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Figure 1: Our framework for spacetime optimization efficiently generates planned motion of complex articulated characters. Snapshots of
an animation of a four-legged character performing a handstand followed by a twisting jump are shown.

Abstract

We propose a new framework for spacetime optimization that can
generate artistic motion with a long planning horizon for complex
virtual characters. The scheme can be used for generating general
types of motion and neither requires motion capture data nor an
initial motion that satisfies the constraints. Our modeling of the
spacetime optimization combines linearized dynamics and a novel
warping scheme for articulated characters. We show that the op-
timal motions can be described using a combination of vibration
modes, wiggly splines, and our warping scheme. This enables us
to restrict the optimization to low-dimensional spaces of explicitly
parametrized motions. Thereby the computation of an optimal mo-
tion is reduced to a low-dimensional non-linear least squares prob-
lem, which can be solved with standard solvers. We show examples
of motions created by specifying only a few constraints for posi-
tions and velocities.
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Graphics and Realism—Animation;
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1 Introduction

Creating physically plausible motions of virtual characters that fol-
low an animator’s intent is a central task in computer animation.
Spacetime optimization proved to be a valuable tool for planning,
processing and synthesizing motion; and for controlling physical
simulations. It is used for various tasks including creating real-
istic motion from keyframes, editing motions or simulations, and
synthesizing specific motions (e.g., human walking) from captured
motion. The forces needed to generate the resulting motions are

optimally distributed over the whole animation or a selected time
window. The motions are planned, efficient, and show effects like
squash-and-stretch, timing, and anticipation. The price to pay is
that the optimization problem to be solved is high-dimensional and
highly non-linear.

We introduce a novel framework for spacetime optimization of the
motion of articulated characters that can generate various types of
motion (e.g. artistic motion) for complex virtual characters and
does not rely on motion capture data. The long planning horizon
increases the realism of the motions and automatically produces
effects like anticipation (see the animation of the four-legged char-
acter in the teaser and video for an example). The scheme com-
bines a linearization of the dynamics and a novel warping scheme
for articulated characters in order to reduce the complexity of the
optimization problem to be solved. Our modeling of the space-
time optimization provides us with a structure that can be used to
create low-dimensional spaces of explicitly parametrized motions
to which the optimization is restricted. Since the motions are ex-
plicitly parametrized, a time discretization is not required and the
derivatives of the trajectories describing a motion can be explicitly
evaluated. Our framework enables us to create motion by specify-
ing only a few partial keyframes for positions and velocities. The
resulting low-dimensional non-linear least squares problem can be
solved with standard solvers like the Gauss–Newton method.

The framework we present is based on three main technical con-
tributions. The first is a warping scheme for linearized articulated
characters. The problem is that a linearization of the configura-
tion space of an articulated character leads to artifacts for larger
displacements, e.g., the linearization of the rotations of the bones
causes non-isometric deformations of the bones. The goal of the
warping scheme is to reduce these artifacts. Our warping scheme
uses the Lie-group structure of the rotation group and proceeds in
two steps. First, we use the exponential map to compute a target ro-
tation for the linearized rotation of every bone. Then, we construct
a configuration that best matches the target rotations. The warping
process is designed so that it can be differentiated and efficiently
evaluated, which is important for the optimization. The warp map
effectively reduces the linearization artifacts (see the warped vibra-
tion modes shown in the supplementary video). In addition to the
application of the warping to spacetime optimization, we are con-
vinced that the combination of vibration modes and warping can
be useful for other problems concerning the simulation and anima-



tion of articulated characters. This approach contrasts from previ-
ous work on vibration modes for characters. Kry et al. [2009] and
Jain and Liu [2011] interpreted the linear modes as vibrations in
the generalized coordinates used to parametrize the configuration
space. Similar to our warping, this leads to isometric deformations
of the rigid bodies. However, their approaches are limited to uncon-
strained free vibrations of the articulated characters or constraints
that are linear in the generalized coordinates. Hence, for many con-
straints, e.g. if the feet are fixed to the ground, these techniques
cannot be applied. Being able to use constrained vibration modes
is essential for our framework for spacetime optimization.

The second contribution concerns the preservation of angular mo-
mentum for in-air phases. We are proposing a technique that, after
warping of the modes, modifies the global rotation of the charac-
ter such that the angular moment is preserved during the motion.
This process is integrated to the spacetime optimization so that the
character can use the coupling of the pose and the angular veloc-
ity during the optimization, e.g. it can change its pose early in the
animation in order to influence its final position.

The third contribution is our modeling of the spacetime optimiza-
tion for articulated characters. Using the linearized dynamics and
warping instead of the fully non-linear dynamics reduces the com-
plexity of the optimization problem to be solved. The resulting
spacetime optimization problem provides a structure that we can
use to design an efficient specialized solver. In particular, we use
vibration modes, wiggly splines and warping to explicitly describe
the solutions of the optimization problem. This greatly reduces the
complexity of the optimization problem since we can restrict the
optimization to a low-dimensional space of wiggly spline coeffi-
cients instead of a general set of admissible motions. In addition,
this modeling avoids using a time discretization so the derivatives
of the motion can be explicitly evaluated.

2 Related Work

Constrained spacetime optimization, introduced by Witkin and
Kass [1988], provides a powerful framework for creating character
animations from constraints specified by an animator. The space-
time optimization selects, from the set of motions that satisfy the
constraints, the motion that requires the least effort from the charac-
ter. The effort is measured by the spacetime L2-norm of the forces
the character needs to generate to perform the motion. The resulting
motion is planned and effective.

Spacetime constraints can produce realistic and interesting motions.
However, the problem of spacetime optimization is that the high-
dimensional and non-linear optimization problem has to be solved.
This has limited the approach to simple characters and many meth-
ods are specialized for certain types of motions. Various strategies
for improving solvers or reducing the complexity of the problem
have been proposed. Cohen [1992] used hierarchical wavelets to
develop an interactive spacetime control system that enables a user
to interact with the iterative numerical minimization and to guide
the optimization process. For the computation of the derivatives
of the objective functional, automatic and symbolic differentiation
have been used (see [Guenter 2007] and references therein). Fang
and Pollard [2003] derived a strategy for efficiently evaluating the
first derivatives of a broad range of constraints. Their system avoids
the explicit evaluation of the torques, which speeds up the compu-
tation. Chai and Hodgins [2007] replace the physical model of the
character dynamics with a statistical dynamics model learned from
a motion capture database.

Reduction of the number of degrees of freedom has been used
for efficiently synthesizing motion from motion capture data. For

motion editing, Popović and Witkin [1999] selected the char-
acter’s degrees of freedom most important for the task and re-
stricted the spacetime optimization to these degrees. Safonova et
al. [2004] used motion capture data to automatically construct low-
dimensional spaces for a specific type of motion. For synthesizing
new motion, the spacetime optimization is restricted to this space.
Our framework also applies a dimensional reduction. In contrast
to this work, our construction does not rely on motion capture data
and therefore is applicable for more general types of characters and
motions where captured data is not available. Jain and Liu [2011]
use an analysis of the vibration modes of motion capture data for the
design of their controller. Spacetime optimization has been used for
human and animal locomotion. Wampler and Popović [2009] com-
bine local spacetime optimization with a genetic algorithm to gen-
erate plausible locomotion gaits for a variety of virtual creatures.
Mordatch et al. [2013] use spacetime optimzation for animation of
the human lower limbs. Kim et al. [2009] introduce a scheme for
editing the motions of multiple characters.

Reduction has also been used for the efficient simulation of cou-
pled rigid- and softbodies by Barbič and Zhao [2011], Kim and
James [2011], and Kim and Pollard [2011b]. Kim and Pol-
lard [2011a] introduced a scheme for direct control of the coupled
systems. It is an interesting direction of future work to design a sys-
tem for long-horizon motion planning for such coupled systems.

Besides articulated characters, spacetime optimization has been
used for controlling other types of physical systems including elas-
tic ropes and strings [Barzel 1997], rigid bodies [Popović et al.
2003], and fluids [Treuille et al. 2003; McNamara et al. 2004; Wo-
jtan et al. 2006]. Furthermore, the computation of optimal trajec-
tories of deformable objects has recently received much attention.
Our approach is inspired by this development and transfers tech-
niques developed for controlling deformable objects to articulated
characters. Barbič et al. [2009] use dimensional reduction to re-
strict the spacetime optimization problem for deformable objects
to a low-dimensional space constructed from the keyframes, vibra-
tion modes, and tangent vectors of a deformation curve. Modal
warping, introduced by Choi and Ko [2005], aims at reducing lin-
earization artifacts in large deformations for simulations in reduced
space spanned by linear vibration modes. Huang et al. [2011] intro-
duce rotation-strain warping. This warp map couples the different
modes for warping. Li et al. [2013] integrate spatial constraints to
the rotation-strain warping process. To our knowledge, non of these
warping processes can deal with the coupling of shape and angular
velocity for in-air settings. Barbič et al. [2012] use this warp map
for an interactive system for editing of simulations or animations
of deformable objects. Kass and Anderson [2008] introduced the
wiggly spline, a new family of splines that in addition to smooth in-
terpolants can also produce oscillating functions. Hildebrandt et al.
[2012] use wiggly splines for computing optimal trajectories of de-
formable objects. They derive a closed-form representation of the
wiggly splines and show that the optimal trajectories of linearized
deformable objects can be described using modal coordinates and
wiggly splines. We use both of these results for our approach. To
avoid linearization artifacts, they use linearizations of the equations
of the motion around all the keyframes. To allow for more general
constraints, Schulz et al. [2014] replace the multipoint lineariza-
tion by rotation-strain warping. Li et al. [2014] propose a frame-
work that not only optimizes the motion, but also the materials of a
deformable object.

3 Modal Analysis for Articulated Characters

In this section, we review some basics concerned with vibration
modes of articulated characters. First, we discuss the modal anal-
ysis of linear systems of second-order ODEs. Then, we show how



this framework can be applied to compute vibration modes of artic-
ulated characters.

3.1 Linear modal analysis

We consider a system with n degrees of freedom and linear dynam-
ics. The state of the system is described by a time-dependent vector
u(t) and the dynamics are given by a coupled system of second-
order ODEs of the form

M ü(t) +D u̇(t) +K u(t) + g = f(t), (1)

where M , D, and K are the mass, damping, and stiffness matrix,
g is a constant vector and f is a time-dependent force vector. We
use the Rayleigh damping model, which means we assume that the
damping matrix has the form D = αM + β K for some constant
damping parameters α and β.

The eigenmodes φi and eigenfrequencies
√
λi of (1) are the solu-

tions to the generalized eigenvalue problem

K φi = λiM φi. (2)

Let {φ1, φ2, ..., φn} be a set of eigenmodes that forms a basis of the
n-dimensional space of possible configurations. When (1) is trans-
formed into such a basis, the system of equations decouples into
a system of n independent ODEs. These 1-dimensional equations
have the form

ω̈i(t) + δi ω̇(t) + λi ω(t) + gi = fi(t), (3)

where δi = α + β λi, gi = φTi g, and fi(t) = φTi f(t). Each
equation describes the motion of the system in the direction of the
corresponding eigenmode φi.

3.2 Vibrations of Articulated Characters

The dynamics of articulated characters are non-linear, and, there-
fore, a linearization of the equations of motion is needed before
the linear modal analysis can be applied. While modal analysis
is widely used in graphics (e.g. for simulating deformable objects
[Pentland and Williams 1989; Hauser et al. 2003; Barbič and James
2005] and shape analysis and modeling [Hildebrandt et al. 2010;
Hildebrandt et al. 2011]) its application to animating articulated
characters is a more recent development [Kry et al. 2009; Jain and
Liu 2011; Nunes et al. 2012].

We consider a character that is described by a tree-structured skele-
ton, i.e., a system of rigid bodies (bones) connected by joints. Let
us assume that the character has µ bones and that for each bone, we
have a representation in a fixed coordinate system. Then the con-
figuration of each bone is described by a rigid motion (a translation
and a rotation) and the joints impose holonomic constraints on the
system.

Generalized coordinates q that parametrize the manifold of possible
configurations can be obtained in the following way. To parametrize
the rotation matrices, we use Euler angles. The first six generalized
coordinates describe the rigid motion of the root bone. Then we tra-
verse the skeleton from the root to the leaves. Each of the µ-1 joints
is parametrized by one, two, or three Euler angles (depending on the
joint type) that describe the relative rotations of the two bones con-
nected by the joint. The (absolute) orientation of any bone is the
product of the (relative) rotation matrices of all successors (in the
skeleton tree) and the rotation matrix specifying the orientation of
the root bone. We denote the translation of the root bone by t(q)
and the rotation matrices specifying the (absolute) orientation of the
ith bone by Ri(q). The configuration of the character can be con-
structed by traversing the tree structure. During the traversal, each

bone is rotated using the corresponding matrixRi(q) and translated
so that it connects to its predecessor.

The non-linear dynamics of an articulated character can be modeled
by a system of ODEs in the generalized coordinates

M(q)q̈ + (C(q, q̇) +D(q))q̇ +G(q) +K q + k0 = f(t). (4)

Here M is the mass matrix, C represents the centrifugal and Cori-
olis forces, G an external force field (e.g., gravity), and f the gen-
eralized forces. Each of the joints is equipped with a spring and a
damper to model passive forces. The matrices D and K represent
the damping and stiffness coefficients and k0 is a constant vector.
Choices of stiffness coefficients for humans and animals are dis-
cussed in [Liu et al. 2005; Kry et al. 2009]. An alternative approach
for modeling the stiffness matrix K was introduced by Hahn et al.
[2012]. They model the virtual character as an elastic solid and use
the mass and stiffness matrix of the elastic solid to compute vibra-
tion modes.

Let q0 be a configuration of the character, and let u = q − q0
denote a displacement. Following [Jain and Liu 2011], we linearize
the equations of motion (4) around q0 and obtain a system of the
form (1), where M is the mass matrix M(q0) at q0, K the stiffness
matrix and g = k0 +G(q0) +Kq0. Note that C does not appear in
the equation because C(q0, 0) vanishes. As in Section 3.1, we use
Rayleigh damping, i.e., we set D = αM + β K for some constant
parameters α and β.

3.3 Modes of constrained vibrations

In addition to free vibrations, we consider constrained vibrations
where positions of points of the character, the orientation of bones,
or the position of the center of mass are fixed. We assume that the
constraints are satisfied for the configuration q0 around which we
linearize. Then the constraints on the displacement u are linear. We
construct a basis of the set of admissible displacements by comput-
ing an SVD of the matrix representing the constraints and restrict
the stiffness and mass matrices to this space. The vibration modes
of the constrained character are the eigenvectors of the generalized
eigenvalue problem (2) for the restricted matrices.

4 Warping Linearized Characters

After linearization of the equations of motion, the matrices that de-
scribe the linearized motion are no longer rotation matrices. Hence,
the linearized motion is not an isometry of the rigid bodies. For ex-
ample, a motion along a linear vibration mode is only plausible for
small displacements u. We propose a warping strategy that aims
to reduce these artifacts. The warping process differs for uncon-
strained (in-air) motion and motion with constraints. We discuss
the case of constrained motion first.

The warping of the linearized deformation is carried out in two
steps. First, a target rotation R̃i for every bone is determined. Then,
a configuration of the character is computed that satisfies the con-
straints and is as-close-as-possible to the target rotations. For the
first step, we use the Lie-group structure of the manifold of rota-
tion matrices SO(3). Each linearized rotation Ri(q0)+dRi u is
an element of a tangent space of SO(3). Here dRi u denotes the
derivative of Ri in direction u. We use the exponential map to map
the linearized rotation (tangent vector) to the corresponding rotation
(element of the manifold). This can be implemented using the ma-
trix exponential exp. Let us consider the case Ri(q0) = IdR3 first.
Then, dRi u is an anti-symmetric 3 × 3 matrix and R̃i(q0, u) =
exp(dRi u) is the corresponding target rotation matrix. In the gen-



Figure 2: Low-frequency vibration modes with fix and sliding constraints for the character. From left to right: the neutral pose, two linear
modes (exhibiting artifacts), two warped poses (artifacts are removed).

Figure 3: Snapshots of an animation of a character performing a somersault computed with our in-air warp strategy.

eral case (in which Ri(q0) is an arbitrary rotation) the target rota-
tion is given by

R̃i(q0, u) = Ri(q0) exp((Ri(q0))T dRi u). (5)

The transpose (Ri(q0))T maps dRi u from a tangent vec-
tor in TRi(q0)SO(3) to the corresponding tangent vector
(Ri(q0))T dRi u in TIdSO(3), which is an antisymmetric matrix.
The matrix exponential maps this matrix to an element of SO(3).
By multiplying this element with Ri(q0), we obtain the rotation
matrix R̃i(q0, u) corresponding to dRi u.

In the second step, we construct a configuration of the character
described by µ matrices Wi and the translation τ(q0, u), such that
the Wi best match the target rotations R̃i. There are different pos-
sible ways to design this process. For the spacetime optimization,
we want to have a warp map that is differentiable and allows for
an efficient evaluation of the map itself as well as its derivative.
To meet these criteria, we relax the condition that the matrices Wi

describing the warped configuration must be rotations. Instead, we
minimize over the all 3×3 matrices and penalize the deviation away
from the target rotations R̃i. Then the constraints on the position of
bones, points on a bone, or the center of mass are linear constraints
on the matrices Wi. We define the warped configuration to be the
solution to the least-squares problem

Wi(q0, u) = arg min
Wi

µ∑
i=1

∥∥∥Wi − R̃i(q0, u)
∥∥∥2

. (6)

The matrices Wi cannot be computed separately since the con-
straints couple the Wis. The warped configuration, given by the
Wis, depends non-linearly on the displacement u since the defini-
tion of R̃i(q, u) involves the matrix exponential. Still, the deriva-
tives of Wi with respect to variations of u can be computed. After
applying the chain rule to (6) the only difficulty is to compute the
derivative of the matrix exponential. This can be efficiently done
using Rodrigues’ rotation formula and a truncated Taylor series for
matrices with small Frobenius norm. For a detailed description of
this technique, we refer to [Wisniewski 2010, Chapter 8.2].

In our experiments, the warp map nicely counteracts artifacts
caused by linearization. Examples of warping of linear vibration
modes are shown in the supplementary video. In addition to the ap-
plication to spacetime optimization, we expect that this warp map

can be helpful for other tasks that involve vibration modes of char-
acters (e.g., the design of modal motion and locomotion controllers
[Kry et al. 2009; Jain and Liu 2011; Nunes et al. 2012]).

4.1 Warping “in-air” motion

When computing motion for unconstrained characters (e.g. jumps),
we adjust the global rotation of the warped motion to ensure that the
angular momentum is preserved. As a first step, we decompose the
interval [a, b], over which the motion is parametrized, into segments
a = τ0 < τ1 < ... < τν = b. For every τj , we can compute the
inertia tensor Jj and the angular velocity Ωj of the warped motion.
From this, we get the angular momentum Lj = JjΩj . We first
compute L0, which is the momentum to be preserved. Then, we
traverse the interval and add a global rotation of the character so
that the angular momentum at every τj equals L0. The missing
global angular velocity Ω̃j at time τj is given by

L0 = Lj + JjΩ̃j ,

which we can solve for Ω̃j ,

Ω̃j = J−1
j (L0 − Lj).

A rotation with this angular velocity is given by

exp((t− τj)AΩ̃j
),

whereAΩ̃j
is the anti-symmetric matrix representing the linear map

v 7→ Ω̃j × v. In the interval [τj , τj−1], we multiply the matrices
Wi describing the warped motion of the character with this rotation.
After this process the warped motion’s angular momentum Lj at τj
equals L0. This process is part of the warp map and in the opti-
mization the deformation of the character is coupled to the angular
velocity of the global rotation. Our example of somersault shows
how the optimization uses this effect. To make the whole rotation
in time, the character rounds its back and tucks in its legs in order
to increase the angular velocity. Finally, it lands on its feet.

5 Spacetime Optimization

Spacetime optimization provides a framework for animating virtual
characters. The control parameter that an animator can use are con-



Figure 4: Setup and snapshots of an animation of a character performing four fast punches. From left to right: the used start and end pose
together with partial position and velocity constraints for the hands, four poses while punching.

Figure 5: Snapshots of an animation of a four-legged character jumping forward followed by some skating steps.

straints in spacetime (e.g., a set of keyframes). Then an optimal mo-
tion is computed that interpolates or approximates the keyframes.
The motion is optimal in the sense that the squared spacetime L2-
norm of forces the character needs to generate for performing the
motion is minimal.

In this section, we describe our modeling of the spacetime optimiza-
tion. It combines the linearization of the dynamics and the warp
map to obtain an optimization framework that produces plausible
and interesting motion and can be efficiently and robustly solved.
We want to emphasize that the warping is integrated with the op-
timization and not used as a post-process after the optimization.
Furthermore, we want to point out that the warp map couples the
modes. Hence, the modes are coupled in the optimization.

We first discuss the user-specified constraints and spacetime func-
tional we want to minimize. Then, we show that the solutions of the
optimization problem can be described using modal coordinates,
wiggly splines, and the warp map. Finally, we show how this struc-
ture can be used to efficiently compute optimal motions.

User-specified constraints Our goal is to enable a user to pre-
scribe only a few constraints and to determine the most degrees of
freedom in the optimization. This means we prescribe only par-
tial, as opposed to full, keyframes. For example, we prescribe the
position of the feet after the somersault. In addition, the velocity
of the motion can be explicitly constrained. For example, we can
prescribe the average velocity at some specified point in time.

We want to emphasize that we control the warped motion and
therefore formulate constraints for the motion after warping. Let
W (u(t)) denote the vector-valued function that lists the coeffi-
cients of the translation τ(q0, u(t)) of the root bone and the warped
matrices Wi(q0, u(t)). Then, the vector d

dt
W (u(t)) =dW (u̇(t))

describes the derivative of the warped motion. We denote the in-
terval over which we want to optimize by [t0, tm] and the nodes at
which constraints are given by t0 < t1 < . . . < tm. For every
k ∈ {0, 1, ...,m}, we have a vector-valued function Ck depending
onW (u(tk)) and dW (u̇(tk)) defining the constraint on the warped
motion at time tk

Ck(W (u(tk)), dW (u̇(tk))) = 0.

For our experiments, we only used constraints that are linear in

W (u(tk)) and dW (u̇(tk)). For example, constraints on the po-
sition of a point on a bone, the orientation of a bone, or the center
of mass. Note that the functions Ck are linear in W (u(tk)) and
dW (u̇(tk)) and non-linear in u(tk) and u̇(tk). In the optimization,
we will enforce these constraints in the least-squares sense using
the energy

EC(u(t0), u̇(t0), ..., u(tm), u̇(tm))

=
∑
k ‖Ck(W (u(tk)), dW (u̇(tk)))‖2 .

Optimal forces To move, the character needs to generate forces.
The motion of the character and the forces used are related by the
equations of motion. Our goal is to compute the optimal motions
for which the character spends the least amount of forces. To keep
the functional that determines the forces simple, we use the lin-
earized equations of motion to calculate the cost of a motion. The
cost of a motion is modeled by an energy that measures the squared
spacetimeL2-norm of the forces (the integral over the character and
the time interval)

E(u) =
1

2

tm∫
t0

‖f(t)‖2M−1 dt (7)

=
1

2

tm∫
t0

‖M ü(t) +D u̇(t) +K u(t) + g‖2M−1 dt.

Here we use the notation ‖f(t)‖2M−1 = fT (t)M−1f(t). The
M−1-norm is used here, since f is the mass-weighted force and
M−1f the pointwise force. Then ‖f(t)‖2M−1 = ‖M−1f(t)‖2M
is the squared L2-norm of the force at time t. The idea of mea-
suring the squared norm of the forces goes back to [Witkin and
Kass 1988]. The linearized equations of motion have been used
for spacetime optimization of deformable objects in [Barbič et al.
2012] and [Hildebrandt et al. 2012].

Modal coordinates In a basis {φ1, φ2, ..., φn} of eigenmodes of
the generalized eigenvalue problem (2), the equations of motion in
(7) decouple. This is very helpful because by transforming u to this
basis, we see that the Energy E(u) can be written as a sum

E(u) =
∑
iEi(ωi), (8)



Figure 6: Low-frequency vibration modes with constraints for the four-legged character. From left to right: the neutral pose, two linear
modes (exhibiting artifacts), two warped poses (artifacts are removed).

Figure 7: Snapshots of an animation of a sidewards jumping character.

where ωi is the component of u in direction of the eigenmode φi
and Ei measures the squared L2-norm of the force in the direction
of φi. The dynamics in the direction of an eigenmode is described
by (3), and Ei takes the form

Ei(ωi) =
1

2

tm∫
t0

(
φTi f(t)

)2

dt (9)

=
1

2

tm∫
t0

(ω̈i(t) + 2 δi ω̇i(t) + λi ωi(t) + gi)
2 dt.

The functions minimizing Ei are called wiggly splines [Kass and
Anderson 2008]. A closed-form description of the wiggly splines
was introduced in [Hildebrandt et al. 2012].

Wiggly splines The Euler-Lagrange equation of the variational
problem is a linear fourth-order ODE that is described in [Hilde-
brandt et al. 2012]. In the generic case, i.e. δi, λi, δ2

i − λi 6= 0, the
four-dimensional space of functions satisfying the Euler-Lagrange
equation is spanned by the functions

b1,2,3,4(t) = Re

(
e

(
±δi±
√
δ2i−λi

)
t

)
. (10)

These are damped and driven oscillations. The two-dimensional
space of damped oscillations, which is the solution space of (3), is
a subspace of the four dimensional space. The fact that the damped
and driven oscillations differ only by the sign of the damping pa-
rameter δi shows that the optimal way to inject forces into the sys-
tem is to excite the oscillator in the same way as it is damped.

For a given set of constraints on the position and/or velocity at a set
ofm+1 nodes {t0, t1, . . . , tm}, the wiggly spline is the minimizer
of the energy Ei(ωi) among the twice-weakly differentiable func-
tions that satisfy the constraints. Within each interval (tk, tk+1),
the wiggly spline is a linear combination of the basis functions plus
a constant

ωi(t)|[tk−1,tk] = ωi,k(t) =

4∑
l=1

wli,kb
l(t)− ci,

where w1
i,k, w

2
i,k, w

3
i,k, and w4

i,k are coefficients and ci = gi/ |λi|
if λi 6= 0 and ci = 0 if λi = 0. This construction shares similarities
with the construction of cubic splines, however, the basis functions
are not polynomials but rather oscillatory functions.

Solving the optimization problem The functional we want to
minimize is the weighted sum

E(u) = E(u) + γ EC(u(t0), u̇(t0), ..., u(tm), u̇(tm)). (11)

The energyE ensures that the motion uses the forces efficiently and
EC makes sure the motion approximates the constraints specified
by the user. Since EC depends only on the position and velocity of
u at the nodes ti, a minimizer u of (11) must satisfy

∇E(u) = 0

within each of the intervals (ti, ti+1). In a basis of eigenmodes
{φ1, φ2, ..., φn}, the energy takes the form (8). Since the functions
satisfying ∇Ei(ωi) = 0 are the wiggly splines, u must have the
form

u(t) =
∑
i

ωi(t)φi, (12)

where each ωi(t) is a wiggly spline. Note that the type of wiggly
splines ωi(t) (e.g. the parameter of the basis functions bi) depends
on the eigenvalue λi and the damping parameters α and β. For
solving the optimization problem this means that instead of mini-
mizing over arbitrary functions, we only need to minimize over a
space of wiggly splines. We further reduce the complexity of the
problem by restricting the optimization to the 10 − 30 lowest fre-
quency eigenmodes. This can be done by limiting the sum in (12) to
these modes. Then, we have to determine 4mn̄ wiggly spline co-
efficients wli,k in the optimization, where n̄ is the number of eigen-
modes. Since a choice of coefficients wli,k uniquely describes a
motion, we have constructed a low-dimensional space of explicitly
parametrized motions for our problem.

The dimension of the space over which we optimize can be further
reduced. The wiggly splines that describe the minimizer are once
continuous and differentiable at all tk. This means that the coeffi-
cients wli,k satisfy the linear conditions

ωi,k(tk) = ωi,k+1(tk) ω̇i,k(tk) = ω̇i,k+1(tk)



Figure 8: Poses computed for a lamp performing a forward jump.

Figure 9: Snapshots of an animation of a two legged character walking.

for all k ∈ {1, 2, ...,m − 1}. Furthermore, if no velocity is pre-
scribed at node tk, the spline is twice differentiable at tk. Then, the
linear condition

ω̈i,k(tk) = ω̈i,k+1(tk)

holds. In addition to prescribing keyframes in the least-squares
sense, we can force the motion to interpolate a keyframe (or partial
keyframe). We specify such conditions at the start and/or end of the
motion. These constraints again impose linear conditions on the
coefficients wli,k. The space of wiggly coefficients wli,k that satisfy
the condition can be computed using an SVD of the matrix repre-
senting the linear conditions. The resulting low-dimensional non-
linear least squares problem can be solved with standard solvers.
We used a Gauss–Newton solver in our experiments.

6 Experiments

The supplementary video shows motions produced with our imple-
mentation of the proposed framework. Table 1 summarizes the de-
tails concerning the characters and the numerical optimization. We
specified the characters’ masses and the stiffness coefficients of the
joints by hand. Following [Kry et al. 2009], we assign a stiffness
coefficient to every joint, a high stiffness to the spine and lower
stiffnesses to the knees and elbows. In our experiments, the Gauss–
Newton scheme required 10-20 iterations to solve the optimization
problems. The times listed in the table are the total times required
to set up and solve all the optimization problems needed to generate
a motion. The numbers of degrees of freedom of the characters, the
number of splines used for the two and four legged characters, and
the dimension of the reduced spaces are listed as well.

The video shows low-frequency eigenvibrations of the lamp, the
four legged and the two legged character. Snapshots are shown
in Figure 2 and 6. To illustrate the effect of our warp map, we
first show vibrations along a linear mode and then the warped mo-
tions. The motion along the linear mode exhibits deformations of
the bones. These artifacts are reduced by the warp map. The warp
map, the modes and the wiggly splines are used for the construc-
tion of the reduced spaces, to which we restrict the optimization.
Each element of the reduced space is a motion. We want to em-
phasize that since the warp map is non-linear, the space of warped
motions is non-linear space. We perform the optimization in the
linear space of wiggly spline coefficients. This space parametrizes
the non-linear space of motions.

Animations DoF Ws Modes Dim Opt
four punches 180 5 15 30 2.2s
walk 180 5 20 40 4.7s
side jump 180 3 20 40 1.5s
somersault 180 3 15 30 26s
camel ice-skating 150 7 20 40 4.5s
camel hand stand 150 5 20 40 45s

Table 1: Statistics measured on a custom Laptop. From left to
right: number of degrees of freedom of the character, number of
composite splines, number of modes, dimension of the resulting op-
timization problems (number of wiggly splines coefficients to be de-
termined for each spline), and total time for setting up and solving
the optimization problems.

Figure 4 shows snapshots of an animation of the two-legged char-
acter performing four consecutive punches. This sequences consist
of five segments with a continuous but non-differentiable transi-
tion. The non-differentiable transition is needed to model the im-
pact of the object which is punched by the character. Each segment
is modeled by one wiggly spline for each modal coordinate. The
first segment starts with a prescribed keyframe for the position and
zero velocity and ends with a prescribed position and velocity only
for the punching hand. The second, third, fourth and fifth segment
start with the final position and velocity of the previous segment,
except that the velocity at the previous punching hand is set to zero.
The segments end with a partial position and velocity constraint on
the punching hand, except for the last segment, which ends with a
prescribed keyframe for the position and zero velocity.

Some animations contain walking and sliding steps, see Figure 5
and 9. These steps are modeled similarly to the punches, to get a
continuous but non-differentiable transition. These segments start
with the final position and velocity from the previous segment. The
feet on one side are constrained to the ground, i.e. corresponding
velocities are set to zero. And for the opposite feet we prescribe a
partial position and velocity constraint at the end of the segment.
By switching constraints between right and left feet, we create the
walking and sliding steps.

The video shows six sequences that include jumps: two forward
jumps see Figure 5 and 8, one sidewards jump see Figure 7, two
somersaults see Figure 3 and 10 and a twisting jump see Figure 1.



Figure 10: Snapshots of the lamp performing a somersault.

Each jump is modeled by three segments: preparing, in-air, and
landing. Each segment is modeled by one wiggly spline for each
modal coordinate. In the first segment, the base of the lamp, the
feet of the two legged character and the feet of the forelegs of the
four legged character are fixed to the ground. We prescribe the
initial position and zero initial velocity. For the twisting jump, the
preparation starts with the end pose of the previous segment. To
reach the handstand pose, we start with a full keyframe and set only
partial constraints on the feet of the hind legs.

For the forward and sidewards jumps, we only prescribe the veloc-
ity of the center of mass at the end of the preparation segment. For
the somersaults and the twist, we additionally set a constraint for
the angular velocity. Furthermore, we set position constraints on
the feet of the hind legs and head for the preparation of the twisting
jump. Once the first segment is computed, it defines initial posi-
tions and velocities for the in-air segment. In addition, the velocity
of the center of mass determines the motion of the center of mass.
This motion, in turn, determines the duration of the second seg-
ment, which ends when the center of mass has reached a certain
height. To make sure that the character lands on its feet, we pre-
scribe a partial keyframe for the position of the feet. The start pose
and velocity of the landing segment are defined as the end of the in-
air segment. At the end of the landing segment, full positions and
velocities are prescribed. In this segment, we further allow a planar
linear damped motion of the center of mass. This motion depends
on the end velocity of the previous segment and results in overall
damped sliding motion of the character on the ground plane.

During the in-air phase of the somersault, our in-air warping strat-
egy is used. The deformation of the character is coupled to the
bodies angular velocity, and, to make the whole rotation in time, the
character has to round its back and tuck in its legs. These effects are
automatically produced by our spacetime optimization framework.

7 Conclusion

We present a new framework for spacetime optimization of the mo-
tion of articulated characters that can be used for creating general
types of motion and does not require motion capture data or an ini-
tial motion that satisfies the constraints. Our modeling of the space-
time optimization problem combines a linearization of the dynam-
ics with a novel warping scheme for articulated characters. Using
the structure provided by this modeling, we devise an efficient strat-
egy for solving the problem that combines vibration modes, wiggly
splines, and our warping scheme. This reduces the computation
of an optimal motion to solving a low-dimensional and non-linear
least-squares problem.

7.1 Limitations and challenges

Our current framework is limited to equality constraints, both at
the keyframes and for the whole animation. A challenging problem
is to effectively integrate inequality constraints into the spacetime

optimization. Related is the problem of collision handling. Cur-
rently, we model collision using keyframes, velocities, and equality
constraints.

Another challenge would be to extend the approach to coupled
rigid- and softbody systems [Kim and Pollard 2011b], e.g., to con-
trol characters with a soft belly. In addition, it would interesting
to integrate the spacetime control directly into animators rigs (e.g.
using rig-space physics [Hahn et al. 2012; Hahn et al. 2013]).
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BARBIČ, J., AND ZHAO, Y. 2011. Real-time large-deformation
substructuring. ACM Trans. Graph. 30, 4, 91:1–91:8.
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POPOVIĆ, Z., AND WITKIN, A. 1999. Physically based motion
transformation. In Proceedings of SIGGRAPH, 11–20.
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