
Proceedings of DETC 2003
2003 ASME Design Engineering Technical Conferences

September 2-6, 2003, Chicago, Illinois USA

DETC2003/CIE-48197

BOUNDARY EVALUATION FOR A CELLULAR MODEL

Rafael Bidarra, Willem J. Neels and Willem F. Bronsvoort
Computer Graphics and CAD/CAM Group

Faculty of Information Technology and Systems
Delft University of Technology

Mekelweg 4, NL-2628 CD Delft, The Netherlands
Email: (Bidarra/Bronsvoort)@its.tudelft.nl

ABSTRACT
Feature modeling systems usually employ a boundary represen-
tation (b-rep) to store the shape information on a product. It has,
however, been shown that a b-rep has a number of shortcom-
ings, and that a cellular model can be a valuable alternative. A
cellular model stores additional shape information on a feature,
including the faces that are not on the boundary of the product.
Such information can be profitably used for several purposes.

A major operation in each feature modeling system is bound-
ary evaluation, which computes the geometric model of a prod-
uct, i.e. either the b-rep or the cellular model, from the features
that have been specified by the user. Because it has to be exe-
cuted each time a feature has been added, removed or modified,
its efficiency is very important.

In this paper, boundary evaluation for a cellular model is
described. Subsequently, its efficiency is compared to the effi-
ciency of boundary evaluation for a b-rep, on the basis of perfor-
mance measurements and considerations for both. It turns out
that boundary evaluation for a cellular model is in fact more ef-
ficient than for a b-rep, which makes cellular models even more
attractive as an alternative for b-reps.

1 INTRODUCTION
Feature modeling is now the predominant approach for prod-
uct modeling. Shape and related functional information can be
stored in a single product model, which can considerably im-
prove the product modeling process [1].

Most commercial feature modeling systems employ a

boundary representation (b-rep) as geometric model to store the
shape information. B-reps have been successfully used in tradi-
tional geometric modeling systems to support specification, vi-
sualisation and analysis of a model, but they are in fact not pow-
erful enough to store all shape information that is relevant in a
feature modeling context. Therefore, cellular models have been
suggested as an alternative for b-reps. In a cellular model, more
relevant shape information on features can be stored, e.g. not
only the faces of the features that are on the boundary of the
product, but also the faces that are not on the boundary; see [2]
for an overview of several proposals.

The cellular model introduced by the Computer Graphics
and CAD/CAM Group of Delft University of Technology [2],
for example, has been profitably used for several purposes. First,
it allows the semantics of features to be specified, and the validity
of a feature model to be maintained, which is essential to make
feature modeling really more powerful than geometric model-
ing [3]. Second, more functional information of a feature model
can be visualised, e.g. the above-mentioned faces of features that
are not on the boundary of the product, which can be very helpful
during specification and analysis [4]. Third, it can serve as one
of the main data structures for a multiple-view feature model-
ing system, which can support the integration of several product
development phases [5].

Boundary evaluation is the process that computes the ge-
ometric model of the product, i.e. either a b-rep or a cellular
model, on the basis of the set of features that has been speci-
fied by the user. It is a major operation in a feature modeling
system, and, because it has to be executed each time a feature

1 Copyright c© 2003 by ASME

7

2

3

5

1

6

4

cell 1 - <block>
cell 2 - <block, roundedRectPocket>
cell 3 - <block, throughSlot, roundedRectPocket>
cell 4 - <block, throughSlot>
cell 5 - <block, throughSlot>
cell 6 - <ribBack>
cell 7 - <ribFront>

Figure 1. Cellular model of a part and owner lists of its cells

has been added, removed or modified, its efficiency is of utmost
importance.

In this paper, boundary evaluation for a cellular model is de-
scribed in some detail. On the basis of the higher complexity of
a cellular model compared to a b-rep, one can legitimately ask
how efficient boundary evaluation for a cellular model is, com-
pared to boundary evaluation for a b-rep. The main goal of this
paper is to answer this question, by giving performance figures
of, and considerations on, both types of evaluation. Performance
of boundary evaluation for a b-rep has been measured with the
commercial feature modeling system Pro/ENGINEER [6], and
for a cellular model with SPIFF [3], a prototype feature modeling
system developed at our group.

In Section 2, the cellular model of SPIFF and the basic op-
erations on it are described. In Section 3, boundary evaluation
for both b-rep and cellular model are discussed. In Section 4,
the outcome of performance measurements for the two types of
boundary evaluation is presented. In Section 5, the results are
interpreted, and conclusions on boundary evaluation for the cel-
lular model are given.

2 CELLULAR MODEL
In this section, the cellular model used in the SPIFF system is
described, with a special emphasis on its functionality to modify
model topology [2].

Basic notions
The cellular model is a non-manifold geometric representation of
the feature model of a part, and integrates the contributions from
all its volumetric features. It represents a part as a connected

set of volumetric quasi-disjoint cells of arbitrary shape, and rep-
resents each feature as a connected subset of these cells. The
cellular subdivision is determined by the property that two cells
may never volumetrically overlap. So, whenever two features
overlap, their cells are such that one or more cells are shared by
the two features, and the remaining cells lie in either of them.

Any two adjacent cells are separated by a number of interior
faces in the cellular model. Such faces can be regarded as having
two ’sides’, designated as partner cell faces. A face that lies on
the boundary of the cellular model has only one cell face (one
’side’), that of the only cell it bounds. In either case, a cell face
always bounds one and only one cell. As a consequence of this
cell subdivision, each feature face is represented by a connected
set of cell faces. See Figure 1 for an example of a cellular model
containing some overlapping features.

To identify and analyze features in the cellular model, each
cell has as attribute an owner list indicating which features it be-
longs to (see again Figure 1). Similarly, each cell face has an
owner list indicating which feature faces it belongs to. Finally,
the nature of a cell expresses whether its volume represents ’ma-
terial’ of the part or not, and, similarly, the nature of a cell face
expresses whether it lies on the boundary of the part or not.

So the cellular model contains much more information than
only the model boundary of the part. In particular, it contains
explicit information on the ’not on boundary’ faces of subtrac-
tive features and on intersecting features. The cellular model,
including its attribute mechanism to maintain the owner lists of
cells and cell faces, has been implemented in the SPIFF system
using the Cellular Topology Component of the ACIS geometric
modeling kernel [7].

Two basic operations are defined that modify the cellular
model: adding a new feature shape to the cellular model, and
removing an existing feature shape from the cellular model. The
effect of these operations is twofold: (i) they change the topol-
ogy of the cellular model, and (ii) they update the owner lists of
its cellular entities accordingly. Both aspects are described and
illustrated for the two operations in the following subsections.

Adding a feature shape to the cellular model
The goal of this operation is to add the imprint of a new feature
shape to an existing cellular model.

In the first stage, the new feature is represented by a one-
cell shape, which is dimensioned and positioned relative to the
cellular model according to the set of feature parameters. In the
owner list of this cell, only a reference to the new feature is con-
tained, whereas the owner list of each of its cell faces contains
a reference to the respective feature boundary element. This is
illustrated in Figure 2(a) for a rectangular slot feature.

In the second stage, a non-regular cellular union operation
is performed, between the cell representing the new feature and
the cellular model. This set operation computes the cellular de-

2 Copyright c© 2003 by ASME

(a) slot cell before the operation

<slot.left>

<slot.right>

<slot.top>

<slot.bottom>

<slot>

(b) cellular model before the operation

<block>

<block.left> <block.right>

<block.bottom>

<block.top>

(c) cellular model after the operation

<slot.left> <slot.right>

<block.top, slot.top>
<slot.bottom>

<block.top> <block.top>

<block, slot> <block>

<block.bottom>

Figure 2. Adding a feature to the cellular model

composition described in the previous subsection, and changes
the owner lists of the relevant cells and cell faces, e.g. when-
ever these are split, so that each entity always ’knows’ precisely
which feature shapes, or feature faces, it belongs to.

During a non-regular cellular union, first every cell (Cm) of
the cellular model is identified that somehow intersects the new
cell (C). Mutual cellular decomposition is then carried out be-
tween C and each Cm. This may occur in two ways:

(i) The two cells intersect only over their boundaries, in which
case there are no new cells created; instead, their overlap-
ping cell faces are decomposed, yielding partner cell faces
that lie inside the boundary intersection (i.e. bounding both
cells) and cell faces that lie outside it (i.e. bounding only one
of the cells). Split cell faces get as owner list that of the cell
face from which they originate.

(ii) The two cells volumetrically overlap, in which case the de-
composition results in new cells that lie either inside the in-
tersection or outside it. Mostly, a subset of the boundary of
the two cells is also decomposed (except when one of the
cells lies entirely inside the other), yielding cell faces that
lie either on the intersection or outside it. Whenever two
cells undergo this mutual decomposition, the owner lists of
the new entities are determined as follows:

(a) a new cell that lies in the intersection of C and Cm gets
as owner list the union of the owner lists of C and Cm;

(b) the other cells resulting from the decomposition get as
owner list that of the respective cell from which they
originate (either C or Cm);

and, analogously:

(a) a new cell face lying on the boundary of both C and
Cm gets as owner list the union of the owner lists of the
overlapping cell faces from which it originates;

(b) a new cell face lying on the boundary of either C or C m

gets as owner list that of the respective cell face from

which it originates;
(c) the remaining new cell faces get an empty owner list.

Figure 2(c) illustrates both the cellular decomposition and the
owner list propagation after the non-regular cellular union be-
tween the slot feature in Figure 2(a), and a cellular model con-
sisting of a single block (see Figure 2(b)), which is an example
of case (ii) mentioned above. The owner lists of both cells before
the operation are also shown in Figures 2(a) and (b), though for
the sake of legibility, only some cell face owner lists are depicted.
After the operation, the block cell has been decomposed into two
cells, of which one is shared with the slot. The owner lists of the
two new cells, as well as the owner lists of some cell faces, are
shown in Figure 2(c).

Removing a feature shape from the cellular model
The goal of this operation is to completely remove from the cel-
lular model the imprint of a feature. This operation comes down
to a selective removal and merge of topologic entities in the cel-
lular model, and is conceptually much simpler than any conven-
tional Boolean operation. It is carried out in three stages, all of
which are confined to the set of cells owned by the feature to be
removed.

In the first stage, these cells are walked through in order to
remove from their owner lists all references to that feature. Sim-
ilarly, all references to faces of that feature are removed from the
owner lists of the cell faces bounding those cells.

In the second stage, the same set of cells is searched for cells
exhibiting an empty owner list. Such cells are removed from the
cellular model, which is easily accomplished by removing all
one-sided faces bounding them.

In the third stage, each of the remaining cells in the same set
is analyzed. Whenever it exhibits the same owner list as one of
its adjacent cells, they are merged, which is easily accomplished
by removing all two-sided faces that separate them. After all

3 Copyright c© 2003 by ASME

(a) part before the operation (b) cellular model before the operation

(c) owner lists
after first stage (e) cellular model after cell merging(d) cellular model after second stage

(f) part after the operation (g) cellular model after the operation

cell 1 - <block>
cell 2 - <block, step>
cell 3 - <block, step, rib>
cell 4 - <block, rib>
cell 5 - <rib>

cell 1 - <block>
cell 2 - <block, step>
cell 3 - <block, step>
cell 4 - <block>
cell 5 - <>

5

4

2

3

1

4

2

3

1

Figure 3. Removing a feature from the cellular model

such cells have been merged, the cellular model has the minimal
number of cells required to represent the remaining features, but
it may still exhibit a non-minimal number of faces and edges. A
final clean up is therefore performed, merging any adjacent faces
with the same geometry, whose cell faces have equal owner lists.

Figure 3 illustrates this operation for a simple part consist-
ing of a block, a step and a rib (see Figure 3(a)). Figure 3(b)
shows the corresponding cellular model, where its five cells are
identified, together with the respective owner lists. When the rib
is removed from the model, at the end of the first stage the cell

owner lists are those shown in Figure 3(c). Cell 5, which was
owned exclusively by the rib, has now an empty owner list and
is therefore removed in the second stage, after which the cellular
model shown in Figure 3(d) is obtained. In the third stage, ad-
jacent cells 2 and 3, having equal owner lists, are merged, and
the same is performed for cells 1 and 4, yielding the model in
Figure 3(e). The redundant faces left, highlighted in Figure 3(e),
are subsequently merged with their adjacent faces during the fi-
nal clean up, resulting in the final part and cellular model shown
in Figures 3(f) and 3(g) respectively.

4 Copyright c© 2003 by ASME

Geometric
model

Boundary
evaluator

V a r i o u s a p p l i c a t i o n s

Parametric
definition

Figure 4. Generic scheme of current parametric modeling systems

3 BOUNDARY EVALUATION
Current parametric feature modeling systems use a dual repre-
sentation for a product: on the one hand a parametric definition
of the product, on the other hand a geometric model representing
the resulting shape; see Figure 4. The parametric definition can
consist of a large variety of information, usually organized in a
graph structure. Typically, the graph represents relations among
instances of parameterized features, constraints, set operations,
auxiliary geometric entities, etc.

Boundary evaluation is the process that computes the geo-
metric model on the basis of the parametric definition [8]. In
the following subsections, this process is discussed for b-rep and
cellular model, respectively.

Boundary evaluation for a b-rep
Most current modeling systems are called history-based systems,
meaning that the most important relation in the parametric defi-
nition graph is the order of creation of feature instances, defining
what is usually designated as the model history or feature tree.
These systems typically use a b-rep as geometric representation.

In such systems, adding a new feature to the model, by pro-
viding a set of input values for its parameters, appends a new
node to the model history, yielding a new parametric definition
of the product. Similarly, feature instances can be modified by
specifying new values for their parameters, or be deleted from
the model. This is done by modifying, or deleting, the respective
feature node in the model history.

The goal of the boundary evaluator in Figure 4 is to generate
a b-rep that matches the parametric definition at each moment.
Therefore, whenever a new parametric definition is obtained, it
should be input to the boundary evaluator, to generate the corre-
sponding new b-rep.

When a new feature is added to (the top of) the model his-
tory, all the evaluator needs to do is to combine the new feature

(a) before the operation

2 step1

3 step2

(b) model history

1 base block

4 through slot

5 blind pocket

6 pocket

7 blind slot

8 through hole1

9 through hole2

10 through hole3

11 through hole4

(c) after the operation

Figure 5. Re-evaluation after a feature modification operation

shape into its current b-rep. For this, it uses a Boolean union
to process additive features, and a Boolean difference to process
subtractive features.

However, when a feature is modified in, or removed from,
the model history, the current b-rep is, in general, of little use for
the boundary evaluator. The simplest way to generate the new b-
rep is to sequentially walk through the nodes in the model history,
and re-execute the associated Boolean operations to build a new
b-rep from scratch.

Figure 5 presents an example of this re-evaluation process.
The width of the pocket highlighted in Figure 5(a) is decreased.
For this, the whole model history in Figure 5(b) is sequentially
re-executed, yielding the model in Figure 5(c). So, in this re-
evaluation scheme, all features in the model history are pro-
cessed.

Re-executing the whole model history after modifying, or
removing, a feature has the shortcoming that its computational
cost is roughly proportional to the model history size. An im-
provement to this method, which is currently used in most bound-
ary evaluators, consists of keeping the intermediate models be-

5 Copyright c© 2003 by ASME

tween all history steps, in which case only the history steps after
the modified, or removed, feature node need to be re-executed.
Using this method, the computational cost of boundary evalua-
tion after modifying, or removing, a feature becomes dependent
on its position in the model history, but the amount of memory
required to store all intermediate models is significant. An alter-
native improvement consists of storing only the deltas, i.e. the
model differences, between history steps. This alternative re-
quires less storage, because deltas are typically much simpler
than intermediate models, but more computation time is needed
to rollback from the current b-rep to the state from which the
model needs to be re-evaluated. In both alternatives, however,
typically several features that are actually left unchanged by the
operation have to be processed, as is, for example, the case for
features 7-11 in Figure 5.

Boundary evaluation for a cellular model
This subsection describes the evaluation for the cellular model
implemented in SPIFF. This system also follows the scheme
given in Figure 4, the difference being that the boundary eval-
uator produces a cellular model instead of a b-rep.

The most relevant at the parametric definition level is here
the Feature Dependency Graph (FDG), which relates all feature
instances, each of them having its own set of parameter values,
by means of the dependency relation [3]. A dependency is a
directed relation between two features, and expresses an attach
or positioning/orientation reference that a feature has to another
feature in the model.

Adding a feature to the model typically creates one or more
dependencies in the FDG between the new feature node and the
feature nodes already there. Removing a feature requires elim-
inating its node from the FDG, though not without first making
sure that it has no dependents. Modifying an existing feature,
in turn, is done by editing its parameters in the respective node
in the FDG. Whenever this feature has dependent features, it is
likely that the modification will affect some of them as well.

After the FDG has been modified, the boundary evaluator is
invoked to update the cellular model accordingly. This is carried
out in two phases. In the first phase, the cellular model is incre-
mentally re-evaluated. In the second phase, the cellular model is
interpreted, i.e. the shape it represents is determined, according
to the feature information stored in its cellular entities and the
current dependencies among the feature nodes in the FDG.

Incremental re-evaluation In contrast with the sys-
tems described in the previous subsection, which employ two
non-associative set operations (union and difference) to compute
the b-rep, only one set operation is used by the SPIFF system to
compute the cellular model from scratch: the non-regular cellu-
lar union of the shapes of all features (see Section 2). Because it
is a union operation, and therefore commutative and associative,

the order in which the shapes are processed is irrelevant for the
final cellular model obtained.

The computational cost of building the whole cellular model
from scratch is roughly proportional to the number of features in
the model, as is the case for computing a b-rep. Fortunately,
this is only required when the cellular model needs to be built in
one step, e.g. when starting a modeling session with a model file
containing a previously created parametric definition.

Once there is a cellular model, re-evaluating it after each
modeling operation is done incrementally, i.e. only for the fea-
tures whose geometry is actually involved in the operation. The
computational cost of this incremental evaluation is dependent
on the number of such features, which is usually very low, and
is, therefore, independent of the total number of features in the
model. The three modeling operations are performed as fol-
lows:

(i) Adding a new feature instance to the cellular model: the
shape extent of the new feature is combined with the cur-
rent cellular model. For this, the nonregular cellular union
operation is used, as described in Section 2.

(ii) Removing a feature instance from the cellular model: the
current cellular model is modified using the operation to re-
move a feature described in Section 2.

(iii) Modifying a feature instance in the cellular model: the mod-
ified feature, and all its dependent features affected by the
operation, need to be taken into account. They are removed
from the cellular model and then re-added with their new pa-
rameters, using the add and remove feature operations just
mentioned.

History-independent interpretation Interpretation of
the cellular model consists of determining whether the point set
represented by each cell belongs to, or represents ’material’ of,
the product, i.e. the nature of that cell. This requires deciding
which of the features in its owner list ’prevails’, either as additive
or as subtractive. To this purpose, precedences among features
have to be established.

If, based on some precedence criteria, a global ordering is
defined on the set F of all features in the model, say assigning
to them unique, increasing precedence numbers, then every cell
owner list (a subset of F) can be sorted according to these prece-
dence numbers. The nature of a cell becomes, then, the nature
of the last feature in its owner list, i.e. the feature with the high-
est precedence number. Appropriate precedence criteria produce
an interpretation of the cellular model that is unambiguously de-
termined without invoking any model history considerations [3].
This, together with the incremental character of model evalua-
tion, are important advantages of a cellular model.

6 Copyright c© 2003 by ASME

Figure 6. Model Holes

Figure 7. Model SlotsHoles

4 PERFORMANCE MEASUREMENTS
To evaluate the performance of boundary evaluation for the cel-
lular model, and compare this to the performance of boundary
evaluation for a b-rep, their behavior has been measured for se-
ries of operations on several models. In this section the outcome
of the measurements is presented, whereas in the next section the
results are interpreted and conclusions are drawn.

The performance measurements for boundary evaluation for
the cellular model were done with the prototype feature mod-
eling system SPIFF. Measuring evaluation times could simply
be done by including timers in the source code of the system
around its boundary evaluation algorithm. SPIFF is running un-
der Linux, and the measurements were done on an Intel Pentium
4 computer.

The performance measurements for boundary evaluation for
a b-rep were done with the commercial system Pro/ENGINEER
[6]. Measuring evaluation times in this system was more com-
plex than in SPIFF, because the source code of Pro/ENGINEER
could not be adapted for this. However, Pro/ENGINEER uses
a so-called trail file to record all user actions during a modeling
session. Such a trail file can subsequently serve as a script file
for another modeling session, possibly after changing it. By in-
cluding timestamp commands in a trail file around the boundary
evaluation step in the script, and executing this file, the evalu-
ation times could be measured. The measurements were done

with Pro/ENGINEER 2001 running under Windows 2000 on an
Intel Pentium 2 computer.

A major problem was that, because of the measuring unit of
the timing commands, the measured times had an inadequate pre-
cision compared to the order of magnitude of the times. There-
fore, all measurements were done several times, and the results
averaged. With some elementary statistical theory, it was deter-
mined that 100 measurements were needed to guarantee suffi-
cient accuracy of the computed average time.

Because the time measurements for the two approaches had
to be performed on two different computer systems, the times are
not directly comparable. To make them more congruent, a sim-
ple benchmark was run on both systems to compare their perfor-
mance in general. This resulted in a normalisation factor that was
applied to the measured times for Pro/ENGINEER. Notice, how-
ever, that although the normalised times for Pro/ENGINEER are
mostly in the same order of magnitude as the times measured for
SPIFF, care should be taken in comparing their absolute values.
They are still dependent on, for example, the available memory,
the operating system, and the degree of optimisation of the im-
plementation of the modeling software. However, the goal here is
not to compare the two approaches in absolute computing times,
but, instead, to compare trends in their behavior. The times pre-
sented here are perfectly suitable for that purpose.

Measurements were done on several models; for two of
these the results are presented here. The first model, subse-
quently called Holes, consists of a block with a row of 100 non-
intersecting cylindrical hole features (see Figure 6). The second
model, subsequently called SlotsHoles, consists of a block with
three slots and a row of 24 non-intersecting cylindrical hole fea-
tures, each of which intersects all slots (see Figure 7). The hole
features in the complete Holes model are numbered from 1 to
100; the hole features in the complete SlotsHoles model from 1
to 24.

For each model, times required for a series of add, remove
and modify feature operations were measured. The results are
presented in Figure 8 for Holes with SPIFF, Figure 9 for Holes
with Pro/ENGINEER, Figure 10 for SlotsHoles with SPIFF, and
Figure 11 for SlotsHoles with Pro/ENGINEER.

The three graphs in each figure show (normalised) comput-
ing times for the series of add, remove and modify feature opera-
tions. Depending on the operation, for position n on the horizon-
tal axis of each graph, the evaluation time is depicted to respec-
tively:

(i) add feature n to the model consisting of features 1 to n-1;
(ii) remove feature n from the complete model;

(iii) modify feature n in the complete model, i.e. change one of
the parameters of feature n.

The graphs are quite regular, which is obviously due to the
fact that all features in the models are identical. The relatively
small irregularities in the graphs can be attributed to factors in-

7 Copyright c© 2003 by ASME

ti
m

e
(m

s)

feature nr.

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

(a) add feature

ti
m

e
(m

s)

feature nr.

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

(b) remove feature

ti
m

e
(m

s)

feature nr.

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

(c) modify feature

Figure 8. Measurements of boundary evaluation for Holes with

SPIFF

ti
m

e
(m

s)

feature nr.

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90 100

(a) add feature

ti
m

e
(m

s)

feature nr.

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

(b) remove feature

ti
m

e
(m

s)

feature nr.

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80 90 100

(c) modify feature

Figure 9. Measurements of boundary evaluation for Holes with

Pro/ENGINEER

8 Copyright c© 2003 by ASME

ti
m

e
(m

s)

feature nr.

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20 22 24

(a) add feature

ti
m

e
(m

s)

feature nr.

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20 22 24

(b) remove feature

ti
m

e
(m

s)

feature nr.

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18 20 22 24

(c) modify feature

Figure 10. Measurements of boundary evaluation for SlotsHoles with

SPIFF

ti
m

e
(m

s)

feature nr.

0

50

100

150

200

0 2 4 6 8 10 12 14 16 18 20 22 24

(a) add feature

ti
m

e
(m

s)

feature nr.

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20 22 24

(b) remove feature

ti
m

e
(m

s)

feature nr.

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16 18 20 22 24

(c) modify feature

Figure 11. Measurements of boundary evaluation for SlotsHoles with

Pro/ENGINEER

9 Copyright c© 2003 by ASME

dependent of the modeling systems, e.g. the memory allocation
strategy of the operating system.

5 RESULTS AND CONCLUSIONS
In the previous section, the outcome of performance measure-
ments for boundary evaluation, both for the cellular model and
for a b-rep, have been presented for two models. In this section,
trends in the presented graphs will be deduced and interpreted,
and conclusions will be drawn on the performance of boundary
evaluation for cellular models.

Both models are regular, in the sense that they contain a set
of identical features, and therefore suitable to deduce trends in
the behavior of the boundary evaluation algorithms. The two
models were used for deducing trends in two different types of
models: the Holes model for trends in models without intersect-
ing features, the SlotsHoles model for trends in models with in-
tersecting features.

First, the Holes model will be considered. The trends for
the three operations, add, remove and modify feature, will be
deduced from the graphs for this model, and subsequently be ex-
plained. Notice that for the boundary evaluation for the cellular
model in the SPIFF system, the right explanations of the trends
can always be given, but that for the boundary evaluation for the
b-rep in the Pro/ENGINEER system, only plausible explanations
can be given. Insufficient information is available on the latter
system to do better here.

Add feature operation
For position n on the horizontal axis of the add feature operation
graphs (Figures 8(a) and 9(a)), the evaluation time is displayed
for adding feature n to the model consisting of features 1 to n-1.

For both systems, the evaluation time turns out to (more or
less) linearly increase with n. This can be attributed to the in-
creasing model complexity: when feature n is added to the model
consisting of features 1 to n-1, it has to be intersected, or at
least tested for intersections, with the faces already present in
the model.

For the SPIFF system, indeed the number of faces in the cel-
lular model linearly increases with the number of features in the
model (see Section 2). For the Pro/ENGINEER system, the num-
ber of faces in the b-rep also linearly increases with the number
of features in the model.

Remove feature operation
For position n on the horizontal axis of the remove feature oper-
ation graphs (Figures 8(b) and 9(b)), the evaluation time is dis-
played for removing feature n from the complete model of 100
features.

For the SPIFF system, the evaluation time is nearly constant.
This can be explained from the fact that removing a feature in-

volves only removing its cells from the cellular model (see Sec-
tion 2), which is similar for every feature being removed.

For the Pro/ENGINEER system, on the other hand, the eval-
uation time is not constant, but dependent on the sequence num-
ber of the feature that is removed. This can be explained by
assuming the boundary evaluator stores intermediate models or
deltas between history steps (see Section 3). When feature 1 is
removed, the whole model has to be re-evaluated, which involves
99 features. When feature 100 is removed, no re-evaluation is re-
quired at all, because the last intermediate model in the model
history contains the required result. For features 2 up to 99,
the evaluation time is linearly dependent on the feature sequence
number n, because this involves re-executing the model history
from step n+1 to the end, i.e. adding 100-(n+1)+1=100-n fea-
tures to the intermediate model stored when feature n-1 was
added.

Modify feature operation
For position n on the horizontal axis of the modify feature op-
eration graphs (Figures 8(c) and 9(c)), the evaluation time is de-
picted for modifying feature n in the complete model of 100 fea-
tures, i.e. for changing one of the parameters of feature n.

For the SPIFF system, the evaluation time is again nearly
constant, but somewhat higher than for removing a feature. This
can be explained from the fact that modifying a feature from the
cellular model involves (i) removing the old instance of the fea-
ture from the model, and (ii) adding the new instance of the fea-
ture to the model (see Section 3). Both steps are independent of
the sequence number of the feature concerned. For the remove
step, the independency has been explained above. For the add
step, it follows from the following argument: adding a feature to
a model consisting of 99 features always has the same cost, be-
cause it always has to be intersected, or at least tested for inter-
sections, with the same number of feature faces already present
in the model. The cost of the modify operation is approximately
equal to the sum of the cost of the remove feature operation from
Figure 8(b) and the cost of the add operation for feature 100 from
Figure 8(a), because the latter operation also consists of adding
a feature to a model consisting of 99 features.

For the Pro/ENGINEER system, on the other hand, the eval-
uation time is again dependent on the sequence number of the
feature that is modified. Again assuming that this system stores
intermediate models or deltas (see Section 3), this can also easily
be explained. When feature 1 is modified, the whole model has
to be re-evaluated, which involves 100 features. When feature
100 is modified, this involves combining the intermediate model
stored when feature 99 was added with feature 100 only. For the
intermediate features, the evaluation time is again linearly de-
pendent on the feature sequence number n, because this involves
re-executing the model history from step n to the end, i.e. adding
100-n+1=101-n features to the intermediate model stored when

10 Copyright c© 2003 by ASME

feature n-1 was added.

Behavior of the two systems
It is also interesting to compare the costs of the add, remove and
feature operation for a single system.

For SPIFF, the following has already been observed:

(i) the cost of remove and modify feature operations (Figures
8(b) and 8(c)) is nearly constant;

(ii) the cost of a modify feature operation (Figure 8(c)) is ap-
proximately equal to the sum of the cost of a remove feature
operation and the maximum cost of an add feature operation
(Figure 8(a)).

For Pro/ENGINEER, on the other hand, the following can be
observed:

(i) the cost of a remove feature operation (Figure 9(b)) is gen-
erally much higher than the cost of an add feature operation
(Figure 9(a));

(ii) the cost of a modify feature operation (Figure 9(c)) is again
generally much higher than the cost of an add feature oper-
ation (Figure 9(a)).

The latter behaviors follow from the fact that both a remove and
a modify feature operation generally involve several add feature
operations.

Results for model with feature intersections
The same trends as deduced above from the graphs for the Holes
model, can be deduced from the graphs for the SlotsHoles model
(see Figures 10 and 11). Stated differently, the same trends occur
for models with features with intersections, as for models with
features without intersections. Although the number of intersec-
tions of each feature in SlotsHoles is limited (to three), this is
also typically the case in real-world models, because of the local
character of features. Usually features are small compared to the
whole product, and interact with a small number of other features
only.

Conclusions
On the basis of the above observations, the following can be con-
cluded. For the add feature operation, boundary evaluation for
the cellular model has the same performance trend as bound-
ary evaluation for a b-rep; for both, the time increases linearly
with the number of features already in the model, and the times
are in the same order of magnitude. For the remove and modify
feature operations, however, the trends are different. Boundary
evaluation for the cellular model has a constant cost that is in the
same order of magnitude as the cost of an add feature operation.
Boundary evaluation for a b-rep, on the other hand, has a cost
that is linearly dependent on when the feature being removed or

modified was added to the model, and is very high compared to
the cost of an add operation.

Usually, most of the time during a modeling session is spent
on adjusting features already in the model, rather than on adding
new features. The conclusion is therefore that boundary evalua-
tion for the cellular model is in fact more efficient than boundary
evaluation for a b-rep. Considering this conclusion, and the ap-
plications and advantages of cellular models mentioned in Sec-
tion 1, it can be expected that in the future such models will be
increasingly used in feature modeling systems.

ACKNOWLEDGEMENTS
We thank Klaas Jan de Kraker for many valuable comments on a
previous version of this paper.

REFERENCES
[1] Shah, J. J., and Mäntylä, M., 1995. Parametric and Feature-

based CAD/CAM. John Wiley & Sons, Inc., New York.
[2] Bidarra, R., de Kraker, K. J., and Bronsvoort, W. F., 1998.

“Representation and management of feature information in
a cellular model”. Computer-Aided Design, 30 (4), pp. 301–
313.

[3] Bidarra, R., and Bronsvoort, W. F., 2000. “Semantic feature
modelling”. Computer-Aided Design, 32 (3), pp. 201–225.

[4] Bronsvoort, W. F., Bidarra, R., and Noort, A., 2002. “Feature
model visualization”. Computer Graphics Forum, 21 (4),
pp. 661–673.

[5] Bronsvoort, W. F., and Noort, A., 2003. “Multiple-view fea-
ture modelling for integral product development”. Submitted
for publication.

[6] Parametric Technology Corporation, 2002. Pro/ENGINEER
product information. http://www.ptc.com/products/proe/.

[7] Spatial Technology Inc, 2002. 3D ACIS Modeler, Version
8.0. http://www.spatial.com.

[8] Requicha, A. A. G., and Voelcker, H. B., 1985. “Boolean op-
erations in solid modeling: boundary evaluation and merging
algorithms”. Proc. IEEE, 73 (1), pp. 30–44.

11 Copyright c© 2003 by ASME

