semantics on the behavior of objects or the game world itself, we can capture how
the world needs to respond to changing environments, as well as when and why these changes should
happen. By allowing designers to specify this behavior and by handling the effects of the behavior at
runtime, SERVICES can help to create dynamically changing game environments.

8.1 The structure of services

Entities in the game world should be able to behave as their real-world counterparts, for example, a
jacket has the service of providing warmth to the person wearing it, but a campfire or electric heater
provides the same heating service, only to all objects within a certain range. As such, services are a
very powerful way to express semantics in game worlds.

This chapter is a summary of our previous work, published in [45] and [46].

95



8. Services
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Figure 8.1: A service can have several types of requirements and effects.

In the following section we will come back to some of the definitions given in Chapter 4. We
defined a SERVICE as the capacity of an ENTITY CLASS or of MATTER to perform an ACTION,
possibly subject to some requirements. An action is a process performed by an instance of an ENTITY
CLASS (and consisted of MATTER), yielding some effects like ATTRIBUTE value changes or yielding
new instances of ENTITY CLASSES; e.g. a vending machine providing a can of soda or an oven that
heats up objects inside it. An ACTION always requires an actor and optionally a target and/or some
artefact (like a gun for the shoot SERVICE between two characters), all of which are either ENTITY
CLASSES or MATTER.

First we will discuss what kind of requirements one can specify for a SERVICE and what possible
effects the execution of a SERVICE can have on entities in the surroundings of the actor or target of the
SERVICE, or on otherwise related entities. Then we discuss the importance of CONTEXTS, introduced
in Chapter 4, in combination with SERVICES on reusability and ease of specification. Finally, we
describe how temporal and spatial properties play a role in the structure of a SERVICE.

8.1.1 Requirements and effects

As explained in the definitions, SERVICES specify the ability to perform a certain ACTION subject to
some requirements. These ACTIONS in turn yield some effects. We will give a detailed overview of
the different types of requirements and effects that can be specified, each with some examples.

Figure 8.1 shows all types of requirements and effects that can be associated with a service. First,
we enumerate the different types of requirements:

Preconditions defining when a service can or should be provided.
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• A vending machine can dispense soda cans if some are available in its inventory.

• A TV only increases fun when switched on.

• A door can only be opened when it is not locked.

Required actions necessary to perform in order for the service to be provided.

• A jacket only provides warmth when worn.

• A book provides knowledge when someone reads it.

• A chair will provide comfort when one sits on it.

Demands of some goods in exchange for the service to be provided.

• A vending machine will only dispense soda cans if the actor deposits a coin.

• It is only possible to craft an object on a workbench when the necessary raw materials
are available.

• You can only chop down a tree when using an axe.

Part & whole requirements for the service to be provided.

• A car needs a functioning engine to run.

• A printer will only work when a cartridge or toner is available and not empty.

• A bicycle needs two wheels and pedals to be ride.

Connections that are required to provide the service.

• Electrical devices need to be connected to the electricity mains.

• A hose needs a connection with a water faucet to spray water.

• A cart needs to be connected to a horse or other beast of burden to be able to move.

Spatial requirements for the service to be provided.

• The automatic doors will open when someone walks or stands in front of the doors.

• Water will extinguish fire upon contact.

• Wood will catch fire when near a flame.

Next we enumerate the different effects:

Postconditions after the service is executed.

• After eating an apple, the eater’s hunger level goes down.

• When a civilization hands over a tribute to another one, the strength of the ally relationship
will increase.
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• After turning on an electric device, its state becomes ‘on’.

Creations, deletions of instances or matter that occur as the result of the service.

• A sword factory creates new sword instances.

• While driving, gasoline is removed (deleted) from the gas tank.

• After exploding, a bomb is removed.

Reactions on the service.

• Upon hitting an enemy, that enemy will strike back by hitting the assailant.

• When a smoke detector is triggered by some smoke, an alarm will sound.

• When restructuring a company, the workers might react by revolting, which can involve
going on a strike or sabotaging the company’s supply chain.

Relationship establishment (or termination) after performing the service.

• After giving birth to a kid, a parent relationship is established between mother and child.

• When the player sells an object the ownership relationship with the object is removed
and another one is established between the buyer and the object.

• When defusing a bomb, the connection relationship is removed between e.g. the detonator
and the explosives of the bomb.

Transfer of entities as a result of the service.

• A vending machine will transfer the purchased soda can from its inventory to the buyer.

• Equipping a tool or weapon will transfer it from the inventory to the player’s hand.

• A teleport will transfer a player from one space to another.

Transformations happening as a result of the service.

• After reaching a certain age, a chick transforms into a chicken.

• After casting a spell, a character might transform into something else.

• A weapon might transform from a semi-automatic weapon into an automatic one after
applying an upgrade.

All these requirements and effects allow designers to specify a wide range of different services in a
uniform and generic fashion. Uniform, because the basic structure of a SERVICE is always the same:
ACTION - requirements - effects: a basic and simple structure that, however, does allow very complex
behavior. And generic, because, by allowing to specify each SERVICE on the best-suitable level in
the hierarchy of ENTITY CLASSES (i.e. the most generic ENTITY CLASS to provide the SERVICE),
we prevent designers from having to specify the same SERVICE multiple times. For example: the
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Oven
Provides service:

‘Cook food’ when in context functioning

Electric device
Context functioning:

connected to electricity Electric oven

Battery-operated oven

Battery-operated device
Context functioning:

contains non-empty batteries

Figure 8.2: Both electric and battery-operated ovens can cook food, but the required CONTEXT
named functioning differs and is specified higher in the hierarchy for the generic TANGIBLE OBJECT
CLASSES Electric device and Battery-operated device. This way, no behavior needs to be specified
for the two specific ovens, since they inherit all necessary behavioral semantics from their parents.

SERVICE of killing should be specified for a generic ENTITY CLASS weapon from which other
ENTITY CLASSES like spear, gun or sword can inherit.

However, requirements for the SERVICE might differ for each of these inheriting ENTITY CLASSES.
To handle this, we can use CONTEXTS.

8.1.2 Context-sensitive services

The SERVICE requirements can be combined in the concept of CONTEXTS (introduced in Chapter 4
and used for semantic layout solving in Chapter 5). The generic setup of the SERVICES in our semantic
model, combined with the CONTEXTS, has important potential for reusability. Both requirements and
effects of actions can be defined (and redefined) for an ACTION on each level of the entity hierarchy.
The same holds for the conditions of a particular CONTEXT for an ENTITY CLASS. This way, both
CONTEXTS and the SERVICES that use these CONTEXTS can be separately specified at different
hierarchic levels. This way, two ENTITY CLASSES inheriting from the same parent class can both
differently redefine a CONTEXT used in a SERVICE of their parent class. We will clarify this with an
example.

In this example, we specified the TANGIBLE OBJECT CLASSES Oven, Electric device, Battery-
operated device, Electric oven and Battery-operated oven. Electric oven inherits from Electric
device and Oven, while Battery-operated oven inherits from Battery-operated device and Oven,
(see Figure 8.2). We can define the CONTEXT functioning for an Electric device as a required
connection to the electricity mains and for a Battery-operated device as requiring non-empty
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batteries. The SERVICE Cook food can be specified for the generic TANGIBLE OBJECT CLASS
Oven. Now, simply by means of the inheritance, both the Electric oven and the Battery-operated
oven will contain all necessary behavioral semantics. No new SERVICES and no new requirements or
effects need to be specified in either of these TANGIBLE OBJECT CLASSES.

8.1.3 Spatial and temporal properties

We already explained that designers can specify effects of SERVICES and their requirements, possibly
through the use of CONTEXTS. However, SERVICES might also be influenced by spatial and temporal
properties.

First of all, the spatial properties define the range of influence of the effects of a service. A jacket
warms up the person wearing it, an oven warms up the items inside it and a heater or camp fire
warms up all entities within a particular range. It is obviously necessary that these differences can
be specified in the SERVICE. This range of influence can go beyond a physical range. The effects
can influence all related entities of the actor or target of the service. For example, when creating a
strategy or city-building game, one might want to create a SERVICE for a resource gathering building
that increases the resource supply of the owner, i.e. the source of a RELATIONSHIP of type owns for
which that building is the target.

The temporal properties define how the effects of a SERVICE vary in time. The most important
temporal property is the choice between discrete and continuous effects. Discrete effects can be a
vending machine supplying a single can, an ATM machine supplying a certain number of bills or a
grenade decreasing the health of people within a certain range one single time. Continuous effects
can be the continuing increase of the hunger level of a person, a television gradually increasing the
fun of people in the surroundings or a poisonous gas cloud continuously decreasing the health of all
people within the cloud.

A second important temporal property is one dealing with chances. It is often not desirable to have
an effect happen every time, or always at the same moment. For example, we might want to define
that there is a one in twenty chance that a grenade does not detonate. We do not want to specify that a
living creature dies when reaching a certain age, however the chances of that happening do increase at
a higher age. A character performing a lockpick ACTION on a lock, will sometimes fail. To account
for this, we include chance properties within the definition of a SERVICE.

In that last example, we might want to say that the chances of a lockpick ACTION failing are
dependent on the abilities and experience of a character. Also, all other values specified in the
SERVICES might need to be dependent on other ATTRIBUTES. For example, the decrease of the
level of hunger ATTRIBUTE of a character might be dependent of the nutrition value ATTRIBUTE
of the eaten piece of food. It is therefore important that an attribute can be expressed depending on
ATTRIBUTE values of the actor, target or artefacts of the SERVICE or otherwise related entities.
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8.2 Consistency maintenance using a Semantics Engine

To handle SERVICES of entities, we created a proof-of-concept implementation which we call the
Semantics Engine. Analogously to what a physics engine does with in-game physics, the Semantics
Engine maintains the in-game semantic consistency of the world. After creating GAME-SPECIFIC
CLASSES, instances of them can be placed in a semantic game world. By making use of the Semantics
Engine, game programmers do not have to implement the execution of the semantic behavior of these
instances, as the engine is charged with this handling.

The engine has several main features. First, it maintains all the instances that have been created,
and checks whether they have any active SERVICES. This procedure to update the semantics engine
is presented first in pseudo code:

/ / The s e m a n t i c s e n g i n e keeps a l i s t o f a l l c u r r e n t l y a c t i v e s e r v i c e s
S e r v i c e [ ] c u r r e n t l y A c t i v e S e r v i c e s ;

/ / −−− UPDATING THE SEMANTICS ENGINE −−−
/ / Because we want t h e r e s o u r c e s needed by t h e s e m a n t i c s e n g i n e t o be as
/ / l i m i t e d as p o s s i b l e , we a l l o w t h e u s e r t o s p e c i f y a p a r t i c u l a r a r e a
/ / t h a t needs t o be u p d a t e d . Th i s can , o f cou r se , be t h e e n t i r e wor ld i f
/ / n e c e s s a r y .
f u n c t i o n void u p d a t e E n g i n e ( a r ea , d e l t a T i m e )
{

/ / We loop t h r o u g h a l l i n s t a n c e s i n t h e g i v e n a r e a t o
/ / l ook f o r changes i n s e r v i c e s
f o r each e n t i t y I n s t a n c e i n a r e a
{

C h e c k S e r v i c e A c t i v i t y ( e n t i t y I n s t a n c e ) ;
}

/ / A l l s e r v i c e s t h a t a r e c u r r e n t l y a c t i v e a r e u p d a t e d
f o r each s e r v i c e i n c u r r e n t l y A c t i v e S e r v i c e s
{

U p d a t e S e r v i c e ( s e r v i c e ) ;
}

}

f u n c t i o n void C h e c k S e r v i c e A c t i v i t y ( e n t i t y I n s t a n c e )
{

/ / For a l l d e f i n e d s e r v i c e s f o r t h e i n s t a n c e , t h e
/ / r e q u i r e m e n t s a r e checked
f o r each s e r v i c e i n e n t i t y I n s t a n c e . S e r v i c e s
{

a l l R e q u i r e m e n t s S a t i s f i e d = t r u e ;

/ / F i r s t we check whe the r o r n o t t h e a c t i o n t h a t t r i g g e r s t h e s e r v i c e
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/ / i s e x e c u t e d i n t h e p r e v i o u s t ime s t e p .
i f ( s e r v i c e . A c t i o n E x e c u t e d ( ) )
{

f o r each r e q u i r e m e n t i n s e r v i c e . R e q u i r e m e n t s
{

/ / Based on t h e t y p e o f r e q u i r e m e n t t h e n e c e s s a r y c he c ks a r e made
/ / e . g . p r e c o n d i t i o n s o f a t t r i b u t e v a l u e s o r t h e p o s i t i o n o f t h e
/ / i n s t a n c e f o r s p a t i a l r e q u i r e m e n t s , e t c .
i f ( ! r e q u i r e m e n t . I s S a t i s f i e d F o r ( e n t i t y I n s t a n c e ) )
{

a l l R e q u i r e m e n t s S a t i s f i e d = f a l s e ;
break ;

}
}

}
e l s e

a l l R e q u i r e m e n t s S a t i s f i e d = f a l s e ;

/ / I f n e c e s s a r y t h e s e r v i c e i s a c t i v e d or d e a c t i v a t e d
i f ( s e r v i c e . I s A c t i v e && ! a l l R e q u i r e m e n t s S a t i s f i e d )

D e a c t i v a t e S e r v i c e ( s e r v i c e ) ;
i f ( ! s e r v i c e . I s A c t i v e && a l l R e q u i r e m e n t s S a t i s f i e d )

A c t i v a t e S e r v i c e ( s e r v i c e ) ;
}

}

f u n c t i o n void A c t i v a t e S e r v i c e ( s e r v i c e )
{

s e r v i c e . I s A c t i v e = t r u e ;
c u r r e n t l y A c t i v e S e r v i c e s += s e r v i c e ;
f o r each e f f e c t i n s e r v i c e . E f f e c t s
{

/ / A l l d i s c r e t e e f f e c t s a r e h a n d l e d now ( t h e c o n t i n u o u s e f f e c t s a r e
/ / h a n d l e d i n t h e U p d a t e S e r v i c e f u n c t i o n , s i n c e t h e y need t o happen
/ / a s long as t h e s e r v i c e i s a c t i v e i n s t e a d o f j u s t once . S i n c e
/ / c h a n c e s a r e a t t a c h e d t o e f f e c t s , t h e s e a r e a l s o t a k e n i n t o a c c o u n t
i f ( e f f e c t . I s D i s c r e t e && Random . GetChance ( e f f e c t . Chance ) )

H a n d l e E f f e c t ( e f f e c t ) ;
}

}

f u n c t i o n void D e a c t i v a t e S e r v i c e ( s e r v i c e )
{

s e r v i c e . I s A c t i v e = f a l s e ;
c u r r e n t l y A c t i v e S e r v i c e s −= s e r v i c e ;

}
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f u n c t i o n void U p d a t e S e r v i c e ( s e r v i c e )
{

f o r each e f f e c t i n s e r v i c e . E f f e c t s
{

/ / A l l c o n t i n u o u s e f f e c t s a r e h a n d l e d i n t h i s u p d a t e f u n c t i o n .
/ / L ike f o r d i s c r e t e e f f e c t s , c h a n c e s a r e t a k e n i n t o a c c o u n t .
i f ( e f f e c t . I s C o n t i n u o u s && Random . GetChance ( e f f e c t . Chance ) )

H a n d l e E f f e c t ( e f f e c t ) ;
}

}

f u n c t i o n void H a n d l e E f f e c t ( e f f e c t )
{

/ /−−− Based on t h e t y p e o f e f f e c t , i t i s now h a n d l e d :
/ /−−− t h i s can be t h e c r e a t i o n o r d e l e t i o n o f an i n s t a n c e ,
/ /−−− t h e e s t a b l i s h m e n t o r t e r m i n a t i o n o f a r e l a t i o n s h i p , e t c .

}

For all instances in the area that needs to be updated, the engine checks if there is any change in
the activity of the SERVICES. For every SERVICE it is checked whether or not the ACTION that
triggers this SERVICE is executed. If so, then all requirements are evaluated. For a precondition, for
example, it is checked whether the corresponding ATTRIBUTE has a particular value. The ACTION
does not need to be triggered by another entity, but might also be a scheduled ACTION, e.g. that
needs to be executed every second, or every minute. Based on this, the SERVICE can be (i) activated
when inactive and all requirements are met, (ii) deactivated when active and not all requirements are
met anymore, or (iii) else it is left unchanged. When being activated, the SERVICE is added to the
list of active services and all discrete effects are handled. When being deactivated, the SERVICE is
removed again from the list of active services. After this first step, all SERVICES in the list of active
services are updated. This means that all of the continuous effects are handled. Both for the discrete
and the continuous effects, chances are taken into account, i.e. when a random value between 0 and 1
is bigger than the occurance chance of the effect, the effect is not applied. The handling of effects is
different based on the type of effect. It might involve the creation (or deletion) of an entity instance
or a relationship, the transformation of an instance into another entity, a change in an attribute value,
etc.

At runtime, the engine updates the semantic representation of the game world, by performing the
instances’ ACTIONS for the right amount of time on the relevant targets. This might have an effect on
ATTRIBUTE values of instances, or the inventory of an instance. This, in turn, can result in an active
SERVICE becoming inactive, or in the activation of an inactive SERVICE, of which the ACTIONS will
then be executed. For example, if someone uses the turn on ACTION on an oven, it will get in the on
state, making it heat up its inventory items as long as it stays on.

The semantics engine also offers game programmers useful methods to improve in-game object
interaction. An example is the enforcement of the take ACTION, which should not always be executed
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automatically as a SERVICE, but only when the player actually chooses to pick up an in-game item.
Another example is requesting what ACTIONS are useful to perform on a certain instance, which the
programmer can use for the graphical user interface of a game, or whatever way he chooses to let
the player decide what ACTION he wants to perform. Another feature of the engine, regarding the
interaction between artificial agents and game objects, will be described in the following section.

In addition to the engine, we have implemented an interface between the semantic layer and an
actual game. It makes sure that the Semantics Engine is updated and that instances that are created
or removed by the engine, are actually created in and removed from the game world. For example,
when the engine makes someone execute the eat ACTION on a pie, it notifies that the pie should
be removed from the game, which is then done through that interface. It also allows instances to
convey more than semantic only, as they might be subject to physics as well, or linked to particles, as
discussed in the following section.

Because of the Semantics Engine, (ATTRIBUTES of) instances are constantly updated, resulting in a
lot of dynamics, assuming SERVICES have been defined for them. This leads to adaptive game worlds
that change over time, forcing the player to adapt as well and think about the results of an ACTION,
but also allowing him to think creatively to accomplish something. This is a great improvement with
respect to games that are currently available. However, it also leads to a downside, if the addition
of semantics to games results in too much extra memory overhead, or if processing the handling of
SERVICES requires too much time. This is undesirable, because current games already require a lot
of computational power and there are still limitations on the hardware. The Semantics Engine has
therefore been optimized in some important ways. For example, instances are only updated when they
have active SERVICES, and checking for new active SERVICES is only done when specific properties
are modified.

In order to measure the performance of the engine, we have created three simple test cases. To
provide reliable and representative results, we have decided not to use a world with different GAME-
SPECIFIC CLASSES, but a world with instances that are all based on the same GAME-SPECIFIC CLASS.
Testing the execution time of single ACTIONS is immeasurably small. Upscaling everything to the
extreme, on the other hand, is a good way to check whether the engine is capable of handling a huge
amount of semantic instances. For each test case, we have therefore generated 10, 100, and 1000
instances, respectively.

1. In test case 1, humans are becoming hungry, by having a SERVICE that has an effect on their
‘hunger’ ATTRIBUTE each second.

2. In test case 2, campfires are placed throughout the world in such a way that they have two other
fires in their radius, which they heat up by raising their ‘temperature’ ATTRIBUTE. As more
fires are added, more targets will be affected, resulting in extra overhead, and making it a useful
test.

3. In test case 3, we keep providing factories just enough steel to produce one sword at a time, in
order to test a SERVICE of the demand/supply type. For simplicity, we assume that the amount
of steel is unlimited, and there are no SERVICES defined for the swords.
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Table 8.1: The update time of the Semantics Engine for Test Case 1

10 humans 100 humans 1000 humans

Minimum (ms) 0 0 5

Maximum (ms) 1 1 8

Average (ms) 0 0.0036 5.6

Table 8.2: The update time of the Semantics Engine for Test Case 2

10 fires 100 fires 1000 fires

Minimum (ms) 0 0 8

Maximum (ms) 1 3 11

Average (ms) 0.002 0.066 8.96

Table 8.3: The update time of the Semantics Engine for Test Case 3

10 armories 100 armories 1000 armories

Minimum (ms) 0 0 426

Maximum (ms) 2 40 936

Average (ms) 1.11 29 512

The update times of the engine have been measured, and are shown in Tables 8.1, 8.2, and 8.3. For
all test cases, we have used an Intel Core 2 Quad Q9000 2.00 GHz PC with 6 GB RAM. Having 100
instances and SERVICES requests more of the engine than 10 instances, but performance is still quite
well, and will probably not slow down a game that much. The extreme cases show that the engine
can still be improved, although the average is still pretty decent for an engine that, being a research
prototype, has not yet been optimized as much as possible. Test case 3 shows a bottleneck, which can
be explained by the ongoing creation of swords and exhaustion of steel. It is clear that the engine
is not yet capable of handling thousands of instances at a time, although this extreme scenario is
unlikely to appear in real game worlds. In strategy games, for example, instances will only be created
gradually over time.

8.3 Applications of semantic game worlds

Here we describe some specific proof-of-concept implementations that show the use of services and
the semantic model in action. More importantly, these examples show that the generic nature of the
concept of SERVICES in our semantic model make them easy to integrate with existing game engine
components and systems.
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8.3.1 Particle systems

Particle systems were introduced as a method for the modeling of fuzzy objects [75]. Although
designed for films in the 80’s, particles are nowadays heavily used in games as well. Their primary
use has been unchanged, though, as they still serve as eye candy. Some examples are the visualization
of fire, clouds, and water.

Particle systems consist of emitters that spawn particles at a certain rate, and emit them with a
certain speed in a fixed or random direction. Particles themselves have basic properties (e.g. radius,
transparency, and color), possibly subject to changes over lifetime. In games, they are usually
visualized by textures that are oriented towards the viewer, a technique called billboarding. Particles
may be affected by a physics engine, making them subject to forces like wind and gravity.

In some games, particles are combined with the handling of physical processes. An example
is BioShock [39], where a fireball can melt ice, and bodies of water can be electrified. Although
those effects work as expected, we think that defining the interaction between such processes can
be simplified by combining semantics with particle systems. Similarly, simulations will be able to
become more than meets the eye, as they offer more generic behaviors, therefore leading to a more
widespread use. For example, once the effect of electricity “particles” on water has been defined,
water throughout the entire game world can be electrified, instead of just the intentionally placed
bodies of water, as is the case in BioShock.

For this, we consider SUBSTANCES as ENTITY CLASSES that can provide one or more SERVICES,
like PHYSICAL OBJECT CLASSES. Instead of assigning them a model for visualization, we link them
to a particle emitter or particle properties. A fire model, for example, consists of two emitters: one
for the flames, and one for smoke. A flame is then considered an ENTITY CLASS as well, having
certain properties for the behavior of its particles, and a SERVICE stating that it should heat up its
surroundings. As long as the fire is burning (which can be defined as an ATTRIBUTE), it will spawn
new flame and smoke particles. The fire itself does not have a SERVICE, as it is just a holder for
flames and smoke. A flame, on the other hand, has a SERVICE, and can be reused for other entities
that should emit flames, like a furnace.

Particle emitters can also be linked to PHYSICAL OBJECT CLASSES. In most of these cases, it
may be required to define the source of the particles as well. Consider a fire extinguisher with fire
fighting foam, where the foam, having a SERVICE to cool down entities it collides with, is represented
by particle properties. Only as long as there is foam in the extinguisher’s inventory, it is able to
spawn particles in the form of foam. Held in front of a fire, the flames will cool down, eventually
extinguishing the fire.

The approach with particles works in theory, but one should take care in practice, when handling
SERVICES for entities that are represented by particles. Particle systems can consist of hundreds of
particles at the same time, and updating all of their SERVICES each time might require too much
processing power, especially if collision checks have to be made. Although research has been done
towards the optimization of collision detection [26], we overcome the problem in our framework
by not considering particle semantics unless the game requires to. This way, the game programmer
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(a) (b) (c)

Figure 8.3: Extinguishing a fire with fire fighting foam.

can decide the amount of collision checks, what kind of collision checks to make (particle-particle
or particle-physical object), and report collisions to the semantics engine, which takes care of the
SERVICES of the representing entities. For example, in case of games that already require a lot
of processing power, the programmer might reduce the amount of checks, while in case of a less
demanding game or a small number of particles, checks can be made during each update of the game.
Figure 8.3 presents an example of a fire (a). By using the fire extinguisher, the fire will gradually
become smaller (b), until it is extinguished. The ground becomes wet, though (c).

Letting SUBSTANCES have their own SERVICES also opens up the possibility to mix fluids. When
two SUBSTANCES are mixed together in the right amount (stated as a certain ratio), they both
disappear (semantically speaking), making place for a new MIXTURE, possibly having its own
SERVICES. In role-playing games, for example, this might be useful for the creation of potions, where
different ingredients (each having services of their own) mixed together can result in a potion with its
own specific effect. This already happens in the game The Elder Scrolls IV: Oblivion [5] and many
other RPG’s.

8.3.2 Agents

In many games, the player is not the only character in the environment. Non-playable characters
inhabit many worlds as well, providing assistance to the player, trying to chase him instead, or just
wandering around. These characters used to be pretty dumb, doing no more than what them was
prescribed. Nowadays, all characters are expected to show more complex behavior: reacting to
the player’s actions, adapting to environmental changes, working together, and so on. The driving
force behind these so-called agents is artificial intelligence (AI). Over the years, research towards
agent systems has resulted in agents that behave more autonomously. However, with the increase in
complexity and dynamic behavior of current virtual worlds, new techniques are still required.

A recent technique that can be used to let agents adapt to dynamic changes within an environment,
is reinforcement learning. Mehta et al. [58] let agents adapt their behavior sets in complex real-time
domains during runtime, and let them monitor and reason about their behavior execution to carry out
revisions on behaviors. Hanna et al. [33] describe an approach to deal with the high dimensionality

107



8. Services

Start

Eat
pie

Take
pie

Take
key

Unlock
chest

Open
chest

Take
apple

Eat
apple

Reduce
hunger

Figure 8.4: A graph with all possible paths to reduce the hunger attribute.

of agent sensor state spaces, by dividing them into smaller sub tasks.

With the addition of a semantic layer to game worlds, agent behavior can be easily improved, as
agents should be able to make use of semantic objects as well. Our framework supports the use of
agents, by providing several methods to search through the instances in the game world. In case an
agent is looking for a specific game object, the Semantics Engine will provide information about all
instances of that game object, including their positions, so the agent can find its way towards them.
This is not sufficient, though, as some instances might be inaccessible, for example in inventories
of other instances, and can only be supplied when certain service requirements have been met. An
example is a can of soda that is only supplied by a vending machine in exchange for a coin.

In related research, smart objects (see Chapter 2) have already been used for planning purposes,
as by using scripts, actions are defined [1]. A planning algorithm is used to make the agent move
through and interact with the world. To do so, he collects relevant information about the state of the
world, prepares a planning step, makes a plan, and executes it, where the agent’s actions are taken
from the plan. In another system, Teletubbies have been turned into intelligent agents by giving them
drives, like hunger [4]. Now, if an agent gets hungry, he will search for objects that have the effect
of decreasing the level of hunger, make a plan to reach the object, and use it. Afterwards, his other
drives will guide him to the next location/object.

The Semantics Engine makes use of pathfinding techniques to find instances, while considering
all possible requirements and actions to retrieve them. For this, a directed graph is created that
contains all the paths to reach a certain goal. For example, this goal can be to find a specific instance,
or to let an attribute reach a specific value. Although there is a wide variety of graphs in existing
techniques, our version consists of two or more nodes, including at least a start node and an end
node, the latter representing the goal. Between the start and end node, one or more paths can be
present, each providing an alternative route to get to the goal. Each path contains one or more nodes,
each linked to an ACTION that should be executed by an agent. By using backward chaining, so
starting from the end node and moving towards the start node, the entire graph can be created. More
information about pathfinding techniques and backward chaining can be found in [61].
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Take for example an agent that is hungry. It might request the Semantics Engine to look for
instances that can reduce the value of its ‘hunger’ attribute. Suppose that somewhere in the world,
there are a pie and an apple, the latter one being locked inside a chest. Also suppose that the key is
lying at a place where it can be freely taken. The resulting move graph might then look like the one
in Figure 8.4. Starting from the goal, the engine looks for suitable instances, and checks whether they
can just be taken. If that is the case, like in the upper path of the figure, there will be a simple path
that just consists of a ‘take’ move node, and a node containing the ACTION to reduce the hunger:
‘eat’. In case a suitable instance is owned by another entity, the engine checks whether that entity has
a service to supply it. If so, the requirements are checked, possibly inserting a node that demands
the agent to perform a certain ACTION on the entity. This process is recursively repeated, possibly
resulting in more paths, which are appended to the path that is observed at that time. In the lower path
of the figure, this is shown by the apple in the chest, for which the key should be found first. Note that
due to backward chaining, the engine creates this graph from the right to the left, one node at a time,
while the agent should perform the actions from the start to the end, choosing only one concrete path.

The structure of services share similarities with the Affordance Theory as introduced by Gibson
[28]. He defined affordances as all possible actions in the environment in relation to the actor’s
capabilities. This idea has been used in many AI projects often used to simulate human behavior for
agents, e.g. by Silverman et al. [78]. Our model allows actions and consequences to be specified in
a similar manner, namely, between an actor and a target (the actor’s capabilities can be taken into
account when specifying the effects of an action). And, as mentioned before, the semantic game
world can be queried to return the possible actions (or affordances) in a particular area, e.g. in the
surroundings of a particular character, so it can be used by other systems that simulate intelligent
human behavior. The difference with our model is that we are not focused specifically on human
(or agent) behavior. We want to specify behavior of any object in the world, e.g. of plants or
animals aging or growing, a heater warming entities in its surroundings without them interacting
with the heater or a smoke alarm that sounds when smoke is present in a particular area. This allows
the semantics engine to simulate effects of actions by both agents and other objects in the world.
Furthermore, a service does not need to be triggered by an action. Some services might be triggered
by attribute changes (and therefore potentially implicitly by effects of other actions) or on regular
intervals.

In a state-of-the-art report about intelligent virtual environments, some techniques are discussed
where AI is used as a component of virtual environments [3]. One of the problems that the authors
point out is action selection. If there are multiple tasks that an agent can do at a given moment, there
should be a way to select the action that is the ‘best’ for that moment. This could be achieved by
using reasoning mechanisms or rule-based production systems. The Semantics Engine provides a
graph evaluator, with which all possible paths can be evaluated, according to certain criteria. The
least number of moves is a possible criterion, although another agent might want to cross the shortest
distance. The evaluator tells an agent what move to perform next. Whenever a (sub)path has been
chosen, and a move has become invalid (for example, an instance might have been taken by someone
else between search and execution), an agent can go back in the graph to try another path, or search
again.
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Our framework allows agents to be aware of everything that is happening in the game world, and
to be aware of all available objects. Although this may be desired for some games, having all-aware
agents may be unrealistic, and even unfair towards the player. Instead of giving agents knowledge
about the entire world, a game developer might decide to let an agent have its own world state, and
apply learning patterns to update its knowledge about the whereabouts of other entities. This can be
used in combination with the search methods, making an agent use only the objects that it has come
across. Although the current framework does not support individual world states, future work might
include it.

In case a game object should be intelligent (any living entity controlled by an agent), desires can be
specified for it. A desire can be pursuing a specific instance, executing a service, or reaching a specific
attribute value. An example is the desire to keep the hunger level at a certain value. In case the level
becomes higher than that value, the agent can go look for an instance in the world that satisfies its
hunger. As another example, one might also design an agent with the service of supplying first-aid
kits to the player, and specify that service as a desired service, so that the agent will autonomously go
look for first-aid kits in the world, and bring them to the player.

In Section 10.4, the idea of semantic crowds is introduced applying some of the ideas explained
above. Virtual crowds are steered based on the SERVICES available in the virtual world: they query
the Semantics Engine to know how to fulfill certain goals and desires using the objects in the world.
Besides Section 10.4, even more information on semantic crowds can be found in [48].

8.4 Discussion

This chapter introduced the notion of SERVICES in our semantic model. SERVICES are built around a
simple basic structure of requirements and effects. In our model, we decided on a number of different
types of such requirements and effects, based on an extensive list of examples of current games from
many different genres. This is not an exhaustive list, and for some less usual behavior other types
might be necessary. Space and time play an obviously important role, therefore the SERVICES have
properties to take them into account.

Our main goal was to show that a generic behavior specification (i) allows and encourages creative
solutions by the player, (ii) is important for reusability, (iii) is essential in obtaining more spatial
immersion, and (iv) is instrumental for coherent and believable behavior of AI characters.

Firstly, a more generic and reusable behavior specification is important to spark creativity from the
player. Instead of coming up with fixed solutions to problems or puzzles in the game world, designers
can define the problem and, using the behavioral knowledge of the objects in the game world, players
can come up with their own solutions to it. For example, instead of defining ad-hoc that the player
can snap a rope holding an obstacle blocking the player’s way, by using a torch, a designer could
specify that ropes can be cut with a sharp object or burnt using fire, which suddenly opens up an
entire array of possible solutions. We claim that such a generic specification for object behavior is an
important step towards more emergent gameplay, sparking players’ creativity and catering a more
personal playing experience.

110



8.4. Discussion

Secondly, a generic specification will aid designers in creating object behavior more quickly and
easily. Not only are SERVICES reusable among different objects in a single game, it is also quite
easy to reuse the information between multiple games. This opens up opportunities to bring object
behavior into games where this behavior is not necessarily an important gameplay feature. If it takes
a lot of time to specify object behavior, designers will not be eager to do that for, for example, a first
person shooter. However, as we will discuss in the next paragraph, this is vital to immerse the player
even more into the game world. And since we showed, using our SERVICES, that any SEMANTIC
GAME WORLD can reuse behavioral information created for other games, it becomes very easy to
bring more detailed behavior into game worlds that would otherwise remain static and non-interactive.

We already mentioned how spatial immersion (the experience of playing in a perceptually convinc-
ing game world, i.e. when it both looks and feels real [9]) could be increased and offered more easily
by allowing designers to define object interaction and behavior information in a generic and reusable
way. We explained before how visual immersion is becoming less and less of a problem because of
the huge increase in visual quality of game worlds. However, when the behavior of objects stays
behind, the immersion might still be broken: an object that looks exactly as its real-life counterpart,
but does not behave like it, feels very awkward, even though many players have learnt to live with
such inconsistencies. Using SERVICES to increase spatial immersion will be an extra step in creating
believable, immersive playing experiences.

And, lastly, when object behavior becomes more realistic, the behavior of computer controlled
characters cannot stay behind. When interaction with objects is much more detailed for the player, but
the characters around the player do not make use of them in a correct and logical way, the immersion
will still be broken. Therefore, we showed in Section 8.3.2 how agent behavior can be extended with
SERVICES to find solutions for their desires in the information embedded in a SEMANTIC GAME
WORLD. Using objects in a consistent way compared to the way a player uses them is vital to create
a realistic effect. Although SERVICES are not the solution to all issues around agent behavior, it can
be an important tool to create a closer connection to agent behavior and the game world.

More diverse and detailed behavior of objects and characters, and more options for the player,
obviously also have an important downside. A lot of time and money is spent in testing a game to
improve robustness. Many open world games often suffer from numerous bugs and more emergent
gameplay opportunities will not help developers in their never ending quest to make the game robust
and bug-free. Moreover, more complex behavior of the objects might make it more difficult to spot
exploits and conflicts. A thorough system to spot conflicts in the object behavior is necessary in order
for our idea of SERVICES to be applied in current game development.

Another issue is the question how far one should go in behavioral details. For example, we can
simply define that that ACTION shoot with the effect decrease health can be performed by the
corresponding SERVICE between a person (actor) and a living creature (target) using a gun (artefact).
However we could make this much more complex by expressing that a person can perform the pull
ACTION on the trigger of a gun, with the effect to launch a bullet at a certain speed, and that being hit
by a bullet decreases the health of a living creature. It is clear that having too detailed behavior is
only cumbersome for the designers and does not bring with it more gameplay opportunities. This
will come down to common sense of designers and the specific needs for a particular game to make
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decisions on how far one wants to go in detailing object behavior.

Furthermore, what is important for one game might not be important for another and vice versa.
This could therefore hinder the reusability: e.g. in an action game it might be enough to define that
a punch decreases the health of the target, however in a boxing game the effects need to be much
more complex: a punch in the stomach will hinder the target’s movement while a punch to the head
will influence the target’s stability and balance. On first sight, this makes this behavior unsuitable to
reuse between these two games. We claim that this calls for a semantic level of detail. Just like the
visual detail of an object will need to increase when closer to the camera, the behavior of an object
needs to follow similar rules: the behavior of objects in the player’s surroundings will have to behave
as realistically as possible, while objects far away do not. And this could prove to be a solution to
the problem mentioned above: one could define a maximum semantic level of detail for a particular
SERVICE for a particular game. This idea however requires significant attention and is now left as
future work.

In Section 8.2 we described the workings of our Semantics Engine to simulate the behavior
defined in SERVICES. Since it needs to cater for all possible requirements, effects, spatial properties
and temporal properties, and since our proof-of-concept implementation was never optimized, the
performance is still below optimal. Since there are a lot of checks to be made in the simulation of
the SERVICES, an important improvement could be an event-based engine: only check or change the
activity or inactivity of a SERVICE when the corresponding parameters have changed.

However, this will never change the fact that an ad-hoc, optimized solution for a particular behavior
will likely be faster than a generic one. This is not necessarily a problem, though: in Chapter 9 we
explain the idea of a procedural prototyping tool for games and we will show how, using SERVICES
for behavior and procedural modeling for the environments, a quick prototype game can be created in
which gameplay can be tested before designers are finished with creating the actual game worlds. In
this prototype game, it will immediately become clear if there are performance problems with the
generic handling of object behavior, and where exactly these problems arise. At this point it is still an
option to create more optimized, ad-hoc solutions for these parts of the object behavior that cause
performance issues.

In general terms, it is not always desirable to leave the behavior to a generic simulation system.
One such example is the specific behavior and handling of a car. The physics behind this behavior are
too complex to be easily specified in our model for SERVICES. It is therefore desired to simulate this
in an ad-hoc component of the game code.

However, in spite of the issue above, we made clear that SERVICES, or any other generic speci-
fication for object behavior, is unmissable in any game world that needs to be truly immersive and
realistic. The reusable setup will make it more easily available in many more games, even when
object behavior does not play an instrumental role in the gameplay. Moreover, the wider range
of opportunities to players will spark their creativity while playing a game. Equally so for the AI
controlled characters or agents that can use the behavioral information to increase the consistency
and realism of their behavior.
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CHAPTER 9

Pro2 PROCEDURAL PROTOTYPING

In the previous four chapters, we explained the use of our semantic model for both procedural
modeling (Chapters 5-7) and to facility the specification of more complex object behavior in an easy
way (Chapter 8). A game development phase that can benefit from both these ideas, is the prototyping
phase. When prototyping a game, typically the large majority of the content is either not available or
in an unfinished state. This makes it hard to already fully comprehend how certain gameplay elements
will feel in the finished product, making the evaluation of the gameplay quite hard as well.

First of all, procedural modeling can be a useful way to create highly detailed and large game
worlds to start testing gameplay right from the start of the development process. These procedurally
generated worlds might even serve as the starting point for designers to build the eventual final version
of the game world on.

Secondly, the simplified, generic and reusable method of specifying complex object behavior by
means of SERVICES, will help developers in testing and prototyping the behavior of objects and to
test the impact of that behavior on gameplay.

To test this idea, we created the Pro2 (Procedural Prototyping) environment. This environment
contains a number of editors we implemented to specify semantics and to use the semantics in the
procedural modeling ideas explained in the previous chapters:

• The Entika editor allows designers to specify all semantics from our semantic model, generic
and reusable for all games. In a game-specific edition of the editor, designers can create
references to game content specific to a particular game in the generic semantic entities.

• In the semantic scene description editor, one can create descriptions for a particular scene that
can be used to automatically create layouts.
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• The filter editor was designed to create and edit procedural filters (see Chapter 7).

• Next to combining these editors (which can be used separately as well), the prototyping
environment also allows designers to create plan scripts (as explained in Section 6.1.3) to use
the integration technique for procedural generation methods using a semantic moderator.

• A level editor enables designers to generate a particular level, using the components created in
all the above editors as parts.

• A plugin to open terrains created with the SketchaWorld environment allows SketchaWorld
terrains to be used as the basis for a level. SketchaWorld is a declarative modeling framework
developed by Smelik et al. [85, 80].

• Finally, a testing environment allows designers to playtest a level and to store data from the
playthrough.

In this chapter, we will first give an overview of the environment and the importance of procedural
modeling and complex object behavior using SERVICES in this idea. We will also give a detailed
description of some of the more important editors and components on the previous list. Finally, we
will show an example of the use of the prototyping environment: prototyping a 3D city-building
game.

9.1 Semantic procedural prototyping environment

The goal of the prototyping environment is to show how the combination of semantics and procedural
generation can improve the prototyping process of a game. The environment allows the users to test
one or more levels of a game, generate data and feedback on the playthrough for the developers to
analyze and alter the level or the behavior of the game accordingly.

This level can be built using procedural generation components discussed in the previous chapters:
automatically layouted scenes based on descriptions, plans to generate structures using multiple
techniques by using the semantic moderator and procedural filters to change the appearance of virtual
worlds. Also SketchaWorld maps can be loaded and used to produce such levels. Next, we will give
more details on this setup.

The Pro2 Procedural Prototyping environment uses solutions, similar to e.g. Visual Studio. This
solution contains all related files to a single game prototype: the content for that game, the specified
semantics, the files that describe the levels for the game and logs of playthroughs of these levels. This
is a list of all the file types ordered into three categories:

1. Content files:

SketchaWorld project files The basis for the game world one is trying to prototype can be
a terrain created by SketchaWorld. The project file contains all information about that
terrain. More on this in Section 9.2.4.
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9.1. Semantic procedural prototyping environment

Procedural filter files Procedural filter files are meant to alter the look of a particular part of
the game world. In Section 7.1, we give an overview of such filters.

CGA grammar files Generating procedural objects can happen using shape grammars. We
chose to use CGA grammars, created by Müller et al. [63], since we already had an
implementation to test our consistent buildings idea from Chapter 6.

Material files Material files are a custom format for materials (including textures, colors and
shaders) that can be linked to semantic MATERIALS.

Procedural plan files To integrate procedural techniques using our semantic moderator, a
plan needs to be created that guides this process. How such a plan looks like can be found
in Section 6.1.3.

Scene description files The game world, or parts of it, can be created using semantic layout
solving. Scene descriptions contain information about how a scene should be created:
the entities present in the scene and scene-specific relationships. In Section 5.2.2 we
described in detail how the language for such descriptions looks like.

2. Semantics specification:

Generic semantic database The first, and most important, file of the semantics specification
is the generic database. This is a SQLite database containing all generic semantic
information, reusable over many game projects.

Game-specific semantic database For each game, a specific database, separate from the
generic one but also in the SQLite database format is stored. In here semantics specific
for that game is stored as well as references to the content (e.g. 3D models, sprites or any
of the content files from the above list) in the ENTITY CLASSES.

3. Game files:

Level file We created our own level format to store how each level of the game world is
structured. The difference with ordinary game level formats is that it does not contain
direct references to content (e.g. a 3D file). It contains instantiations of ENTITY CLASSES,
positioned and rotated into that level. Through the references specified in the game-
specific semantic database, content can be found to actually populate the game world
when running the game.

Game log files Once all (temporary) content is created, semantics is specified and some levels
are created, designers can start playing the game. Information about each playthrough is
stored in game log files. In there, they can track whether or not everything is working as
they hoped and, of course, try to find missing or broken gameplay elements that need to
be solved in the finished product.

These three file types are related to the three main steps involved in prototyping a game using the
Pro2 environment: (i) creating new content for the game, or placeholder files for unfinished content,
(ii) specifying the semantics of the new game, and (iii) testing the game.
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The first step is the creation of the procedural content files. When designers are not finished with
some of the necessary content, which is highly likely in the starting phases of a game’s development,
placeholder art needs to be created. Procedural generation is an ideal solution for this. A quickly
generated game world with terrain and cities using SketchaWorld projects, complete structures and
automatically layouted scenes using plans and scene description files, or procedurally generated
objects using shape grammar files are perfect to populate a prototype game world in a fast and easy
way.

Obviously plain boxes could be used for this, however this will hinder the level designers in getting
a representable idea of the game world. For example, the visibility of the terrain or other objects
might be significantly different when using boxes versus more detailed (procedurally generated)
geometry.

The second step is creating the semantics for the game that is being prototyped. The fundamentals
are taken from a generic semantics database. This includes all reusable semantics created in previous
projects. Potentially, this generic database needs to be extended based on the needs of the new game.

The semantics specific to this game only, are stored in the game-specific database. This database
will be the main work area during the prototyping. The Entika editor created for this specification is
explained later in Section 9.2.1. GAME-SPECIFIC CLASSES include references to content in order
to specify what the actual geometry of such entities is. Obviously this can be already made 3D
models or sprites, but the files created in the first step can just as easily be referenced as content in a
GAME-SPECIFIC CLASS.

The next step is creating a level using the ENTITY CLASSES created in the second step. By creating
an instance of these ENTITY CLASSES, and giving a location and rotation to the instances, a level can
be built up. Since references to the content exist in the GAME-SPECIFIC CLASSES (also created in the
second step), everything is now in place to create and visualize the game world.

The level is now ready for testing. As explained above, numerous data about the playthrough is
stored and can be checked out while playing the game, or afterwards.

After the created level is tested, designers can make a good evaluation based on their experience
and the logged data. Now a next iteration in the prototyping process can begin: new content files can
be added, content files can be edited or refined, behavior of objects can be adjusted in SERVICES,
new ENTITY CLASSES can be created or old ones can be modified and levels can be modified. After
that, the game is ready to be tested again. Iteration after iteration, the gameplay can be improved and,
long before finished content is available, plenty of gameplay testing can already be performed and
evaluated.

A screenshot of the editor can be found in Figure 9.1. Navigating to all the files of the current
solution happens by either selecting them in the menu bar on the left (see Figure 9.2), or by clicking
on the tab bar listing all the currently opened solution files (see Figure 9.3). Notice that in the menu
bar, the actual semantic database files are not shown. Instead shortcuts to user-chosen semantic
concepts are shown to allow quick navigation. Once a file is selected, it is shown to the right in the
proper editor. For example, in the screenshot a kitchen description is shown in the scene description
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Figure 9.1: A screenshot of the Pro2 environment. To the left is a menu with all the solution files
(see Figure 9.2), to the right the selected file shown in the appropriate editor, in this case a scene
description (see Figure 9.5). On the top is a toolbar and a tab bar with the currently open files to
quickly switch between (see Figure 9.3).

editor (see also in Figure 9.5). In a separate window, a 3D engine is running in which previews of the
content can be shown (e.g. a preview of a CGA grammar one is editing) or the entire game. Ideally,
during the testing of the game, a second screen is used for this window as it allows users to play the
game world while keeping an eye on the logged data.

We will give a concrete example scenario of the use of our prototyping environment later in Section
9.3.

9.2 Combining design phase applications of semantics

For some of the above mentioned files, contained in a prototyping solution, we implemented separate
editors. The next section gives an overview of the implementation details and the features of these
editors. We will also give an overview of the SketchaWorld framework and how it was integrated into
the prototyping idea.

9.2.1 Entika editor

The Entika editor makes it possible to edit semantic databases. The idea behind this editor is to
specify new components (including ENTITY CLASSES, SUBSTANCES, ATTRIBUTES, and ACTIONS),
and modify or remove existing ones, where each type of component is stored in its own library. To do
so, the editor provides the user with an overview of the available libraries, and the components that
populate them. Each component can be specified in great detail, meaning that its semantic information
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Figure 9.2: The menu of the Pro2 environment giving an overview of all files in the currently opened
solution.

Figure 9.3: The tab bar of the Pro2 environment. It allows for quick navigation between open
solution files.

can be fine-tuned at will, ranging from the name and description, to RELATIONSHIPS between that
component and other components. PHYSICAL OBJECT CLASSES, for example, can be equipped
with ATTRIBUTES. Furthermore, it is possible to specify the values and quantities that are required
for some of the relations. Above all, SERVICES can be defined, with their requirements, ACTIONS,
temporal properties, and spatial properties. Derived classes will inherit the semantic information
(including ATTRIBUTES and SERVICES) from their parents, although specific values can be overruled
if necessary. When, for example, the PHYSICAL OBJECT CLASS superclass is assigned the mass
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attribute, each underlying class will inherit this attribute, but the specific mass value can be modified
for each of them.

In addition to generic and reusable components, GAME-SPECIFIC CLASSES can be created. Be-
sides customization of inherited semantics, GAME-SPECIFIC CLASSES can be further customized
with content, e.g. with geometric models, textures, and audio. For each of these extra properties,
preconditions can be specified to indicate when they have to be used. For example, only when a radio
is in the ‘on’ state, it should play music. Inventories can be specified too (think of chests, bottles,
and jackets with pockets that can contain items), just like parts and the offset with respect to their
whole (think of a silencer that can be attached to a pistol). This can be annotated on the 3D models,
allowing parts, possibly having SERVICES of their own, to be detached from their whole during the
game, and attached again on their correct position.

The end-users of the Entika Editor are game designers, and to make the design of semantic objects
for them as easy as possible, usability was one of the aspects that were aimed for. In the editor, this
has been achieved by providing a clear and distinctive overview of all information (e.g. different
colors for different components), the possibility to hide unwanted information, and providing user-
friendly ways to quickly establish and remove relations (e.g. drag and drop), and edit other semantic
information. Furthermore, due to inheritance, many relations only have to be defined once. We did a
user evaluation of the editor, which can be found in Section 11.2.2.

Figure 9.4 shows a screenshot of the Entika editor. On the left, all libraries are displayed; on the
right, some of the semantics of the selected TANGIBLE OBJECT CLASS human being are shown.
The user is able to modify its names and description, and observe a list with its parents and children.
Because of inheritance, the human being has a health and mass ATTRIBUTE, defined at one of its
parents. In addition, the human has an ATTRIBUTE of its own, hunger, having a default value of 10,
and ranging from 0 to 100.

9.2.2 Semantic scene description editor

We created an editor using the semantic scene description language explained in Section 5.2.2. The
editor is a simple canvas where description entities are displayed. To the left of this canvas, a
list is present with all semantic components (ordered by type, e.g. TANGIBLE OBJECT CLASSES,
ATTRIBUTES...). A screenshot of the editor can be seen in Figure 9.5.

As explained in Section 5.2.2, the basic element of this language is the description entity that
contains two elements.

• Which entities need to be available or could be available in the scene.

• How these entities should be placed in this particular scene.

In the editor, these elements can be expressed in the description entity blocks (see Figure 9.6).
Creating such an entity block happens by dragging a TANGIBLE OBJECT CLASS to the canvas.
Editing the blocks happens by either dragging other semantic entities to the description entity block,
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Figure 9.4: A screenshot of the Entika editor.

or by editing textboxes on this block. For example, in Figure 9.6, we see an entity block that signifies
that we want to place one refrigerator. This was extended by dragging a PREDICATE modern and the
volume ATTRIBUTE to the block. For this ATTRIBUTE, we also changed the condition to say greater
than or equal to 0.5. This way, we described that in this particular scene, we want the layout solver
(which automatically generates scenes based on the descriptions created using this editor, see Chapter
5) to place exactly one modern refrigerator with a volume of more than half a cubic meter.

The context-sensitive nature of descriptions was handled in the editor as follows. CONTEXTS can
be added to the description. When none of the added CONTEXTS are selected, all changes made in
the description canvas will be made regardless of the CONTEXT. Once the user selects one of the
added CONTEXTS, changes in the canvas are only applied for that particular CONTEXT. Switching
to another CONTEXT, will make these last changes disappear from the view. For example, we can
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Figure 9.5: A screenshot of the scene description editor showing a description to create a kitchen. To
the left, the lists of semantic concepts (TANGIBLE OBJECT CLASSES, ATTRIBUTES...) and to the
right the description entities in the gray boxes with black border. A bigger version of the refrigerator
entity in the screenshot can be found in Figure 9.6

Figure 9.6: A close up of one of the scene description entities from the kitchen description shown
in Figure 9.5. The refrigerator entity is built up of one instance of the TANGIBLE OBJECT CLASS
refrigerator, having the PREDICATE modern and having a value for the volume ATTRIBUTE greater
than or equal to 0.5 (cubic meters).
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Figure 9.7: A screenshot of the procedural filter editor showing a filter to fill the scene with rubbish.

add the CONTEXT large (which e.g. contains a minimum condition on the total area of a room) to
a kitchen description. With this CONTEXT selected, we might apply the following changes to the
original description: increase the number of kitchen cabinets or increase the value of the condition on
the volume ATTRIBUTE of the refrigerator.

9.2.3 Procedural filter editor

Based on the procedural filter approach introduced in Chapter 7, we developed a procedural filter
editor. This system provides a variety of nodes or building blocks, each representing an instruction,
with its inputs and outputs. By interactively connecting these to (outputs and inputs of) other building
blocks, one can easily create a directed graph representing the procedure intended for the filter.
Typically, a filter has itself one or more input nodes, including possible user-provided values for
settings, intensities, etc. Moreover, most filters have also a so-called scene object node as input. Scene
object nodes can represent both individual objects and whole scenes (i.e. compositions of multiple
scene objects). In addition, after applying a number of instructions, the filter typically returns the
modified scene object as its output. Scene object nodes, thus, have at their disposal both the geometric
and the semantic information of an object.

Each object used in our game worlds belongs to a TANGIBLE OBJECT CLASS from our semantic
model. We use our model to handle semantic query instructions explained in Section 7.1.2.

While many TANGIBLE OBJECT CLASSES may prescribe some geometric model(s) for its in-
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stances, many other TANGIBLE OBJECT CLASSES rely on procedural generation methods to create
the geometry for their instances, as e.g. the consistent buildings generated with our integrated ap-
proach, which is explained in Chapter 6. In both cases, their instances share in the corresponding
ATTRIBUTES and semantics, and are therefore suitable for performing semantic queries. Conse-
quently, our procedural filters are applicable to the entirety of game worlds: both manually created
and procedurally generated objects.

For the sixth category of instructions, automatic content generation (see Section 7.1.1 for an
overview of all instruction categories with an explanation), we have implemented a number of
powerful procedural techniques that have a wide variety of possible uses. For example, we developed
building blocks to generate noise maps and crack textures, and also to handle texture composition. In
addition, we developed nodes that use the semantic layout solving approach explained in Chapter 5.
It can be used in building blocks to add objects of a particular TANGIBLE OBJECT CLASS to a scene,
e.g. add rubbish to the front yard of a deteriorated building, spread around some garbage or empty
liquor bottles in an office to create a party atmosphere.

The procedural filter editor provides a very intuitive visual editing environment. The user interface
was inspired by other node based editing environments such as Shader FX [55] or Filter Forge [38].
The user can drag and drop building blocks onto the filter canvas, including a special building block
that calls a sub-filter. This way, filters can be used as individual instructions of other filters, as
explained in the previous section. The input and output are represented as dots on the building block
and can be easily connected with each other, or with filter input and output nodes as well as primitive
nodes. For primitive nodes, a constant value can be assigned in the editor.

To guide the user in the data flow, colors mark possible connection types for each node. They
become gray when multiple types are still possible and are immediately updated after every added
or removed connection. A screenshot of the editor, showing a filter to add rubbish to a scene, can
be seen in Figure 9.7. The filter shown in the screenshot has three input nodes: the input scene, the
number of garbage items and a random seed; and one output node: the resulting scene. The input
nodes are passed along to an instruction that places instances of a class (in this case the rubbish class)
in the scene.

In complex filters, it might become difficult to spot mistakes or missing links in the data flow.
This is solved by a control in the bottom of the screen that shows warnings whenever a filter is
incomplete, e.g. when the data flow is interrupted, or when something else is missing in order to have
a functioning filter (e.g. a missing input or output node). When no warnings are left, the designer is
ensured that the filter will execute correctly.

Once it is clear the filter can execute, the designer wants to know if the output matches the
expectations. To check this, the filter editor provides a preview window, where one can test and
visualize the effects of applying a filter on a given scene. In that preview window, scenes can be
loaded and saved and the designer can select elements in the scene. The designer can apply the
created filter on the entire scene, but also on a selection of the scene, which makes it possible to test
sub filters that are used as building blocks in larger filters. A screenshot of this viewer window is
shown in 9.8.
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Figure 9.8: The viewer window where designers can select elements from the scene and apply filters
to them or to the entire scene at once.

For the representation of virtual worlds and their objects, we are using our own geometry repre-
sentation, which is a node-based structure with nodes being either group nodes (combining multiple
sub-nodes) or meshes. Meshes contain a vertex buffer, an index buffer and a material with basic
characteristics like diffuse, ambient and other color values, a number of texture maps and possibly
also shaders. However, it is possible to unlink the building blocks from the actual code that applies
the instructions, which would make the filters and the filter editor reusable by simply reimplementing
the building block code for use with other geometry representations. It is also trivial to code a new
building block and add it to the current code base, by registering a new building block (including the
different input and output combinations) to the filter library.
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9.2.4 Integration with SketchaWorld

Smelik et al. [85, 80] created the SketchaWorld framework. This declarative modeling framework
allows users, whether they are experienced virtual world modelers or not, to create highly-detailed
game worlds, including: (i) terrain, (ii) vegetation, (iii) rivers and road networks, (iv) cities, and
(v) buildings, all based on a simple sketch. In a matter of minutes, such a sketch can be made, and
SketchaWorld immediately generates a complete and detailed virtual world.

This is done by combining and integrating multiple complex procedural content generation tech-
niques, including the automatic resolution of conflicts between different types of elements, e.g. adding
a bridge where a river and a road cross each other.

After this world is created in the SketchaWorld editor, the entire project can be saved. These project
files can be loaded into our Pro2 environment and can form the basis of a game level.

An important aspect of SketchaWorld terrains is that they are too embedded with detailed semantics.
Since SketchaWorld uses the concepts developed in our semantic model, the terrains fit in nicely in
our semantics-driven prototyping environment. By assigning an ENTITY CLASS to the geometry and
the elements placed by the SketchaWorld framework, these terrains can immediately be extended
with semantics like complex behavior through SERVICES.

9.3 Example: prototyping a 3D city building game

To show the workings of the Pro2 environment, as well as the advantages of using our unique mix
of semantics and procedural content generation in the prototyping process, we will go through a
hypothetical user scenario. In this scenario, the user wants to create a simple 3D city-building game
in the line of the Sierra Entertainment City Building Series, e.g. Caesar I-IV, Pharaoh or Immortal
Cities: Children of the Nile. The main activities of the player in these games are placing buildings
that can either gather resources for the player, or that transform these gathered resources into new
resources.

The first step in creating this prototype game is adding the first building, which is the woodcutter’s
hut. Typically this building gathers wood for the player. We have a CGA grammar for exactly such a
building, so we add it to the Pro2 solution. A view of the generated building can be seen in Figure
9.9.

To add the functionality of the building, we create a TANGIBLE OBJECT CLASS with the name
woodcutter’s hut, which inherits from the TANGIBLE OBJECT CLASS building. In the first version
of the prototype game, we would like to keep it as simple as possible. Therefore we want to define
that the building increases the wood resources of the player. This means we also need a player entity.
We choose to specify an ABSTRACT ENTITY CLASS named player for this purpose, since we have
no intention of creating a physical representation of the player in the game. An ATTRIBUTE named
wood supply is created and added to this ABSTRACT ENTITY CLASS player. To create a connection
between the buildings and the player, we create an owns RELATIONSHIP with the player as Actor
and building as Target.

125



9. Pro2 Procedural prototyping

Figure 9.9: A woodcutter’s hut created from a CGA grammar.

Now we specify the SERVICE to gather wood.

• In a new ACTION, which we name gather wood, we define an automatic event with the
woodcutter’s hut as the Actor.

• The effect of the ACTION is increasing the wood supply ATTRIBUTE of the Source of the
owns RELATIONSHIP where the event’s actor (in this case, the woodcutter’s hut) is Target.

• The temporal properties of the event are discrete and infinite with an interval of 1 second.

To test this, we add a test level with one woodcutter’s hut and an instance of the ABSTRACT
ENTITY CLASS player which we name jefke. In the log, we can now see the continuous increase of
jefke’s wood supply, shown in Figure 9.10.

Now we can start experimenting with this wood supply service. Having a constant and infinite
supply of wood by a woodcutter’s hut is not really interesting from a gameplay perspective. Therefore
we can make it more complex. For example, we might try to use tree instances in the game world.
Therefore we need to perform the following steps in the prototyping environment.

• Add TANGIBLE OBJECT CLASS tree to the semantic database (if not yet present) and add
some tree instances in the test level around the woodcutter’s hut.
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Figure 9.10: The woodcutter’s hut in the level increases the wood supply of player ‘jefke’. The figure
shows the graph in the game log representing this.

• Create a precondition in the gather wood event that a tree needs to be available within a certain
range.

• Add another effect for this event to remove a tree instance.

• Increase the amount by which the wood supply is increased.

• Increase the interval between the executions of the event.

Another factor to experiment with could be increasing the wood supply based on an ATTRIBUTE
size of the tree. All of this can be quickly specified using the Entika editor and equally quickly tested.
No code or scripts need to be created.

Because of the wide range of procedural solutions, we can quickly create a new CGA grammar for
a farm building by reusing the woodcutter’s hut’s grammar, change some textures and add some rows
of small plants, see Figure 9.11. This is obviously an easy way of creating a representable model for
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Figure 9.11: A farm house, created using the woodcutter’s hut’s grammar by quickly changing some
textures and adding some plants.

a farm and other buildings like it, without having to perform any modeling or waiting for designers to
create the content.

Using a scene description and the semantic layout solving approach, we can easily create ranches
which are moderately complex layouts that include some pastures, a stable, a house, some beehives
and some background items like barrels, hay bales or cribs. Or it could be used to generate interior
layouts in order to experiment with using the houses’ interior as a manner of visualizing the resources
it has in stock, as was done in 2K games’ CivCity: Rome (see Figure 9.12).

To test the gameplay principles under different circumstances, we could use SketchaWorld maps.
In SketchaWorld, users can quickly change their terrains by changing some parameters or adding
or removing some sketch elements. This way we could quickly test our 3D city building game in
terrains with dense forests as well as in barren terrains with sparse trees. Or we could test it in
lush grasslands, in arid deserts or in the mountains. In a matter of minutes, completely different
terrains can be generated to really test the gameplay of our prototype game under the most diverse
circumstances, allowing taking gameplay into account when coming up with the locations in which
the game will really come into its own.

Similarly to our workflow for the woodcutter’s hut, the user can now experiment with services for
all other buildings as well. Long before final models (or final grammars for procedural generation)
are finished, the behavior of the buildings in our city building game can be tested and searched for
gameplay flaws, while already getting a representational 3D view of the result.

When production continues on the game and the actual content for the game is created, it is very
simple to replace the placeholder content by their finished version. One only needs to change the
referenced content of the GAME-SPECIFIC CLASSES and the next time the prototype game runs, the
new content will be present.
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Figure 9.12: In the game CivCity: Rome, the player could look into the interiors of residential and
commercial buildings to notice which resources the building has in stock. For example, in the bottom
right building, three jugs of water on the floor, two jars of olive oil on a wall rack and three pieces of
meat hanging from that rack. (Screenshot source: http://oriongames4u.blogspot.com)

9.4 Conclusions

In this chapter we discussed how the combination of semantics and procedural content generation
could mean an important boost to the prototyping phase of game worlds. To show this, we created
the Pro2 (Procedural Prototyping) environment. We showed how it worked and which editors we
integrated into it and we gave a hypothetical example scenario for a 3D city-building game.

The major advantages of using both semantics and procedural content generation to quickly
prototype the look and the behavior of a game world are the following:

• Without writing any code or scripts, SERVICES can be specified to test complex object behavior.

• Before any content is finished, designers are already capable of testing important gameplay
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mechanisms.

• The testers will be able to give feedback on the general structure of a level or game world
before creation of the actual level or game world is started, by using a procedurally generated
game world with placeholder content.

• Once designers are finishing the actual content for the game, they can easily replace the
placeholder content in the prototype.

• Even from a very early stage, testers can get an idea of the game in a more or less populated
and semi-finished world instead of an abstract, empty test world.

By combining the easy specification of behavioral semantics with procedural content generation,
prototyping game worlds could become significantly easier and faster. Using procedurally generated
game worlds to test gameplay created using SERVICES and all other elements from the semantic
model, flaws in the gameplay are spotted early in production. More importantly, feedback on a level’s
structure can be given to the designers of that level as early as possible. Step by step new content will
replace the placeholders and the testing experience will become more and more representational of
the final result.
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CHAPTER 10

APPLICATION OF SEMANTICS IN EXTERNAL

PROJECTS

Chapters 5 to 9 introduced applications of our semantic model created in our research project. Next
to these, several external collaborations were undertaken to show other uses of semantics for game
worlds. This chapter will introduce these.

The first application was a collaboration with the Dutch company re-lion. A knowledge transfer
project allowed us to combine our semantic model with re-lion’s virtual world editor Builder to create
a semantic search system to easily find the correct 3D model.

A second application is procedural infrastructures, which is an approach to generate large-scale
infrastructures, such as airports, automatically using RELATIONSHIPS between different areas and
sub-areas of the wanted infrastructure.

To facilitate the specification of semantics, an approach was created to quickly specify semantics
for large sets of 3D models. The user can choose training models for particular TANGIBLE OBJECT
CLASSES, and using shape recognition and segmentation, other 3D models will be assigned the
correct class automatically.

Two MSc students have used the semantic model in their Master thesis projects. Nick Kraayen-
brink’s thesis on Semantic crowds introduces a semantic approach to steer the behavior of crowds.
Rick de Ridder’s thesis on simulating urban area development for semantic game worlds created an
approach to generate urban areas by simulating the history behind that area.
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10.1 re-lion Builder: Semantics used in a serious games development tool

re-lion BV is a Dutch company from Enschede that, among other activities, focuses on terrain
database generation tools. One of their main tools is Builder, as is shown in Figure 10.1. Builder is a
tool that allows a user to easily model a particular terrain. This includes both geospecific environments
(constructing a real area based on aerial photographs and height and vector data), and geotypical
environments. For these last environments, the resulting terrain only needs to look similar to a certain
region, e.g. having clear characteristics of a Middle-Eastern region.

A concept unique to Builder is the fact that the terrain is not edited at the level of separate meshes,
but using so-called building blocks. These are elements like houses, bridges or roads that can be
manipulated as a whole.

The amount of building blocks is quite large, and therefore a powerful search mechanism was
added using our semantic model. When the user performs a search, a semantic library, filled with
a huge amount of concepts and relationships, is queried. Search terms are found in the semantic
library and using hierarchical and other relationships all related concepts to the search terms are
found. These related concepts are all used to find additional building blocks, others than just the ones
containing the exact original search terms. This results in a more complete list of building blocks and
therefore the user will almost never miss out on a suitable building block because of too strict search
terms or because he does not know the exact term used when adding the building block.

When new building blocks are added, the same approach is used to give suggestions to the user
for additional tags or names for the building block. This, again, will make finding suitable building
blocks easier.

In the near future, Builder will use the available relationships to find suitable building blocks to
fill an area for which only GIS or other vector data is present. When a lot or an area of the terrain
needs to be filled with a particular building block, the semantic library is used to find building blocks
that fit the annotations from the GIS data. An example might be: a lot is marked building, while
the encompassing region is marked agricultural. Since the term agricultural is related to farm and
farm is marked in the library as a type of building, Builder could now decide to place a farm building
block, instead of just choosing any of the building blocks marked with building.

10.2 Procedural infrastructures

In Chapter 5, on semantic layout solving, was explained how RELATIONSHIPS between PHYSICAL
OBJECT CLASSES were used to automatically create layouts, e.g. furniture placement in a room. The
same idea can be applied to position certain areas within large infrastructures such as shopping malls,
airports or train stations. We collaborated with our colleagues Fernando Marson and Soraia R. Musse
from the Pontificia Universidade Catolica do Rio Grande do Sul in Porto Alegre, Brasil to create the
idea of procedural infrastructures.

To create the specification for a particular infrastructure, the vocabulary of our semantic model
is used. A designer first creates a set of constraints for each of the areas (represented as PHYS-

132



10.2. Procedural infrastructures

Figure 10.1: A screenshot of re-lion Builder (top) and of a terrain created using this tool (bottom).
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Figure 10.2: The area of an airport before customs with hallways, shops and a bank.
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ICAL OBJECT CLASSES) that need to be placed inside the infrastructure. These rules can be on
the ATTRIBUTES of PHYSICAL OBJECT CLASS, e.g. on the dimensions of the area, or can be
RELATIONSHIPS with other areas, e.g. restrooms should be placed inside a waiting area. Additional
ATTRIBUTES can define how many of such areas need to be available, e.g. at least 1 restroom for
every 500 square meters of waiting area.

Using this specification, the algorithm starts constructing the infrastructure. The algorithm is
a subdivision algorithm: given a shape as the boundaries of the infrastructure, it will produce
subdivisions in which the different areas are positioned. First rough locations are found for each of
the necessary areas, based on the constraints defined in the specification, i.e. central positions for
the areas without defining area sizes or a definitive shape yet. Now the straight skeleton algorithm is
used to create the path for the hallways in between the different areas. Now this path is offset with a
width depending on the circumstances, e.g. in an airport, hallways towards the airplane can be much
narrower than the hallways in between shops. The remaining area can now be subdivided further
based on the previously found rough locations. Once the areas are subdivided, our semantic layout
solving approach can be used to further fill the areas with objects, if necessary.

In Figure 10.2, an example infrastructure is shown of an airport before customs. On the top is a
hallway with benches on one side, and several establishments on the other side, including a bank (A),
hotel (B), cafe (C), a concealed room with plum trees (D), and an arcade hall (E). An ATM is also
present in the hallway, in the façade of the hotel. The central block contains a toy store (F), toilets (G
for males, J for females), juice shop (I) and an art gallery (K). A fountain can also be found close by
(H). The bottom hallway contains a burger restaurant (L) and another hotel (M).

10.3 Specifying semantics for large sets of 3D models

As we mentioned before, specifying semantics should not become a cumbersome task for designers
on top of many other tasks they already need to perform. Therefore we need to limit the workload
of this specification to a minimum. In collaboration with our colleagues Xin Zhang and Rong Mo
from the Northwestern Polytechnical University, in China we proposed a framework to specify
semantics of large sets of 3D models that will help to minimize human involvement in this process.
The framework consists of three modules: classification, segmentation and annotation. We associate a
few models with tags representing their TANGIBLE OBJECT CLASSES and classify the other models
automatically. Once all models have been classified in different groups, we take a certain number
of models as template models in each group, and segment these template models interactively. We
then use the segmentation method (and parameters) of the template models to segment the rest of
the models of the same group automatically. We annotate the interactively segmented parts and use
a graph to represent them. Automatic annotation of the rest of the models is then performed by
subgraph matching. This workflow is presented in Figure 10.3.

In the first step, the classification, the user needs to choose appropriate training models. Training
models have a large impact on the classification result. Less training models would result in a bad
classification result. However, too many training models need lots of tedious work and are not suitable
for large sets of 3D models. The best training models should spread over all the ranges of 3D models.
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Figure 10.3: The framework of our method for specifying semantics of 3D models.

Therefore, we rely on the k-means method to cluster all the 3D models and choose several models
for each TANGIBLE OBJECT CLASS present in the set of 3D models. We use these tagged models
(tagged meaning: assigned to a TANGIBLE OBJECT CLASS) as training models. Then, we classify all
the remaining untagged models based on the training models and associate these untagged models
with the TANGIBLE OBJECT CLASS of the tagged models in the same class. In the end, the untagged
models are specified. The specified models are further used to improve the classification.

In the second step, the user can choose a segmentation technique and parameters for each of
the TANGIBLE OBJECT CLASSES. Using one technique to perform segmentation for all models
is unrealistic, since no techniques exist that perform well for all types of models. For example,
segmenting a man-made object or a freeform model like a model of a human being or an animal is
vastly different. Once the segmentation technique and parameters are chosen for each TANGIBLE
OBJECT CLASS, they are applied to template models chosen by the user (these can be the same as the
training models for the first step, but this is not necessary). Choosing the template models wisely
is obviously an important factor towards good specification results. When there are a number of
different model shapes in the same class, the template models should not all be models of the same
shape, but instead reflect the variability of the shapes. A simple example might be the table class. A
set of models might contain a number of round tables and a number of rectangular tables. For the best
result, both round and rectangular tables need to be chosen as template models to guarantee optimal
results.

Once a template model has been segmented, the user manually annotates some model parts, again
using the TANGIBLE OBJECT CLASSES (for each TANGIBLE OBJECT CLASS parts can be specified
in our semantic model). A graph is defined to represent the annotated model parts, where each node
denotes a model part and an edge keeps the geometric relationships between two model parts. The
automatically partitioned models are also represented by graphs. Now, the automatic annotation of all
other models can be accomplished by subgraph matching, finding a mapping between the graph of
the template model and the graph of the automatically partitioned model.

A more detailed explanation of this approach can be found in [101]. The method can achieve a good
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rate of automatic annotation of 3D models with limited user interaction, especially for the 3D models
that can be separated into consistent parts. This is an important step towards bringing semantics into
the game development process, since no developer will want to spend a lot of time in specifying
semantics for their entire collection of 3D models. This approach is a significant improvement in the
time it takes to perform this specification.

10.4 Semantic crowds

In the semantic crowds project, which was the MSc project of Nick Kraayenbrink, the goal was to
extend current techniques to steer crowds by using semantics available in our semantic game worlds
(see Section 8.3.2). The proposed semantic crowds approach is subdivided into two major parts:
the crowd and the agent. The crowd model contains the global composition of a crowd in different
demographics and the ratio in which they are present. For each of these demographics, a semantic
agent model describes their specific behavior.

The semantic crowd model consists of two independent components: the crowd profile and the
crowd socket. The crowd profile defines all environment-independent aspects of the crowd. It
contains:

Demographics These are groups of agents that have something in common, e.g. children, parents or
staff members.

Demographic slices Descriptions of non-overlapping demographics that cover at most the entire
crowd. One can think of this as the distribution of agents in demographics when a cross-section
of the crowd is made.

Crowds A crowd is a collection of demographic slices, together with a default demographic. Because
the slices do not need to cover the entire crowd, it may happen that an agent is part of none
of the demographics from the slices. If that is the case, the agent will be part of that default
demographic.

The crowd socket configures all aspects required to insert the crowd into a concrete environment.
It contains:

Agent object type First and foremost, to insert a crowd into an environment it must be known which
type of entity will represent agents (e.g. a generic human, a police officer or a car).

Spawn spaces These spaces specify where in the environment the agents will come (or spawn) from.

Spawn rate & conditions For each type of spawn space, the desired spawn rate must be specified,
which can be either a fixed value or a random distribution. Conditions may also be imposed
on the spawn space to prevent agents from spawning. For example, agents might only spawn
when the door is open, or while there are less than 500 agents in the environment.
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The second part of the semantic crowds approach is the agents, which are the ones that ultimately
make use of the semantics present in the environment. Agents have a set of goals that they wish to
fulfill, each one containing one or more semantic desires, as introduced in Section 8.3.2. For each
goal, they also have an urgency valuation function, or rather a way of determining how urgent each of
the goals is.

The agent’s thought process goes as follows. First the agent re-evaluates all its current desires, and
determines which are the most urgent, e.g. as the hunger ATTRIBUTE of the agent grows, the desire
to eat some food will become more urgent. Now, ways are searched to fulfill a particular desire. The
agent will query its world view for each TANGIBLE OBJECT instance able to perform an ACTION that
affects the desires. If performing that ACTION involves currently unsatisfied requirements, ACTIONS
are searched that will satisfy these. This will generate a list of ACTIONS that need to be performed by
the agent. For example, to satisfy its hunger, a list might be acquired that orders the agent to eat an
apple that can be acquired by purchasing it in a store. To do this, the agent first needs to get some
money from the ATM machine.

A colored heat map in Figure 10.4 shows a scenario in which a crowd containing adults (red),
elderly (blue) and children (green) walk around in the airport area created using the procedural
infrastructures and shown in Figure 10.2. We see that almost all of the agents visit the ATM on the
top hallway in front of the hotel or the bank, since most other activities require money. The elderly
sometimes stop near benches to rest. And the children mostly visit the arcade hall and the toy store.

Semantic crowds is a novel approach that allows one to easily define crowd templates in an easy
and portable way, and re-use them without modification for virtually any semantic environment, in
which the objects available are spontaneously used in a meaningful manner. This is achieved by
having each agent query the environment to find whatever objects are deemed suitable to fulfill its
desires. A more detailed explanation can be found in [48].

10.5 Simulating urban area development for semantic game worlds

Everything is placed somewhere for a reason. In a city, many choices are based on how the layout
of the city used to look like. A road might be bent because there used to be a giant building nearby,
a certain neighborhood might be poor and dangerous, but in the past it might have been a rich
neighborhood, so there might still be buildings you would expect in a richer neighborhood but in
pretty poor conditions because they have been abandoned for example. A city that already existed in
the middle ages might have been surrounded by city walls. Remnants of the city gates might still
be there, and the main road patterns will still be visible (a town square in the centre with concentric
circles around it). This inspired us to create a project to simulate urban area development to create
urban environments for semantic game worlds.

Many techniques for procedurally generating urban areas have been proposed. These are aimed
at recreating patterns seen in real world cities. Either by directly implementing templates for road
networks or by using rules for growing road networks. Some also include determining land uses of
lots created within the cells of the road network either via the user or via simulation. Many methods
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Figure 10.4: This figures shows the heat maps of crowds in the airport environment created using the
procedural infrastructures (see Figure 10.2). Red shows adults, blue shows elderly and green shows
children.
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proved to be able to generate realistic results. Though the resulting urban areas lack meaning, both in
history and semantic relations.

The complete history of a city is important for its growth, especially the first settlement. A city can
start as a small village around a bridge because it is a place for trade and transport. This will cause
the city to develop a harbor for transport over water and gates to be able to levy toll on carts and keep
unwanted people outside the city. Also the resources play an important role in the early development
of villages. If the urban area is near mountains, stone is cheap and will therefore be used more often
in buildings than villages far from rocky areas where buildings are more likely to be built from clay
bricks or wood. These semantics influence the success and growth of a city and therefore also the
later development.

UrbSim, the name of the project of Rick de Ridder’s MSc thesis [19], takes into account the meaning
behind the steps made in the creation of an urban area, although these steps are not necessarily realistic.
They just need to obey the laws set for the game the urban area is generated for. This will ensure
that the created content will fit into the semantics of the game and the created content could even be
developed further during the game to make the game more dynamic. The terrain on which it is build,
the available resources, and events that occur (such as disasters) influence the growth of the settlement
and also its type. Other factors like technological advancement and neighboring settlements may also
contribute to the final shape of the urban area.

UrbSim simulates the land use over time by placing, updating and removing lots from the urban
area. It uses resources to define which lot types repel and attract each other. Also the shapes of lots
are affected by local terrain features. This gives more meaning to the placement and shapes of lots.
The resulting urban area is a collection of lots shaped by the terrain and the resources either produced
by the terrain or the lots around it. Each lot has specific semantic data attached to it which could be
used in the game to interact with the lot.

Unique to this method is the lot generation that is not based on subdivision but rather on growing
and expanding from one location to find a suitable shape and size for a lot. Simulation of land use for
procedural urban area generation is not uncommon, though the used approach is not grid-based which
is not done often. By focusing more on the semantics and game worlds this solution to generating
digital urban areas differs even more from other proposed methods. It extends current techniques by
adding more history and meaning to the procedurally generated urban areas. An example of an urban
are generated using this method can be seen in Figure 10.5.
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Figure 10.5: A view of an urban area generated by simulating its history. The lots shape around
obstacles and terrain features like mountains and rivers. Most lots are clustered around the river, and
the areas away from the river contain many wells (blue circular lots) to compensate for the lack of
water. In the gray mountainous areas of the terrain, more orange lots (resource gathering) are present,
that gather stone.

141



10. Application of semantics in external projects

142



CHAPTER 11

EVALUATION OF THE SEMANTIC MODEL

In the previous chapters, we explained a semantic model for game worlds and a number of applications
for semantics in both the design and runtime phase of games.

In Section 9.2.1 we showed the Entika editor to specify and edit semantics using our semantic
model, detailed in Chapter 4.

Chapter 5 explained how to apply semantics, specified with Entika, in the context of layout solving.
The use of semantics in semantic scene descriptions combined with RELATIONSHIPS showed to be
a suitable approach to automatically generate scene layouts like room furniture layouts or factory
floors.

We also applied semantics to the concept of procedural filters, to quickly add custom visual effects
on virtual worlds, as shown in Chapter 7.

In the course of our research project we invited diverse groups of people to experiment with our
proof-of-concept tools and to introduce them to our research results. These people, ranging from
professional game designers and programmers to international researchers and students, provided a
wealth of feedback on the soundness and usefulness of our general approach as well as on the usability
and quality of the results of our applications of the semantic model. To make the feedback further
concrete, we performed some interviews with professional programmers and artists at a Dutch serious
games company. We introduced them to our ideas and the semantic model, provided them hands-on
experience with our prototype Entika tool and allowed them to study and review the methods and
results from some of our applications, namely semantic layout solving and procedural filters. In this
chapter, we give the results of this evaluation, including a detailed setup of the interview procedure,
the findings of those interviews and the positive and negative feedback from the interviewees. The
chapter ends with a discussion of the interviews and some future guidelines extracted from this
discussion.

143



11. Evaluation of the semantic model

11.1 Interview setup

The evaluation interviews were part of a Knowledge Transfer Project agreement with the Dutch
serious games company re-lion BV from Enschede. In Chapter 10 we mentioned a collaboration
project as one of our applications of semantics. Within this collaboration, some of their employees
were interviewed about our research. These employees were either programmers or artists, and
in one case both (a programmer with plenty of modeling experience), but they were not part of
the aforementioned collaboration and had not been introduced to our research project before the
evaluation.

Although the interviews were performed separately, the idea was similar to focus group evaluations.
Since some of our prototypes were not yet at a level to be thoroughly tested, we instead proposed our
ideas to them and sparked a discussion about our research results. We also prevented the discussion
from turning into software user tests with a focus on GUI problems; instead, we centered on more
meaningful feedback about the research and its main concepts. After the individual interviews, we
had an informal talk with all of the interviewees, together with other company members to discuss our
findings together. Finally, several students were also asked to perform our test, mainly as a control for
our tests and questions. However, their responses regarding their experiences as a player, were also
taken into account when creating this report.

Because of the limited size of the group and the prototype levels of our tools, we could not
perform a quantitative analysis. Instead, we set out to get independent industry professionals’ first
impressions of the idea of semantic game worlds and our applications. Most importantly, we wanted
to know which problems they would see in implementing some of our research into their development
process. At the end of this chapter, we also distilled all this feedback into three important future
recommendations.

11.2 Interview responses

This section will give a detailed overview of how the test was performed, what kinds of questions
were given to the interviewees and what their responses were.

In the first part of the interview, we introduced our problem statement and a general idea of
semantics for game worlds and of our model. The second part was a hands-on demo of the Entika
editor. The third and fourth part were about two applications: semantic layout solving and procedural
filters. For each of these parts, we have a section which elaborates on how they were performed
and that discusses some of the more interesting remarks. At the end of each section, we give a
short summary of the important feedback. Afterwards we discuss the closing comments of the
interviewees.
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11.2.1 Introduction

Problem statement

To start the interview, we asked some general questions like do you play games, how often do you
play games, or what is your current job. The interviewees were first asked how they felt games
evolved in the last decade, and more specifically the evolution they felt in the behavior of objects.

Most interviewees agreed that realistic behavior is lacking. Sometimes many object characteristics
are present, but are not consistently used across the game, e.g. roleplaying games where objects have
a weight to check the carrying limit of the player that is not reflected in the physics of that object.
Another interviewee brought up the fact that there is very little evolution in the way we interact with
objects in games: often they are still giant, obvious switches (sic) a player needs to stand over and
press space to use. One interviewee remarked that much attention is spent on the useful items in the
game, very little to background objects.

We conclude that the interviewees didn’t see a huge increase in realism (or higher detail) in object
behavior and interaction. However, many of them did mention a huge increase in destructibility:
many games now allow all (or many) objects in the game world to be destroyed upon explosions or
gunshots. It was also remarkable that destruction was one of the first things that sprung to mind when
we asked about object behavior.

Asked about the topics that were most important to be immersed in a game (next to graphical
realism and style), the top answer was beyond doubt a gripping story, which was the first thing the
interviewees responded. Other important elements were no stuttering (frame drops immediately pull
gamers from the experience), and gameplay. Sound, music and environment were other answers.
Cinematic experiences, where the player races through a high paced game like in a blockbuster action
movie was another answer. There were two interesting answers, from the perspective of our problem
statement: internal consistency and what one of the interviewees called the domino effect.

With internal consistency, the interviewee wanted to make clear that it is not always necessary to
have a world that is consistent with the real world; however internal consistency is necessary. It is
unacceptable to have two similar objects behave in a different way. However, this is still often the
case: sometimes a particular object is usable in one level, because it is expressly associated to the
story, while similar objects in other levels are no longer usable or behave differently. This would
suggest that a centralized, consistent semantic representation of the game world and all its objects
could definitely increase immersion by helping developers to maintain this internal consistency.

The second answer we would like to focus on was the domino effect. With this is referred to
being allowed to set up constructions of multiple objects that, when combined, can set off a huge
chain of events where the effect of one object triggers an action in the next. As an example the
interviewee mentioned Little Big Planet by Sony Computer Entertainment. A similar experience
in the series The Incredible Machine by Dynamix was already mentioned previously in this work.
The interviewee thought it would be very nice if a player could set up similar constructions in, e.g. a
first person shooter to defeat an enemy in an ingenious, creative and original way. However, the same
interviewee also mentioned that sometimes it is more fun to keep it less complicated so the player
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Figure 11.1: A diagram representing the idea of a black box, centralized object representation
communicating with all game engine components (right) as opposed to the current system, where all
components have one piece of the data-puzzle and therefore have to communicate pair-wise with all
other components, if necessary.

can quickly see what objects can be interacted with, and which can’t. Nonetheless, it does seem that
flexible object behavior would spark players’ creative thinking. Although this does not cater to all
players, it does suit a certain playing style and certain game genres.

Semantic representation

The interview continued with the introduction of a centralized object representation concept, at
this moment represented as a black box, containing all information about an object with which all
components of a game could communicate instead of component-wise communication. This story
was supported with the diagrams represented in Figure 11.1. This idea was introduced in the following
way (literally translated from Dutch):

Instead of having all components of a game communicate with each other about changes
to objects (see left of Figure 11.1) we propose to introduce a centralized description. You
can, for now, think of it as a black box that contains all information about an object (see
right of Figure 11.1): what kind of object it is, to what categories it belongs to, which its
characteristics are, from what material it is made of (and what the characteristics are of
that material), which actions a player can execute on the object, what happens when it
interacts with other objects, or how it behaves over time.

All of the interviewees were unanimous that such an idea could definitely be useful. One mentioned
the fact that this would make it easier to extend games. He also immediately saw many opportunities
for games with multiple storylines (branching story arches), making it therefore very suitable for
sandbox-style games. Another interviewee mentioned that this could be a solution to provide emergent
gameplay. Yet another interviewee mostly saw a gain for developers, claiming it could make the
development process easier.
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When asked about technical or practical limitations to a semantic object representation, a first issue
that was mentioned was performance. Some interviewees were wary of it since they thought it would
slow down the game (assuming overhead in an implementation of such an idea). The second issue was
scalability of a potential implementation. A final issue that was mentioned by multiple interviewees
was the fact that this would also make the game more unpredictable which makes debugging and
testing the game a lot harder.

Following on this discussion, we introduced the term semantics to the interviewees as (literally
translated from Dutch):

all information about an object beyond its geometric representation.

With geometric representation we specifically mean the polygons and textures that the object
consists of. The semantics itself can contain information about the stucture of an object or about
geometric relationships with other objects. This was a simplified working definition of semantics,
and it served as an introduction to people who were not familiar with the term in the context of game
worlds.

The following concepts explained in Chapter 4, were briefly introduced: TANGIBLE OBJECT
CLASS, MATTER, ATTRIBUTE, ACTION and RELATIONSHIP.

We did mention that our representation involved many more concepts but we did not go into more
detail on them. Some interviewees immediately mentioned they saw specifying all this information
would take up a lot of time. They did however, see some useful applications if the information is
available.

One of these applications is the fact that searching through a library of models in a level editor
could be significantly improved. Instead of searching on names only, materials and other information
could be used to query necessary objects and models, e.g. find all metal objects in the library.

Without mentioning anything about semantic layout solving, one interviewee saw possibilities
in automating game world generation as well. He immediately saw potential in the relationships
between objects. The example he gave was: when placing a shop, using the relationships, an editor
could assume that there would also be a need for saleable goods, an agent that serves as a vendor, etc.
Perhaps not necessarily automatically placed, but at least as helpful suggestions to place manually.

One interviewee saw some in-game advantage in the fact that it would allow easier creation of
simple simulations. As an example he mentioned the EA game series The Sims.

Summary

To summarize what this part of the evaluation learnt us in broad terms:

• Most of the interviewees agreed that the quality of object behavior is still somewhat lacking.
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• Some of them envisioned important advantages in a centralized, black box, semantic represen-
tation of game world objects, including emergent gameplay through more creative solutions, a
better organization of objects while designing levels and an easier way of extending games.

• However, they raised some issues concerning the extra time it would take to specify this
information and the influence on the performance of games.

11.2.2 Entika hands-on demo

The interviewees had the opportunity to work with the Entika editor, the proof-of-concept editor (see
Section 9.2.1) we created that allows users to specify semantics according to our proposed model for
semantic game worlds.

The interviewees followed a list of instructions to create a small part of a farm simulation including
animals that could grow older and eventually die. One of the animals they needed to create was
a chick that transformed into a chicken when it reached a particular age. The chicken could then
provide eggs to the farmer who owned the chicken.

Basically there were two points of view: two more design-focused interviewees would like to see
the editor to take a step to a more visual setup, while the programmers liked more the idea of textual,
sentence-like input, e.g. using autocompletion, less drag-and-drop.

Another common response was the huge amount of information shown on the screen. First of all,
all lists with semantic concepts are represented in a double tab system. Second, when selecting a
node (e.g. a TANGIBLE OBJECT CLASS) all possible information and lists for that node is shown
(even when they are currently not used or empty). Using expanders most of this is hidden, however it
does make the view a little cluttered and generally hard to find things.

However, despite these interface imperfections the interviewees were mostly positive, and consid-
ered the ideas behind the editor as convenient.

When comparing to scripting or coding, interviewees thought the editor was quicker, easier to
extend and a lot easier to reuse (even among different games). There is also no way of having
typo errors (although most programming IDE’s or scripting editors have autocomplete and syntax
highlighting to counter those), but, more importantly, concepts are unambiguous: there can, for
example, exist multiple TANGIBLE OBJECT CLASSES with the same name, but they are separate
nodes, and one is able to separate them based on e.g. descriptions or parents/children. One interviewee
did mention that one needs to get used to it before it would be faster or easier in use. Another advantage
an interviewee saw was the fact that, out of the box, the editor has much more available (especially
when the editor is already filled from other projects or games). But even in an empty library, there are
concepts, like parent/children hierarchies, RELATIONSHIPS, SERVICES, UNITS and more that are
already available and logically related to one another.

On the negative side, some felt that using it was giving up control: they felt they did not have
the simulation in their own hands anymore. It was also a bit fuzzy to one interviewee where the
borders of the system lie: what can be done or specified in the editor and what cannot. Also one

148



11.2. Interview responses

interviewee mentioned that he thought an overview of the world hierarchy would be lost much sooner
as opposed to using code, since the editor, in its current form only gives an overview of one node:
either one SERVICE, one TANGIBLE OBJECT CLASS, etc. However, there are many ways of solving
this problem in future versions of the editor.

Summary

In conclusion, it is clear that the Entika editor is not yet the definitive solution for the specification of
our semantic model for game worlds. A more visual approach, using nodes to represent concepts and
edges to show links between concepts would be the way to go. However, despite the above remarks
about the editor interface, there was a unanimous positive idea on the concepts and the used semantic
model itself. The interviewees saw a big step in the good direction for most of the problems we set
out to solve when first started work on our model, noticeable from the advantages they saw in it. A
more streamlined, less cluttered way of presenting the information is necessary, though, to be actually
useable.

11.2.3 Semantic layout solving

Sketching rooms

Before explaining anything about the concept of semantic layout solving, we gave users a page with a
top-down view of an empty room of 5 by 4 meters, 2 windows and 2 doors, 1 leading to a hallway
and 1 leading to the kitchen. They were asked to draw a living room layout with both a dining and a
sitting area, while verbally mentioning everything they took into account when placing the furniture.

The reason was to check whether or not our semantic layout solving approach using scene descrip-
tions was intuitive compared to the informal way people fill a room while making the sketch. As the
base, we gave them an empty room of 5m length and 4m width, 2 windows in the northern wall, a
door to the hallway in the western wall in the corner with the northern wall and a door to the kitchen
in the eastern wall in the corner with the southern wall. What became immediately clear was that
everyone started with defining in broad terms where the dining and sitting area should be placed and
the walklines between the two doors. Everybody, not surprisingly, chose to put the dining area near
the kitchen door. However, some chose to break up both areas lengthwise, some crosswise. And
the walkline between the hallway door and the kitchen door broke up the dining and sitting area in
all sketches (as can be seen in two of the examples in Figure 11.2). In our semantic layout solving
approach we use clearance SPACES to mark walkines, i.e. clear passages between doors in a room
(see Section 5.3).

What became clear was that the interviewees sometimes came very close to the reasoning we used
in our semantic layout solving approach using scene descriptions. What happened was, they first
started mentioning what they wanted to be present in the room, e.g. (literally translated from Dutch):

I want a TV, two couches, a table and a couple of chairs.
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Hallway
Couch

Couch
Small table

Cupboard
Kitchen

Hallway

Kitchen

Figure 11.2: Examples of the living room layouts two of the interviewees drew.
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And when they were actually drawing objects on the location they thought was suitable, they
mentioned how the objects should be placed.

This closely resembles the setup of scene descriptions. In the descriptions, one can define what
objects and in what quantities should (and could) be available in a particular type of scene. While in
the specified semantic TANGIBLE OBJECT CLASSES, one can define RELATIONSHIPS (as well as
additional, scene-specific relationships in the description entities, see Section 5.2.2) between objects.
Others didn’t explicitly split up these two actions, adding objects one by one and explaining the
considered constraints with each placed object.

When it comes down to the actual criteria people used for placing objects, the interviewees used
mainly expected relationships:

• Place the dining table near the kitchen door

• Place a plant in a corner

• Place dining table with short edge against the wall

• Place the television between two windows

These follow neatly the one-to-one RELATIONSHIPS specifiable in the semantic model. The fact
that interviewees didn’t explicitly used measurements (instead using vague terms like near), was
expected in this experiment with a sketch. Interviewees completely accepted the fact that specifying
these relationships also involves defining these details explicitly.

It was interesting to notice that a minority of the constraints used by interviewees are not directly
mappable to the RELATIONSHIPS from our semantic model. One of them was:

Place the couches in such a way that people sitting in the couches can look at
each other.

This relationship is interesting because it adds the user of the object in the relationship. However,
there is a simple solution to be able to express such a relationship in our model. A SPACE that reflects
how one can use the object is possible to add and usable for many reasons. One of which, in this
example of a couch, could be the position where an agent or player character should be placed when
performing the ACTION sit on that couch. And when specifying this relationship, we can include this
SPACE use space. Explicitly, this means specifying the following RELATIONSHIP:

Place the TANGIBLE OBJECT CLASS couch with its use space SPACES facing
a use space SPACE of an instance of the TANGIBLE OBJECT CLASS couch.

There was, however, a constraint one interviewee used that is more difficult to map to our structure,
which was:

I’m going to add a single-seat couch to create a closed sitting area (see Figure 11.2,
bottom).
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Technically, there are obvious solutions to solve this problem however it is unclear how to present
this option to users and how it should be specified using concepts from our semantic model.

The approach

The interviewees were now introduced to semantic layout solving and how one can use it. We
explained both the general approach to create a description, the three main elements of any description:

• which objects to place,

• how to place them,

• and how the layout should vary based on different contexts.

The interviewees were shown how to create RELATIONSHIPS. They already experienced creating
non-placement related relationships in the Entika hands-on demo (Owns RELATIONSHIP between
Farmer and Animal). We showed how the same one-to-one RELATIONSHIPS (with the potential
addition of some parameters) were suitable to create placement relationships for semantic layout
solving.

The overall response was very positive. Interviewees immediately spotted opportunities, e.g.
filling entire cities with populated, furnished buildings with limited user interaction. The way the
descriptions need to be specified sounded very intuitive to the interviewees.

Following that thought, our use of the concept of CONTEXTS to vary and customize scene de-
scriptions seemed very appealing to the designers, since they find it very important that character
personalities or living conditions are reflected in their house interior. Examples they gave included
that a messy person would have some dirty laundry spread across rooms where that would not be
typically found, or when lacking a dedicated room the ironing board could perhaps be found in the
kitchen or the living room. It is therefore clear that the use of CONTEXTS is important in our semantic
layout solving approach and deserves perhaps even more attention and refinement.

The hierarchic nature of the approach also spoke to the interviewees. The fact that one can build up
scenes from the ground up, ever increasing the complexity without resulting in one single description
that contains the entire scene.

One of the interviewees mentioned that he thought the approach felt quite suitable for house
interiors, but was not convinced that it would be generally applicable to other scenes, e.g. an industrial
area or park. However, although showing the examples, we did not have the time to explain in detail
how the forest road with roadside objects and the factory floor were specified (see Figure 5.5).

Summary

Some of the things we noticed in this part of the evaluation:

152



11.2. Interview responses

• From observing and listening to people when creating sketches, as well as hearing the feedback
from interviewees after explaining our approach, it seems safe to say that the semantic layout
solving approach combined with scene descriptions is quite intuitive and, especially for room
interiors, perfectly usable.

• The current concept of RELATIONSHIPS is quite capable of handling all required relationships,
with only a handful of exceptions, like the closing an area example given a few paragraphs back.

• The use of CONTEXTS to customize and vary scenes is a powerful aid and perhaps deserves more
focus and attention and should be more closely connected to the idea of back stories of characters.

11.2.4 Procedural filters

Finally we introduced the interviewees to procedural filters. After explaining the problem we wanted
to solve with the help of such filters, we gave them an overview of an example filter. This filter was
the age world filter, which first searches all instances of TANGIBLE OBJECT CLASS Building in
the world and applies the age building filter, which in turn searches all instances made of MATTER
Wood to apply an add moss filter, all objects made of MATTER Metal to apply an add rust filter and
so on. We showed one example of such sub filters, the add moss filter and also explained that the
value of the ATTRIBUTE Deterioration of the Building instance was used as the parameter for these
sub filters. Based on this example filter, we showed how the filter editor works, how a filter can be
created and what types of visual feedback is available in the editor.

Again, the main response was very positive. An example given to us by a designer from personal
experience was the adding of snow. They added this snow shader to all polygons facing up. However
this also put snow on objects underneath a cover. They are thinking of technical solutions, resembling
shadow casting techniques, to solve this, but he saw the semantic approach of our procedural filter
idea as a potential alternative solution to this problem.

Especially to quickly change the main feel and appearance of an entire city this could be a great
time saver. One interviewee mentioned that, even when it would take multiple hours to apply a
number of filters on a huge city or game world, the profit would still be significant. One interviewee
also mentioned that a system based on this idea could be immediately applicable in their current
workflow.

There were also some slightly negative responses as well. One interviewee found the use of the
semantic vocabulary in such a filter system to be potentially dangerous. He compared this to the
search and replace function in text editors or IDE’s. For example, adding rust to all metal objects
depending on their age, might affect objects the user was not thinking of and were not intended to
change. Potentially this could be solved by giving more feedback to the user when testing the filters
on an example world, e.g. outputting to the user which instances were affected by a particular filter.

Another interviewee would like a realtime, or at least semi-realtime example of the filter to
immediately review mistakes made in a filter.
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The editor proved quite appealing to interviewees. The node-based approach was interesting to
most of them and some wanted this to be an example for where the semantic specification editor to go
towards. However, this editor shows as well that such a node-based editor quickly becomes cluttered
in complex examples.

A slight negative note to the idea was that people soon noticed the applicability to apply ageing
effects and seasonal or weather effects, but nobody could imagine other examples where the idea
could be applicable.

Summary

About procedural filters, we can conclude the following:

• Both the idea and the implemented editor based on it were very positively accepted by interviewees.

• People saw themselves using the idea and believed it could mean a great time improvement.

• The biggest negative point, however, is that interviewees only imagined a limited amount of
possibilities and applications.

11.2.5 Closing remarks

We ended the interview and the test sessions with some closing remarks. The interviewees were asked
about their final impressions about semantics as a black-box representation for game objects and if
they thought of it as an added value.

When asked what the most important advantages of introducing semantics for game worlds are, we
got the following responses:

• It becomes easier to reuse object data and behavior across different games, which increases the
speed of development.

• Interaction with objects can be specified more quickly and with more detail.

• The ability to create enter-anywhere game worlds without encountering the famous invisible walls.

• In general: new possibilities.

• The player will become less limited in movements and options, therefore extra freedom, and
hopefully more fun.

• This caters to gamers who like to explore every bit of the world.

• The automation ideas (semantic layout solving and procedural filters) can free up time when
creating the game and gives designers more time to spend on smaller and important details.
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The disadvantages according to the interviewees were:

• The idea requires some getting used to.

• It is quite a different way of working.

• More freedom to the player means more things that can go wrong and that need to be tested.

The reactions to the general idea of using the semantic model as the glue between different
components of games were:

• This idea would require a significant mind-change.

• Especially with some sort of standardization, this could be the future of world creation. There
could perhaps become possibilities of reusing and selling specified databases.

• One technical hurdle is keeping up performance.

• The second hurdle is the fact that specifying the information will take a lot of time.

11.3 Discussion

With regards to the problem statement, we can conclude that both as game developers and gamers the
interviewees felt there were no big leaps in the evolution of object behavior in recent years. However,
most agreed that more realistic object behavior could lead to more fun games, especially in some
genres, mainly the exploration sandbox-style games.

When told about a generic idea of a centralized, black-box object representation, interviewees saw
some advantages like possibilities for emergent behavior and more creative solutions from players, a
better organization of objects in level editors and easier ways to extend games. The downside to the
idea was mainly the time they thought it would take to specify the information and the possible drop
in performance such a system would cause.

After learning about our idea of semantics and the concepts of our semantic model, interviewees
responded well to the idea. They thought the idea was interesting and applicable and that the concepts
were sufficient and clear. After working with our editor to specify the semantics, the general consensus
was that even with this version of the editor time could indeed be saved, however they would much
rather have a more attractive and less cluttered presentation of the information.

The semantic layout solving using scene descriptions was deemed a good idea. Based on the
feedback and on the observations of users when creating a room layout sketch, we can say that the idea
is also intuitive and corresponds to the way people think when layouting a room. The RELATIONSHIP
concept from the semantic model is capable of handling almost all relationships and constraints
thought up by the users while sketching, except one important one which constrained a particular
area in a room to be closed. The idea of CONTEXTS is a particularly powerful one, especially when
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trying to customize scene descriptions based on the personality of the character that owns, works or
lives in that scene.

Both the idea of procedural filters as the implementation in the filter editor proved particularly
popular with interviewees. They saw it as a great way of saving time in the development phase. People
wanted to use the idea and thought it could fit nicely in their current workflow. On the downside, they
could not find many more interesting applications besides ageing and destruction and the simulation
of seasonal and weather effects.

In general, our semantic model and the idea of using semantics in game worlds, proved to spark
an interest with the interviewees. They were especially interested in the ways it can speed up
development ranging from easier specification of object behavior and interaction and procedural
generation using filters and semantic layout solving. They saw it as a particularly interesting idea to
create big, exploration-heavy, sandbox-style, enter-anywhere game worlds. The fact that it could save
a lot of time was interesting to designers, since they think it would give them more time to spend on
smaller details and more important parts of the game worlds. The negative comments had first of all
to do with the fact that interviewees think it requires a significant mind-shift and that specifying the
semantics takes up a lot of time. They also raised technical concerns for the performance of games
using semantic game worlds.

11.4 Future guidelines

At the end of the evaluations, we can look back strongly positive on the idea of using semantics in
game worlds according to our semantic model. Many of the problems we set out at the beginning of
this project (i.e. lacking behavioral realism breaking immersion in games, inconsistent data between
different components because of separate data, and procedural content generation not breaking into
mainstream use because of unintuitive and vague parameters) could be positively affected with the
inclusion of semantics, according to our interviewees based on both their experience in the game
development industry and as gamers. Especially the procedural generation ideas (semantic layout
solving and procedural filters) were unanimously welcomed as positive. The interviewees saw the
entire process as a time saver and as an important mechanism of maintaining consistency between
different components of games. However, from some of the remarks, we noticed that also with
regards to player interaction and object behavior, our semantic model brings a lot of important new
options to the table. We feel that it would take some more time and some striking example games (or
game-like testbeds) to convince more people of the advantages in this field.

The issues concerning performance are quite relevant. Since we did not particularly focused
on performance in our proof-of-concept implementations, we cannot guarantee that impact on
performance of the use of semantics is neglectable or not (in our non-optimized versions, the impact
is still significant both on framerate and memory use). We do, however, believe that a strong technical
focus on this field could greatly decrease the loss of performance, however we cannot guarantee that
it could be solved to the point where the loss becomes insignificant.

The issues regarding the presentation of semantics and its specification, are in our opinion and
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based on the feedback of interviewees perfectly solvable. A more visual presentation that is perhaps
context-sensitive, e.g. when creating a service only show information that is relevant to that particular
service on the screen, is perfectly doable, but would require a lot of fine-tuning and testing. Tem-
plates would be another welcome addition to specify services, since the amount of options can be
overwhelming, and templates and/or wizards to guide users through frequent service types. We feel
that the development of such tools falls out of the reach of a scientific research project, but to become
commercially feasible such an improved tool is definitely necessary.

To conclude, the three future guidelines, filtered based on this evaluation, that we find the most
important and urgent are:

• Increase the performance of the semantics engine that handles behavior based on services and
player interaction.

• Increase usability of tools that specify semantics and perhaps help users by automating part of
those tasks.

• Focus on the use of CONTEXTS in the semantic layout solving approach regarding character
personalities.
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CHAPTER 12

CONCLUSIONS

In this final chapter, we draw our conclusions on the instrumental role semantics play in the design
and development of virtual worlds for games and other applications. By means of our semantic
model, we dealt with various fields where semantics effectively supports and enhances the process of
building virtual worlds. First, the contributions of the work presented in this thesis are revisited and
then some recommendations are proposed to further study the use of semantics in games in the future.

12.1 Research contributions

From studying games and their evolution in recent years, we noticed a considerable lack of meaning in
game worlds. The behavioral realism often does not match the visual realism. We wanted to address
this using semantics. Our initial definition from Chapter 1 is now formalized into the following
definition:

game world semantics is all information on a game world and its objects, including structural,
geometric, physical, functional and behavioral information, all integrated in a generic and
consistent model, in a way that does not constrain a designer’s creativity.

Based on this definition we will now answer our research questions.

How can semantics improve the creation and consistency of game worlds?

To answer this question, we set forth in Chapter 2 by: (i) dissecting some of the current games as
well as general trends in game world design and, (ii) analyzing where semantics research can provide
opportunities for improvement. Based on this analysis, a set of guidelines was put forward in Chapter
3 that define the necessary characteristics any semantic model should possess to be able to seize
the improvement opportunities. Chapter 4 introduced our semantic model for game worlds, created
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following these proposed guidelines. This model was applied throughout this thesis to different areas
of the game development process where semantics prove to be valuable. These different fields will
now be revisited based on the key questions introduced in Chapter 1.

1. What is the role of semantics in the generation of coherent game worlds, both manual
and procedural?

One of the main problems we observed was in the way game engines are structured: as a set of
highly separate components all influencing the same game world and the objects inside it in their
own unique way, but without the necessary coordination, let alone integration, between them. This
makes it tough and labor-intensive for developers to produce a coherent game world. By carefully
selecting the guidelines in Chapter 3, we ensured that any semantic model following these guidelines
is fully equipped to be the glue between the different components of a game engine. Such models
can provide developers with a vocabulary to create a single, coherent black box representation of the
game world, with which all components can communicate and interact with in a uniform manner.

When using procedural content generation techniques, we notice a somewhat similar problem.
Techniques might influence elements of the game world that overlap or conflict with elements from
other techniques. Again, coordinating all used techniques with every other technique requires a lot
of work and is not very robust, since introducing a new procedural generation technique to a game
will mean changing many other techniques to maintain perfect coordination. By using a semantic
representation as the main hub for all communication, each technique only needs to be connected to
this one representation, which propagates changes to all other techniques and also identifies conflicts
between techniques based on defined constraints and relationships. In Chapter 6 we described this
approach and applied it to the generation of consistent buildings using multiple procedural generation
techniques.

This thesis also described a second way in which semantics can play a vital role in improving the
generation of game worlds: in the automatic creation of layouts. Whether it is the layout of areas
on a lot, of rooms inside a building, or of furniture in a room, they can be automatically generated
by means of the semantic layout solving approach introduced in Chapter 5. Its main advantage is
that the final control over these layouts still remains in the creative hands of designers, by allowing
them to steer the automatic layout process using an intuitive description language. This example of
declarative modeling enables designers to focus on what they want to create instead of how they
will model it. More common, repetitive tasks like one by one placing pieces of furniture in a room
are alleviated, while the global structuring of a scene is left to the designer. Moreover, because of
the semantics present in the generated scenes, consistency can be maintained after manual edits, by
revising the defined relationships between objects in the scene.

Next, we focus on the customization of existing scenes. Procedural filters, introduced in Chapter 7,
allow designers to quickly transform scenes and worlds to match different conditions, circumstances,
time periods or styles. By combining the power of procedural generation and the intuitive and
expressive nature of semantics, designers can easily create filters that can fine-tune the appearance of
scenes without changing them structurally.
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Finally, the behavior of objects in the game world was addressed. Services, introduced in Chapter
4 and analyzed in more detail in Chapter 8, provide designers with a consistent and intuitive way
of expressing how objects in the game world behave, how the player or other objects can interact
with them, how they react to certain events and how they evolve over time. An important aspect of
services is their reusable nature: since the behavior is not tightly linked to 3D models, but instead to
generic semantic entities, the defined behavior is seamlessly reusable in other games.

In these chapters, we demonstrated the importance of the use of semantics for each approach
individually. In general terms, a major advantage of the use of semantics when creating game worlds
manually or procedurally, is that it allows designers to reason about the world in the vocabulary of
the target domain, instead of having to think in mathematical systems and parameters that often have
little or no connection to the structures of the world they are actually creating.

2. How can game designers be assisted in the specification of semantics?

Guideline 1 from Chapter 3 states: “Inclusion of semantics should have a low impact on the design
pipeline”. Therefore, we wanted to analyze how designers can be assisted in the specification of
semantics. The most important tool in this specification for our semantic model is the Entika editor
introduced in Chapter 9. In building this editor, we found a number of elements vital in assisting the
semantic specification. Since a semantic model for game worlds can become quite complex, it is
important to properly clarify to users what type of entity or concept they are working on and how
these tie together with all other concepts. In the Entika editor, we chose to use color-coding to address
this, however there are many other ways to achieve this. Feedback is essential to the understanding
of the model behind the tool. The Entika editor provides many forms of feedback, both visual and
auditive, but as was found in the user tests in Chapter 11, some more steps are necessary in this field.

Obviously, automation can play an important role in speeding up the process of specification. In
Section 10.3, we introduced a method to quickly specify semantics for large sets of 3D models. Using
shape recognition and segmentation techniques, the classification and specification of 3D models
with semantics can be achieved automatically. The only required interaction by the user is to provide
a number of training models to the system.

Although these tools and methods provide a solid starting point to aid semantic specification, it
is not yet far enough to fit in seamlessly with the current development process. In the next section,
regarding future work, we will describe how this important element of game world semantics should
be further addressed.

3. How can the semantic consistency of a game world be maintained in an evolving context?

We already mentioned consistency maintenance in the design phase: after manual edits, the
semantic layout solving approach can fix conflicts or update certain layouts to fit with these edits,
all based on defined relationships. This third key question takes that consistency maintenance to
the runtime level, i.e. while playing the game. Since services play a crucial role in our semantic
model for the specification of object interaction and behavior, services are also the main ingredient
to maintain semantic consistency while evolving. In Chapter 9, we clarified the workings of the
semantics engine. This engine ensures that the effects of interactions or events are properly handled
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and that the evolution and the behavior of objects is executed.

4. How can this integration of semantics influence gameplay?

Several advantages mentioned for the previous key questions, could likely lead to innovation in
gameplay. Services, especially because of their reusable nature, could lead to many more interaction
possibilities: even in games where object interaction is not an integral part of gameplay, populating
their game world with interactable objects makes for a more immersive experience. Moreover, more
diverse ways of interacting with the world, will make problem solving in games more versatile.

The fact that the generation of game worlds can be improved and facilitated in a number of
ways using semantics (as mentioned for the first key question), will make it easier for designers to
create larger game worlds. And since these semantically generated game worlds are also embedded
with behavioral information, these game worlds would lead to more exploration-based gameplay,
something that is ever growing in popularity.

These two elements combined, might also enable emergent gameplay. Large, explorable worlds
with more interaction possibilities will push players to find new and creative ways of solving problems,
perhaps ways that were not originally thought of by the designers. Such emergent gameplay will
furthermore personalize the experience for players instead of serving them with a single, linear one,
therefore increasing their replay value.

In short, after addressing these four key questions, we can summarize the following answer to our
research question:

1. Semantics can improve the generation of game worlds by allowing new ways of automatic or
procedural generation, as well as by assisting designers when manually creating or editing them.

2. Semantic models, adhering to our guidelines, provide a great vocabulary to form a single and
coherent representation that can serve as the glue between different game engine components.
Moreover, a behavioral specification, e.g. by means of services, is instrumental in maintaining the
semantic consistency while the game is running.

12.2 Application of semantics

In this section, we take a broader look on the application of semantics. First of all, we categorize the
types of applications we used, i.e. the ways we reasoned on the semantics from our model. Next, we
discuss how these applications fit in with research in other fields and where we want to go next.

12.2.1 Application types of semantics

In this work we have discussed a number of applications of semantics using our semantic model.
These applications reason over semantics from the model in different ways. We can categorize these
in three application types:
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1. Using semantics to translate among different techniques, among different game engine components
or between users reasoning in a high-level target domain vocabulary and low-level techniques.

2. Using semantics for the moderation of conflicts between entities based on defined relationships
and components.

3. Using semantics to evaluate and execute behavior and effects of interaction between entities based
on defined services.

For translation purposes, a mapping needs to be made between, e.g. a particular technique or
a game engine component and semantic concepts. These concepts can then be shared between
each user in order to communicate with other users. This application type was used in Chapter
5, where we used the semantic model to translate the high-level descriptions defined by designers
into more low-level instructions that can be interpreted by the layout solver. In Chapter 6, we use
semantics as a translator to allow communication between different procedural generation techniques.
All techniques register the entities they created to a shared semantic representation of the building.
Having a single, shared representation of the game world, using a common, target-domain vocabulary
allows seamless communication between all users of the game world, whether these are designers,
engine components or procedural generation techniques.

In the case of procedural filters (Chapter 7), we do not simply have a one-to-one mapping between
target-domain vocabulary and e.g. a procedural technique or geometric relationship. Instead, filters
allow designers to create as many layers of abstraction to their filters as they want. Because of the
hierarchic design of procedural filters, low-level procedural content generation techniques can be
shielded by filters that are more intuitive, which in turn can be reused in other filters. For example, a
filter to apply noise can be used in a procedural filter that adds rust, which can be used in another
filter to age a building.

A second application of semantics is the moderation between entities in the world. Using the
relationships and components defined for entity classes, we can assess the validity of the position
or orientation of entities. We define rules about allowing or disallowing overlap between certain
SPACES of entities, or define RELATIONSHIPS on how entities should be placed relative to other
entities. Again, this mechanism is used in our semantic layout solving approach in Chapter 5, but
the same mechanisms are used to indicate conflicts between entities placed by different procedural
generation techniques that are combined to generate complete and consistent buildings, as described
in Chapter 6.

The third application type is the evaluation and execution of entity behavior. Using the concept
of SERVICES, we can define actions and their effects to describe how entities behave over time or
how they react to actions from other entities. Semantic game worlds can be queried to find possible
ways of achieving certain goals, i.e. when agents need to achieve a certain state, the semantic game
world can compose a set of actions that will enable the agent to achieve this state. Furthermore,
we discussed the workings of a semantics engine (see Chapter 8) that can handle and simulate the
interaction, behavior and effects of entities based on the defined semantics and the current state of the
game world.
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12.2.2 Broader perspective on using semantics

Designing and modeling a virtual world is a highly creative task which does, however, involve
numerous technical and much less creative chores that require specific knowledge about the digital
representation of a virtual world. Declarative modeling tries to reduce the technical burdens and
strives to find solutions that allow designers to focus their efforts more on the creative part of their
job. It tries to bridge the gap between the high-level vocabulary of the world that is being created and
the more low-level terminology involved in the modeling process. In this work, we used semantics to
provide that bridge: it allows translating back and forth between these two levels.

Besides having one-to-one mappings of a semantic concept directly onto, for example, a geometric
relationship or a procedural generation technique, an interesting example is the concept of procedural
filters. Since it allows as many abstraction layers as necessary between a high-level concept and the
low-level procedural technique, designers can create a hierarchy of filters to continuously hide more
and more lower level operations. We believe that such a continuous level of abstraction is the best
approach to achieve declarative modeling.

Next to specifying the world and performing translations, we used semantics to specify behavior of
the world and entities inside it. Through the concept of services, we allow designers to easily and
intuitively specify behavior and the effects of certain behavior on the rest of the world.

Looking back on our approach and the semantic model we created, there is some overlap and
similarities in different fields, one of which is the Function-Behavior-Structure (FBS) framework
[76, 27]. This framework to represent design knowledge consists of three variable classes that each
describe different aspects of a design object: Function variables describe what an object is for,
Behavior variables describe what it does and Structure variables describe what it is. Our design
of services links to the Function and Behavior variables of this FBS framework. Services describe
what the functionality of an object is (which can be compared to Function) and what their effects are
(which is similar to the Behavior aspect). Our model contains many more concepts that all somewhat
relate to the Structure aspect of FBS, since we wanted to describe more specific information about
what an object is, how it looks like, what it is made of and how it relates to other objects. Originally
FBS was devised as a way of defining a functional hierarchy between objects. In design, FBS is more
a physically realistic simulation while in our approach we want virtual worlds to behave as a realistic
world without explicitly having to specify all the physics in detail.

Looking at the ontologies and other solutions that are available in many diverse research fields,
we can say that the model we introduced shares a good deal of similarities with some of them. We
believe that many of the existing ontologies could fit in quite well with the application approaches
described in Chapters 5 to 10. We did, however, devise the model specifically with procedural
content generation in mind. A procedural process and the specification of geometric structures or
relationships was essential for many of our applications and therefore our model had to cater to that
as much as possible, while still allowing for behavioral information to be specified. In that sense, our
approach spans across both the more physical or geometric research on semantics as it is often used in
the CAD/CAM world, and the research fields where meaning and language are more dominant, as e.g.
in semantic web studies. Our conclusion in this regard is that the unique blend that computer games
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require between the state-of-the-art computer graphics and modeling techniques on the one hand, and
the simulations and behavior on the other hand, create the need for such integrated, cross-disciplinary
solutions. Much research towards semantics in all different research fields delivers meaningful pieces
of the complex puzzle that game development has become, but careful consideration has to be given
to combining them into an integrated, all-encompassing solution. This work is a first step in that
direction.

Time and again, we notice that semantics is essential in the communication between humans and
machines. Each field might require their own specific models or processes to represent semantics, but
translation between human-readable concepts and machine-readable concepts or instructions remains
a necessary one. Either from human to machine, e.g. in the context of semantic web, or vice versa,
e.g. when presenting designers with low-level design elements like procedural content generation
techniques.

We distinguished three application types: using semantics (i) to translate, (ii) for the moderation of
conflicts and (iii) to evaluate and execute behavior. Beyond these three we focused on maintaining
the consistency of the world in an evolving context, by applying the effects of objects’ behavior.
To increase the usability of a semantic game world solution, this idea of maintaining semantic
consistency needs to be taken a step further. On the one hand, applying the logics-focused research of
semantics, would be of significant benefit to designers. Rules that, for example, enforce that a ‘parent’
relationship between X and Y also implies a relationship ‘child’ between Y and X, would not only
speed up the specification process, but also limit potential errors. On the other hand, the declarative
modeling approach would greatly benefit from a richer vocabulary for the specification of conflict
resolution. Many situations require rather specific solutions, e.g. when diverting a road with a bridge
crossing a river, the bridge needs to move with the road and needs to remain over the river, or when
the river becomes wider, the bridge needs to become longer. And when the bridge would become too
long for the current construction type, a new type would be necessary. This kind of behavior needs
not only different solving solutions, it also demands for a more expressive vocabulary focused on the
resolution of conflicts. Another application type, which would be of particular interest in the context
of games, is reasoning about the world in the context of its history. History can play an important role
in making the player feel like the game world is alive, thereby increasing the depth of the experience.
It will allow the player to find out about the stories that happened to a town while away on a quest
instead of having a single fixed state. Moreover, it will provide AI agents with information on past
experiences and events, which they can use to make informed decisions. This information might also
be of importance when trying to adapt gameplay to the player’s experience level, skill level or playing
style. Much more than storing the events in a giant database, the challenge is how designers will be
able to reason about and query past events in a meaningful and intuitive manner. We believe this to
be the most significant and challenging application method of semantics that is yet to be researched.
In the next section, we will give a more general overview of future recommendations.
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12.3 Recommendations for future work

In this work, we showed how semantics, and more specifically semantic models adhering to our set
of guidelines, can improve the generation of game worlds in a variety of ways. The game developers
in our user studies agreed that semantics can play an important role in game development. However,
they felt that the tools to specify these semantics still need improvement. We now follow with a
number of future recommendations (i) to improve the specification of semantics, and (ii) to apply
semantics in new domains of game development.

12.3.1 Specification of semantics

Embedding in modeling tools To further overlap the specification of semantics with the current
development pipeline, it would be desirable to have this specification happen while modeling
the 3D models that are to be put in the game. Especially physical and material characteristics of
the object and the hierarchic structure of its parts can perfectly take place in the modeling phase.
Such a semantic modeling tool can be an important step towards integration of semantics in game
development.

Further automation We believe that there are many opportunities to further automate the specifi-
cation process. We already showed the importance of model shapes to deduce information about
classification and segmentation of objects, but also information on the used materials or physical
attributes might be deduced from these models. Moreover, the process of creating object behavior
could become faster by using templates or smart automatic completion of values. Many of such
small improvements will eventually lead to an important speed improvement in the specification
phase.

Visual representation The designers we talked to in the user studies all pushed to a more visual
representation. They felt that the current, mostly text-based, approach became too cluttered and too
confusing when dealing with more complex behavior. However a good way of visually representing
every element from our semantic model will prove to be a significant research challenge.

Crowd sourcing Many hands make light work: cooperation in the specification phase might alleviate
a lot of the work. One could specify the semantics vital to one’s own game, while drawing from
the efforts of others and in turn, contributing to their future work. It is obvious that to make this
work, among many other challenges, the specification tools need to become more accessible and
easy to use.

Semantic level of detail When cooperating, it becomes an issue that not every game needs the same
attention to detail as the other. For example, a first person shooter might require a simulated
eco-system, while a space shooter will not require such an eco-system to simulate the planets the
player is passing at rapid speeds. Therefore, a fully customizable semantic level of detail system
needs to be researched, that allows designers to choose exactly how far they want to take the detail
of their semantic representation.
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12.3.2 Future applications of semantics

Semantic physics engine We believe that one of the main game engine components that would
benefit a lot from embedding with semantic information is the physics engine. All material
characteristics available in our semantic model would be the ideal input for physics simulations,
and therefore it would be desirable to have our semantic model be integrated with a physics engine.

Semantic history An important extension of semantics would be the inclusion of semantic history.
Not only the current state or representation of the game world is interesting, also the events that
happened during the game provide opportunities, especially linked to our research towards semantic
crowds and agents. Instead of having characters behave and talk in a similar, scripted manner, they
could adapt their behavior to current events. If a gunfight just went on in a street a couple of days
ago, characters would likely hurry to get out of it when passing, or if the player just rescued the
town from a horrifying attack, this event could literally become the talk of the town. As mentioned
in the previous section, this would be a very interesting application of semantics both to increase
immersion of players in the game world and allow for new opportunities for adaptive gameplay.

Performance of semantics engine As mentioned previously, the semantics engine that we devel-
oped is far from optimized. A great deal of research could still go into further increasing its
performance.
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Semantic game worlds

The visual quality of game worlds increased massively in the last three decades. However, the
closer game worlds depict reality, the more noticeable it is for gamers when objects do not behave
accordingly. One of the main reasons why the realism of the objects’ behavior now often falls
short to the visual realism, is that game worlds lack meaning. And since game engines tend to be
developed using many unrelated components, the information that is available is scattered and hard
to keep consistent. We argue that what is truly missing here is a glue to keep the different object
representations, used by these many different engine components, consistent.

This thesis proposes the use of semantics to act as this glue: a single, consistent object representation
with which all components can communicate. We put forward a number of guidelines to which such a
semantic representation should adhere to. Following these guidelines we created our semantic model
that can be used to produce semantic game worlds: game worlds that are populated with objects
enriched with semantics.

To increase the realism of the object behavior, our model for semantic game worlds contains
the concept of services. Services provide designers with a generic, yet versatile and intuitive tool
to describe this behavior. Virtually all object behavior can be described using the straightforward
pattern of services. The generic setup allows for easy reuse among different games, significantly
decreasing the amount of time one has to spend defining object behavior. And since the vocabulary of
the semantics is the same as the actual target domain of the game world, it is intuitive and easy to
understand, even for people with little or no knowledge of the low-level computational mechanics
behind it.

This intuitive vocabulary will make a number of the tasks involved in designing game worlds
easier as well. Procedural content generation techniques often use mathematical simulations with
parameters that have no meaning what so ever to the actual structure they are creating. By using
semantics to conceal these parameters behind more readable semantic concepts, these procedural
techniques become available to a wider audience. This idea, which is an example of so-called
declarative modeling, allows designers to reason more about what they want to create, instead of how
they will actually model it.

Semantic game worlds are faster to create, because of the reusability of services and the new
possibilities for procedural content generation. Moreover, the generic structure of services gives
players the opportunity to be more free and creative while trying to solve problems inside the game
world, leading to a more personalized and emergent gameplay experience. Therefore, it is our strong
belief that semantics will play an important role in improving both the design process of game worlds
and the quality of gameplay.
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Samenvatting

Semantische game werelden

De visuele kwaliteit van game werelden is sterk verbeterd over de laatste drie decennia. Echter, hoe
meer game werelden de realiteit visueel benaderen, des te storender wordt het wanneer objecten zich
niet realistisch gedragen. Één van de belangrijkste redenen waarom het gedrag vaak niet kan tippen
aan het visuele realisme, is het gebrek aan betekenis in game werelden. Aangezien game engines
vaak ontwikkeld worden met veel ongerelateerde componenten, zit de informatie die wel aanwezig is
ook helemaal verspreid wat het moeilijk maakt om deze consistent te houden. Wat hier mist is een
lijm om de verschillende representaties van objecten, die gebruikt worden door deze verschillende
componenten, consistent te houden.

Deze thesis stelt het gebruik van semantiek voor om als deze lijm te functioneren: een eenduidige,
consistente object representatie waarmee alle componenten kunnen communiceren. We hebben een
aantal richtlijnen opgesteld waaraan zulk een semantische representatie moet voldoen. We creëerden
ons semantisch model, gebaseerd op deze richtlijnen, dat kan gebruikt worden om semantische game
werelden te produceren: game werelden die gevuld zijn met objecten verrijkt met semantiek.

Om het realisme van het gedrag van de objecten te verbeteren, bevat ons model voor semantische
game werelden het concept services. Services bieden designers een generiek, maar toch veelzijdig
en intuı̈tief middel om dit gedrag te beschrijven. Zowat elk object gedrag kan beschreven worden
met behulp van het eenvoudige patroon van services. De generieke opzet laat eenvoudig hergebruik
tussen verschillende games toe, wat de tijd om object gedrag te beschrijven drastisch inkort. En
aangezien de vocabulaire van de semantiek dezelfde is als het doeldomein van de game wereld, is het
intuı̈tief en makkelijk te begrijpen, zelfs door mensen die weinig kennis hebben van de onderliggende
lage-niveau, computationele technieken.

Deze intuı̈tieve vocabulaire zal ook een aantal taken van designers bij het maken van game werelden
makkelijker maken. Procedurele generatie technieken gebruiken vaak mathematische simulaties
met parameters die weinig of geen betekenis hebben in de eigenlijke structuur die ze creëren. Door
semantiek te gebruiken om deze parameters te verpakken in makkelijker begrijpbare semantische
concepten, komen deze procedurele technieken beschikbaar voor een breder publiek. Dit idee, een
voorbeeld van zogenoemd declaratief modelleren, laat designers toe te redeneren over wat ze willen
creëren, in plaats van hoe ze het kunnen modelleren.

Semantische game werelden zijn sneller te maken, vanwege de herbruikbaarheid van services en
de nieuwe mogelijkheden voor procedurele generatie. Bovendien, geeft de generieke structuur van
services de spelers de gelegenheid om vrijer en creatiever te zijn in het oplossen van problemen in de
game wereld, wat tot een meer gepersonaliseerde en onverwachte gameplay ervaring leidt. Daarom,
is het onze sterke overtuiging dat semantiek een belangrijke rol zal spelen in het verbeteren van zowel
het design proces van game werelden als ook de kwaliteit van de gameplay.
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The visual quality of game worlds increased massively in the last three 
decades. However, the closer game worlds depict reality, the more 
noticeable it is for gamers when objects do not behave accordingly.

An important problem is that the data of a game world is often 

is a common semantic representation that can act as the glue between 
these components (see cover).
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programmers a consistent representation that can be shared by game 

techniques and it enables them to specify object behavior in a generic 
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