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ABSTRACT

The processing power of modern smartphones allows publishers
to port old and current console titles to these platforms. However,
these games were designed to be controlled with a traditional
gamepad. Normally, the solution used in mobile ports is a virtual
gamepad. This interface adds buttons that imitate the layout of a
gamepad as a semi-transparent overlay above the game. While
this allows users to play the game, it lacks the necessary haptic
feedback to provide an enjoyable experience. Frequently, users will
miss buttons or press the wrong ones, which affects the in-game
performance and leads to frustration. We present a solution to
correct user input. First, we retain a few frames of user input instead
of passing the data directly to the game. Using time series analysis,
we seek known patterns and detect potential mistakes from the user,
correcting actions before the commands are received by the game.
We called this new gamepad the PadCorrect. In order to measure
the impact on the experience, we performed a user study comparing
the PadCorrect with a traditional virtual gamepad. The test results
showed a good reception and provided evidence that the new
interface is capable of improving the experience with mobile games.

Keywords: Virtual gamepad, touchscreen, mobile games

Index Terms: Human-centered computing—Touch screens; Hu-
man-centered computing—Usability testing; Applied computing—
Computer games

1 INTRODUCTION

Mobile gaming represents the largest market segment of the video
gaming industry [21]. Most of this content consists of games devel-
oped specially for touchscreen interaction, like Angry Birds (Rovio)
or Cut the Rope (Zeptolab). However, since modern smart devices
include substantial processing power, developers and publishers are
starting to show interest in porting old and even modern titles from
traditional platforms, like gaming consoles or PC, to smartphones.
The mobile port of ”Grand Theft Auto: San Andreas” (Rockstar
Games) resulted in millions of paid downloads [20]. Additionally,
Sega recently republished several Genesis/Mega Drive titles for An-
droid and i0S [25], using a Unity interface integrated with a console
emulator to run the game.

Unfortunately, the default input methods of smartphones differ
significantly from traditional console gamepads (also known as a
game controller), which are often used by classic games. Redesign-
ing these titles to be fully adapted for touch devices would demand
a severe reenginering of the gameplay. Cases like the Sega forever
titles can be even worse. The game is not actually ported to Android
or i0S, but simply runs on a console emulator, which makes it not
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viable to change the original game. Commonly, a semi-transparent
overlay with virtual buttons (called a virtual gamepad ) is overlayed
above the game. A virtual gamepad creates a software representation
of a physical controller. However, there is a big difference between
using real buttons to play games and using a software representation.
Virtual buttons lack any significant haptic feedback, impacting the
in-game performance and enjoyment of the player [32]. Despite
this limitation, virtual gamepads are a common solution to control
mobile games.

On different occasions, adapting console games to work with
touch controls can also negatively impact the reception of these ports.
When the i0S version of Bioshock was announced, it drew significant
media attention since it was a relatively recent game. However, game
critics considered the experience inferior to the original version due
to the touchscreen controls!. In the critics score aggregation website
Metacritic, the port remains with a score much lower than the classic
console versions. This is consistent with research that indicates
that issues with controls have a greater impact on the experience
than most other factors [5, 6]. Unfortunately, even touch-friendly
control schemes based on gestures, like taps and pinch-to-zoom, as
implemented by Netherealm studios in their mobile version of the
fighting game Mortal Kombat X, can prove insufficient. Users and
critics (Metacritic) complained that the smartphone game ended up
being an extremely simplified version of the original game, devoid
of all depth and gameplay that made the console version enjoyable.
Also, redesigning the gameplay is not a viable solution for cases like
console games emulated via software.

Physical gamepads, like the Moga Hero Pocket or the Steelseries
Stratus, are another solution to control mobile games. However,
the marketing penetration of these accessories is extremely low.
According to the consulting company IDC, in the third quarter of
2016, only 5.1% of the US mobile gamers connected their devices
to a physical gamepad [22]. This highlights that the touch-based
interface will still be the main experience for most users and that
improving the performance and usability of virtual gamepads has
the potential to improve the gameplay of mobile ports.

The objective of our work is to keep ported games enjoyable and
playable on mobile devices with similar depth and complexity as
the original experience. To achieve this goal, our method includes
intelligent algorithms that interpret and correct user input on a virtual
gamepad in real time. Developers will train these algorithms with the
input patterns that the game uses, teaching the controller to recognize
what the user intends to do. They will also be able to introduce new
gestures to perform actions in the game. Since the input paradigm is
still a virtual gamepad, our method works in cases where the original
game cannot be modified. This new virtual gamepad with an input
correction system is called the PadCorrect.

The PadCorrect uses an input buffer, that stores all touches on
the screen and the buttons that were pressed in the last few frames.
Unlike traditional software gamepads, these button presses are not
passed immediately to the game. Different features of the touches are
stored in a multidimensional time series [26], that is then compared
with the trained samples using Dynamic Time Warping [19] (Section
2.2). When a match is found (Section 3), the PadCorrect replaces
the button presses on the buffer with the correct command, that is
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then sent to the game. This method is the main contribution of this
work and intends to provide a more enjoyable gaming experience
and improve the performance of virtual gamepads. We performed
a comprehensive user study to evaluate if our new virtual gamepad
achieved those goals, comparing its results with a traditional virtual
gamepad. We focused initially on fighting games as a case study,
since they use complex and well-defined input patterns to perform
combos and special movements and rely on precise timing.

We organized this work as follows. Section 2 contains a discussion
about related work on touchscreen interaction, with a special focus
on gaming. It also describes our matching algorithm. In Section
3, we will talk about the issues with virtual gamepads and how our
method improves their performance. In Section 4, we will present the
prototype, the test methodology and our test sessions. The following
Sections (5 and 6) will discuss the results and our findings. Sections
7 and 8 will then talk about conclusions and discuss future works.

2 RELATED WORKS
2.1 Touchscreen Interfaces for Games

Different studies have tried to evaluate the impact of the limited
accuracy of touchscreens on usability and proposed methods to ad-
dress this issue [3,7]. However, few works have tried to measure the
difference in performance and usability between virtual gamepads
and physical controllers. Zaman et al. [32] compared the in-game
performance of users playing the game Assassin’s Creed: Altair’s
Chronicles (Ubisoft) on a Nintendo DS (a handheld game console
with physical controls) and on an iPhone. The only difference be-
tween both versions is the use of a virtual gamepad on the mobile
game. Users died 150% more on the iPhone, while level completion
time was 72% higher. In a post-test questionnaire, all 12 participants
affirmed that they preferred to play on the DS.

Zaman and MacKenzie [31] evaluated the differences between
a virtual gamepad, a Wii Remote, an analog stick attached to the
screen with a suction cup, and buttons glued to the screen. Users
then completed two tasks playing commercial console games on an
emulator running on the mobile device, for all controllers. The initial
task was to complete the first mission of the action game Metal Slug
(SNK). For this task, the virtual gamepad resulted in more deaths
and a higher completion time, with all differences being statistically
significant. The second task consisted in performing different special
attacks (button combinations that must be executed in the correct
timing) in the Street Fighter 2 fighting game (Capcom). Each user
had 50 attempts to perform the attacks. While the software gamepad
ranked lower, the difference was not significant this time. However,
players did report the virtual gamepad as the worst option for both
tasks. This also motivated us to include subjective evaluations, since
simply counting how many successful movements the user performed
still fails to detect the nuances of how the user really felt about the
interface.

Baldauf et al. [1] compared different mobile controls when play-
ing commercial games like Pac-Man (Bandai Namco) and Super
Mario Bros (Nintendo). The mobile-friendly tilting controls were
considered the least accurate by users and also resulted in longer
completion times than the virtual gamepad. The work concluded
that tilt controls are more adequate for games designed from scratch
for mobile platforms. This is an evidence that console games ported
to mobile may still have to rely on a virtual gamepad.

Little work has tried to specifically improve the performance of a
virtual gamepad. Torok et al. [28] increased the size of the most used
buttons and improved the position of the buttons according to the
location of touches on the screen. The last 100 touches were clustered
with K-means [27] and the resulting centroid for each cluster was
paired to the closest button. Gradually, the controller would move the
buttons until they reached the centroid position. These adaptations
were performed in real time and would change according to new
interaction patterns. Usability tests compared two variants of the

same virtual gamepad: one with the adaptive interface and the other
with a fixed layout when playing Super Mario Bros (Nintendo) and
Streets of Rage (Sega). The success rate of the adaptive version
was significantly higher in all cases. An improved version of this
approach led to a significantly higher success rate of the users when
playing Super Mario Bros. and Sonic Wings (Tecmo) [29]. In
both works, the users answered subjective questionnaires, rating the
adaptive version with better scores than the non-adaptive interface.
The approach, however, only corrects the gamepad to decrease the
possibility of future mistakes. It also considers any kind of touch that
hits a button as a correct event and cannot assist in situations where
the user pressed a different button than intended. Our approach
focuses on avoiding errors before they are sent to the game. Our
solution also estimates if a user really intended to press a button,
using knowledge about usual commands to predict the correct action.

2.2 Dynamic Time Warping

We represent touches as a multidimensional time series. A time
series can be defined as a set of points or observations organized by
the time they occurred [26]. A traditional method used to compare
time series is Dynamic Time Warping (DTW), which measures the
similarity of two time series with different speeds [2]. DTW works
as follows; given two time series: Q (length n) and C (length m),
defined as:

Q:511a5127~~~775a~~~a(1n (1)
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An n-by-m matrix D is constructed. The (i"", j**) element of D
is the squared distance d(g;,c;) = (¢; — c;)?, that is the alignment
between points g; and c¢;. The best match between the sequences
is a path through D that minimizes the total cumulative distances
between them. The optimal path to reduce the warping cost can be
defined as [19]:

L
DTW(Q,C) = min Y wi 3)
k=1

Where wy is the element (i, j); of the matrix, that is also the
k' element of the warping path W. W is determined as a dynamic
programming problem seen in Equation 4:

In Equation 4, d(q;,q;) is the current cell distance and ¥(i, j) is
the cumulative distance of the current cell and the 3 adjacent ones.
¥(n,m) will contain the full warping distance between the series. The
two time series will be more similar if (i, j) value is lower. We used
the warping distance to compare the current buffer to known gestures,
selecting a gesture that best matches the current buffer (Section 3).
Time series can also be used to represent data that is actually not
connected to time. Keogh et al. [15] showed how to compare two-
dimensional shapes mapped as a false time series (sampled in a 360
degrees arc) using DTW. This approach is similar to the one we will
use.

DTW was used to solve several other problems such as gesture
recognition. Ibafiez et al. [13] showed that DTW was a good fit to
track the joints of a player detected using a Kinect. The movement
of each one resulted in a time series. Different methods were used to
compare the gesture to a database containing samples of the desired
movement: DTW, Procrustes analysis, Naive Bayes and Hidden
Markov Models. The database started with four different gestures,
increasing to 12 gestures for the final test. In all scenarios, DTW had
a superior performance, with a larger advantage when the database
had more gestures.

Modern smartphone keyboards allow users to input text by sliding
their fingers between the letters that compose a word. Kristensson
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and Zhai [16] proposed the SHARK? system for pen-based input.
They used proportional shape matching to compare the performed
gesture with a database containing 10,000 words and correspond-
ing gestures. In a subsequent work [33], the authors used DTW
and template matching to recognize strokes for swipe keyboards.
They expanded the system by also including shortcuts to common
actions, such as copy/paste and save. De Zoeten [9] implemented
a swipe-based keyboard, using a DTW variant known as Greedy
Asymmetric DTW, that reduces the computational cost of DTW by
adding constraints to the search path.

The main differences between our problem and swipe keyboards
can be observed on the insertion or replacement of the match. For
keyboards, the recognized word is inserted at the end of the phrase.
The consistency of the match is validated using language models.
In our case, the match can replace any part of the buffer and its
necessary to perform changes to the start and end of an inserted
segment to keep it consistent with the rest of the commands. The
methods to validate the match are based on the timing of the inputs
instead of a linguistic model. This replacement logic is discussed in
Section 3.3.

De Lucaetal. [8]used DTW to add an extra layer of security to the
gesture-based unlock system of Android smartphones. A common
attack vector is that, if another person oversees the owner performing
the gesture, it can be easily reproduced to obtain access. De Luca et
al. used DTW to compare several features of the unlocking gesture,
like speed and pressure, with a stored pattern performed by the owner.
A correct shape was no longer enough to unlock the phone but the
manner of the gesture counted as well. Our problem also involves
features of touchscreen gestures to infer if a given action has a match
in a database of samples.

3 CORRECTING INPUT IN A VIRTUAL GAMEPAD

The most important aspect of our input correction technique is the
input buffer. When a user touches the screen, a position is registered
in pixels as (X, Y), starting from the lower left screen corner. If a
user’s touch is inside the area of a button, a button press occurs. We
refer to the state of all buttons in a single frame as button events. In
a regular virtual gamepad, this events would be directly passed to
the game. The positions of the touches and the button events are
captured once per frame. The gamepad tracks up to 2 fingers at once,
typically both thumbs. We normalize the values to be resolution-
independent (discussed later). Each movement performed by sliding
your finger or simply touching the screen, either with one or two
fingers, will be called a gesture.

Instead of directly passing the input on to the game, we store it
in a buffer. The touches are organized in a multidimensional time
series, with the (X, Y) coordinates of each finger consisting in four
dimensions. The buffer contains the entry of the time series and the
associated button events for each frame.

We are using a false time series [15], since we are not using the
time each event occurred to index our points, but the total delta A,
for the n'” entry. This value is the sum of the Euclidean distances
between the n points in the series. We define A, as follows:

An :An—l +\/(Xn_Xn—l)2+(Yn_Yn—l)2 (5)

Where X and Y are the finger coordinates for the points n and
n—1, while A, is the same equation applied to the previous point
in the series. For the starting point, we have Ag = 0. If more than
one finger was active, we used the closest finger in relation to the
directional pad as the reference, since it was the button used in the
trained commands. If, during a frame, no finger is touching the
screen, the time series will receive an entry with all dimensions set
to -1 and the delta will be equal to the last non-empty entry.

Each set of button press events contains the state of all buttons on
the screen. For each frame, we will have one entry for the multidi-

mensional time series and the button states for that moment. When
DTW matches a subsequence of the time series, we know we have
to replace the button press events for the same frames.

To detect known gestures in the real time buffer, our method uses
a database with entries for each potential gesture [8], discussed in
the next subsection.

3.1 Gesture Database

The gesture database contains multiple gestures, using the same
representation as the real-time buffer. To generate each entry, we
performed the same gesture ten times and used the approach of De
Luca et al. [8] and Biswajit et al. [14] to select the best sample.
We do this by comparing the n collected entries to all the other
n — 1 samples using DTW. The warp values are used to calculate a
mean warp value. The sample with the lowest mean warp value is
considered the reference for the gesture. The mean warp value is
also defined as the matching threshold for that gesture. The gamepad
constantly compares the buffer with all gestures in the database to
find the result with the lowest warping distance. If this distance is
also lower than the gesture threshold, it is considered a match and
the corresponding segment of the buffer is replaced. During the
development, these thresholds seemed to be excessively strict. So
we empirically selected a multiplier (9 times) to increase the gesture
threshold to a more reasonable value. We intend to use the results to
improve these limits for a second iteration of our method.

3.2 Normalization

The action performed by the user may differ significantly in size and
position from the sample stored in the database, even if it should be a
perfect match when using differing devices with different dimensions.
To address this issue, we normalize and translate both the buffer and
the database entries. We normalize each gesture by dividing the X
and Y coordinates, as well as the total delta by the screen height
(measured in pixels). Implicitly, we assume the size of the virtual
gamepad is relatively defined to the screen height, which handles
screens with differing aspect ratios. With this normalization, our
approach is also independent of a phone’s screen resolution.

The coordinates are translated to a neutral starting point. For
the X-axis, we use the minimum X value. Similarly, the minimum
Y-value is used for the vertical axis. We subtract these values from
the respective dimensions for all points of the gesture. This means
that DTW will match a gesture even if it is performed in a different
part of the screen than the trained sample, as soon as it has a similar
shape. The normalization is applied to the buffer every frame before
comparing to the already normalized database entries. This is impor-
tant because it addresses one limitation of current virtual gamepads:
since users cannot feel the position of the buttons, they will end up
performing the correct movements on the wrong part of the screen,
instead of where the buttons actually are [31].

3.3 Replacement Logic

Figure 1 shows the replacement logic. The squares represent the
buffer, in a queue. The orange boxes are the commands that already
expired and were passed to the game. The yellow boxes are the
actual buffer, the commands that were performed but not sent to the
game. The top queue are the button press events while the bottom
one are the touch coordinates. To simplify the scheme and avoid
a cluttered image, we are showing a shortened buffer and only the
X and Y dimensions for a single finger. The buffer also shows the
deltas that serve as references for the false time series. The final
prototype uses a buffer with 10 frames of input data. In the first
frame, we can see the coordinates being normalized and translated. A
segment of the buffer, surrounded by a red line, resulted in a positive
DTW match. The database gesture is represented as green boxes.
The button presses are replaced, as shown on Frame 2. The time
series also changed, with all values set to -1, which represents an
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Figure 1: Diagram showing the replacement process in 3 frames after
a positive match.

empty event. This prevents DTW from matching a sequence that
was already corrected in the previous iteration. All matched points
have their deltas replaced by the last delta of the segment, so new
events will continue from that value. In the last frame, the game
started receiving the replaced match.

A longer input buffer would allow our method to use more in-
formation to find matches. This is useful to detect long gestures.
However, it is not viable to introduce a significantly large input lag.
We decided to use a secondary input buffer, storing the last 20 events
that left the main buffer and were already sent to the game. This
allows the DTW matches to include portions of both buffers. If a
match includes part of the secondary buffer, our method checks if
the button presses on that segment were already correct (equivalent
to the database match). In this case, only the events on the primary
buffer will be replaced. If the expired events were incorrect, then
we insert the entire database match in the primary buffer so it is sent
to the game in the next frames.

A button press may be registered in several sequential frames.
This results in a risk for our match: the boundaries (start and end
position) defined by DTW may end up in the middle of one of these
sequences. Since holding a button is a single action, it would be
inconsistent to replace only part of the frames corresponding to that
command. Our method addresses this issue by moving the start or
end of the DTW match while it finds equivalent events (same state
for all buttons), increasing the size of the match. The adjustment of
the boundaries is shown in the second frame of Figure 1, where the
end of the match increases to include a repeated button press.

The matched gesture can also be much smaller (measured in pixels,
normalized in relation to the screen height) than the database entry or
have a significantly different ratio (width versus height) on the screen.
DTW ignores the size and ratio differences, since it can compare
time series of different characteristics and still finds an optimal
warping [19]. To include limits to these matches, each one must
pass size and ratio validations before being used as a replacement.
A gesture must have at least 70% of the size of the database gesture
(measured by the normalized total delta) to pass size validation. For
the ratio validation, we calculate the individual values for the gesture
and the matched portion of the buffer. We do this by dividing the
width (difference between the maximum and minimum coordinates

(a) Quarter-circle forward (¥ % =) (b) Quarter-circle backward (¥ # )

Figure 2: The gestures trained for the test demonstrated with Street
Fighter Alpha 2 (Capcom). The user must press the buttons in a quick
sequence and follow with an attack button.

on the X-axis) by the height (same approach, for the Y-axis). We
then divide the two, selecting the larger value as the denominator. If
the value is greater than 0.5, it is a valid match.

3.4 Limitations

The main limitation of the current approach is dealing with discrete
input, like a single button press. This kind of action results in a single
coordinate on the screen for a touch, while our method works by
comparing relatively large sequences of touches. In a fighting game,
like our case study, this means that the PadCorrect will not improve
simple actions like moving the character or pressing a single attack
button. Games that do not rely on complex button sequences, like
platforming games, would not benefit from the current approach.

For this work, we decided to focus on simplifying the execution of
complex commands, that are harder to be performed on touchscreens
in comparison to single button presses.

4 USER STUuDY
4.1 Prototype

We used Unity to develop a prototype. Unity is a cross-platform
game engine, used to develop 2D and 3D games and simulations.
Unity is the engine used to develop around 34% of all new games?.

The game runs on a console emulator (Libretro’), wrapped in a
Unity interface. All code was developed in C#. We used a DTW
implementation based on Rakthamanon et al [18], that proposed
the UCR Suite for DTW, with massive performance gains over the
former state-of-the-art solutions. Erez [23] ported the C++ UCR
Suite to C#. This is the version used in our prototype.

The size of the buffer we used was 10 frames. Since our prototype
runs at 60 frames per second, this means roughly 167 milliseconds of
input lag. Our approach proposes increased input lag to gain higher
accuracy when performing movements. The buffer size can be easily
adjusted and future work could evaluate different parameters.

Figure 2a and 2b shows the two patterns trained for our tests.
These commands are frequently used in fighting games [31]. We rep-
resented these gestures using the fighting game convention (where
right is forward). If a player changes position with the adversary,
the movements will be inverted (quarter-circle forward becomes
backward and vice-versa). To perform them on a traditional direc-
tional pad or on a touchscreen, the user slides his fingers between
all correct buttons, in an arc that roughly corresponds to a quarter of
a circle, starting with the first button and finishing on the last one
(Figure 2a).

4.2 Methodology

The user study intends to evaluate if the PadCorrect can improve
the performance of the user when performing a set of tasks. It also
evaluates his satisfaction and the amount of physical and mental ef-
fort necessary to complete the tasks. We will consider our correction
approach successful if it improves the performance or the usability
of a virtual gamepad.

2Unity Fast Facts: https://unity3d.com/public-relations
3Libretro: https://www.libretro.com/
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We followed an approach similar to Zaman and MacKenzie [31],
with simulated game tasks for the test sessions. One observation the
authors made was that using an evaluation based on the ISO 9241-9
standard (like on Natapov et al. [17]) would not be ideal since it
focuses on targeting tasks. Since our case study is a fighting game,
this kind of task is not adequate.

We set up different tasks and registered information like the num-
ber of attempts to accomplish a movement or the amount of victories
against a CPU-controlled opponent, which were part of the objec-
tive evaluation. To track these statistics, we recorded the device
screen during the test session and revised the video afterwards to
manually count each occurrence. During the session, the smartphone
was configured to show the user touches as a semi-transparent cir-
cle, allowing us to see when the user attempted the pattern of the
movements. Event detection was annotated after the test. During
the tests with a CPU opponent, the user could be interrupted during
a combo attempt by an enemy attack. In those situations, we did not
considered it as a failed attempt and simply discarded the occurrence

We also used different subjective evaluations. The first was the
NASA Task Load Index. NASA-TLX is a workload assessment
tool that is based on a weighted average of self-reported scores for
mental demand, physical demand, temporal demand, performance,
effort and frustration [12]. Our choice was motivated by the large
scale use of NASA-TLX in user evaluation in the last decades [11]
and the coverage of aspects that are relevant to our research. After
completing each set of tasks, the users would fill out the NASA-TLX
questionnaire. At the end of each trial, the users would fill out the
System Usability Scale [4]. SUS consists of 10 questions that can
be rated according to an 1 (strongly disagree) to 5 (strongly agree)
Likert scale. These questions are then consolidated into a 100 points
score that aims to provide a global view of usability. A SUS score
below 68 generally indicates usability issues on the interface being
evaluated [24]. Additionally, the post-test questionnaire included
extra questions about other aspects, using an 1 to 5 Likert scale. The
additional questions were:

* How comfortable was it to perform the tasks using the con-
troller? - 1 (very uncomfortable) to 5 (very comfortable)

* How would you rate the finger fatigue to perform the tasks? -
1 (very high) to 5 (very low)

* How would you rate the response time of the controller? - 1
(very bad) to 5 (very good)

* How would you rate the accuracy of the controller to perform
the commands you wished? - 1 (very low) to 5 (very high)

* How easy was it to perform the commands you wished when
fighting against the CPU? - 1 (very hard) to 5 (very easy)

The additional questions are meant to test the trade-off between
accuracy and response time discussed in Section 4.1, while also
verifying if our method can avoid finger fatigue or increase comfort.
The first part of the test consisted of tasks based on performing
specific combos. The first movement was the “fireball”. The attack
can be performed with a quarter-circle forward followed by a punch
button (¥ 4 = @). The second movement is a more complex pattern,
the ”super fireball”. The user needed to input two quarter-circle
forwards and a punch (# %= ¥ 4 = @) in quick succession. For the
super fireball, he also must have at least one full special meter. For
the tasks, users already started with 3 full bars. If the user managed
to use all bars, we simply reloaded the stage to continue the test.

We also tested our correction method using the shortcut detailed
in Figure 3. We find this an interesting case because it highlights how
the PadCorrect can add new gestures to the game without having
access to the source code of the game. Our input correction method
keeps the same input paradigm and the feel of the original control

Figure 3: Example of the shortcut to perform the super special. The
yellow line is matched as the first quarter-circle forward while the
red line is matched as the second one. The green dot is the player
pressing the punch button.

scheme. Hereby, developers can expand the controls of an old game
even when running on an emulator. We evaluated the usage of this
shortcut separately in our analysis.

All tests were performed twice for each user. Once with the
PadCorrect and once with an identical interface without any kind of
correction. The latter served as a baseline, representing the current
state of virtual gamepads. Figure 2 shows the gamepad and the game
Street Fighter Alpha 2 (Capcom), used for testing. The character
on the left was used by all participants. The CPU difficulty and
opponent were kept constant for all users. We set the opponent’s
difficulty to slightly less than half the maximum. No task had any
kind of time limit and users were free to perform them at their own
pace.

The test started with a training session, where we would teach the
required movements and the game rules to the user. Each volunteer
would then try to perform each attack and play the game until he felt
confident to start the test. In all cases, the user was not informed about
the input correction system, they were just told that they would test
two different controller prototypes. In some tasks, a CPU-controlled
opponent was present to add extra pressure. Each user was instructed
to not try to fight the CPU and concentrate on the task. The user
would fail the task if the enemy drained his entire health bar before
performing all combos. The initial part of the evaluation included
the following tasks:

* 10 attempts to perform fireballs. We counted how many suc-
cessful movements he managed to perform.

* 10 attempts to perform super fireballs.
— 10 attempts to perform the super fireball with the shortcut.

* 5 fireballs against the CPU. For this test we counted how many
attempts were needed to correctly perform the action. The
volunteer had to do it while a CPU opponent attacked him.

* 2 super fireballs against the CPU. Users were allowed to use the
shortcut if they wanted to, when using the PadCorrect (since
the regular gamepad does not have this functionality).

Each volunteer performed these 4 tasks for one controller and
then answered the NASA-TLX survey about the workload. Next, the
users did the same for the other controller. We were concerned that
the learning effect could impact the results. The second controller
could have an advantage in the tests since the user already practiced
playing the game with the first gamepad. To compensate this effect,
half of the users started all tests with the PadCorrect while the other
half started with the regular gamepad.

The second part of the test was a three-round fight against the CPU
opponent. The players could fight freely and use any movement they
learned. They were allowed a new training fight before starting the
test. We tracked the rounds that were won or lost. Once again, users
did this twice. After each fight, they answered another NASA-TLX
survey.

After the tests, users answered the SUS questionnaire and the 5
Likert scale questions, for both controllers. In the end of the test,
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they would also inform if they preferred one of the interfaces or if
both were the same for them. We debriefed the participants at the
end of the study as to the purpose of our experiment.

4.3 Test Sessions

For this test, 12 volunteers were randomly selected. We did not
require any prior gaming experience and users had different gaming
backgrounds. Before the test, each user read and signed a free and
clarified consent release form. They did not received any compen-
sation for their participation. We used the same device for all tests,
a Samsung Galaxy S8 with a 5.8 inches screen (13.23 cm x 6.44
cm) and a resolution of 2960 x 1440. All buttons occupied square
areas. The action buttons (punches and kicks) measured 20% of the
screen height, while the directional pad measured 40% of the screen
height.

Volunteers started by answering a profile questionnaire. 75%
of the users were between 18 to 30 years old, with the remaining
volunteers in the range of 31 to 40. Users were asked to report their
gaming preferences regarding different platforms. On average, users
played 3.54 hours on PC, 1.41 on consoles and 2.04 on smartphones
per week. When inquired about which platform they preferred to
play games on, 8 users chose the PC, 2 chose consoles and 2 reported
preferring to play on smartphones.

To compare the numeric results when using both controllers, we
used the Wilcoxon signed-rank test [30], a non-parametric statistical
test. We used a 95% confidence interval. If the p-value for a test
is lower than 0.05, the difference is considered significant. The
Wilcoxon test was used because it does not depend on the distribution
of the data (while a t-test demands a normal distribution, for instance)
and has a high precision even if the distribution is normal [10]. We
will use a precision of three decimal places for our results.

5 RESULTS

The test started with the users being asked to perform 10 fireballs.
Figure 4a, shows the average number of movements performed
with each gamepad. This difference is not significant according
to the Wilcoxon test (p-value = 0.116) for the regular fireballs or
the super special. However, when using the shortcut (large half-
circle) to perform the super special, the difference is significant
when compared to the version without correction (p-value = 0.006).
While users were able to perform more fireballs without the cor-
rection system on the first test, the results changed when they had to
repeat the task while facing constant pressure of a CPU opponent.
Figure 4b shows that they needed fewer attempts when using Pad-
Correct. This difference however is not significant (p-value = 0.542).
For this task, users were capable of failing if the CPU opponent
managed to drain all their health bar before they performed the re-
quired amount of correct combos. Two users failed this task for both
controllers. When the task was to perform super specials (shortcuts
allowed in the version with correction), users needed fewer attempts
when using the PadCorrect. This difference is significant (p-value
= 0.003). The amount of users that accomplished the task is also
different. With the PadCorrect, all 12 users managed to perform 2
super specials, while only 4 did it without the correction system.
The final part of the test was a three-round fight against the CPU,
with users fighting freely and being allowed to perform any move-
ment, including the fireballs or the super fireball (users were free
to use the shortcut). Of the 12 users, 8 won the fight when using
the PadCorrect while 6 did it without the correction. Users reported
the difficulty of the task in the NASA-TLX evaluation and also on
the SUS scores, as well as the final questions. The NASA-TLX
workload scores (Figure 5a) when doing the initial tasks were higher
for the gamepad without input correction. This difference is signifi-
cant (p-value = 0.015). The results for the workload of fighting the
CPU are also higher and show a significant difference (p-value =

Fireball Special

=
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4.167
B PadCorrect

5.417 1.667 1.417 5.083

B Without correction PadCorrect (shortcut)

(a) Number of correct movements (fireball and super special) performed
after 10 attempts. More correct movements represent a better result.

Fireball Special
35
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9.250 9.917 5.083 21.750

B PadCorrect ® Without correction
(b) Number of attempts necessary to perform the required move-
ments (5 fireballs or 2 super specials) while facing a CPU-controlled
enemy. Fewer attempts represent a better result.

Figure 4: User performance for the predefined tasks.

0.023). For these scores, a lower NASA-TLX value is a better result,
representing a lighter workload to complete the same tasks.

Figure 5b shows the average SUS scores. The difference is signif-
icant (p-value = 0.004). The PadCorrect had an average score higher
than the baseline. An interface that scores less than 68 is generally
said to present a below average or poor usability [24]. Of the 12
volunteers, only three scored the PadCorrect less than the baseline,
while ten volunteers scored the regular virtual gamepad less than the
baseline.

Users reported comfort, finger fatigue, response time and the
accuracy of the controller to perform commands (with and without
a CPU enemy). Figure 6 shows the average scores for each one of
these aspects. Since the Likert score only allows 5 different answers,
it was not possible to calculate a p-value for many factors since ties
do not count for the Wilcoxon test. The PadCorrect had higher scores
on average for comfort, accuracy with no CPU enemy and accuracy
when facing an enemy. The difference is statistically significant for
comfort (p-value = 0.012). Users rated the PadCorrect higher when
considering finger fatigue (which means lower finger fatigue), but
the difference is not significant. Surprisingly, users also rated the
PadCorrect slightly higher when evaluating the response time. Even
if the difference is not significant, it is noteworthy that the 10 frames
of input lag did not impact this metric.

Finally, users were asked to chose which controller they liked
more to use. Nine preferred the PadCorrect, 2 were indifferent
and only 1 would rather use the version without correction. After
this question, we revealed that one of the controllers used an input
correction system and we asked users to try to guess which one it
was. Ten users got it right, 1 guessed it wrong and 1 could not decide.
This last question intended to verify if users could notice the input
correction in action.

6 DiscussIiON

The first batch of tasks showed some interesting results. Surpris-
ingly, users did not perform better when doing the fireballs using the
PadCorrect. We observed that most users tried to make the combos
as slowly as possible, while our matching algorithm was trained
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(a) NASA Task Load Index workload scores for each controller, for the
in-game tasks and for the three-round fight against the CPU enemy. Lower
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(b) System Usability Score (SUS) ratings for both controllers. Higher scores
mean better usability. The dashed line is the SUS baseline, that defines
that any interface that scores lower than 68 has a poor usability.

Figure 5: Subjective scores reported by the users after the tests.

using fast gestures, a difference that impacted the recognition. When
performing fireballs against an enemy, users had to do combos faster
and the PadCorrect actually demanded slightly less attempts. This
information will be useful to adjust and improve the next version
of our gamepad. The super special movement is more complicated,
so the help provided by the correction was more apparent. The
shortcut (large quarter-circle that matches as two sequential regular
half-circles) significantly improved the performance of users and
was well received. When adding the extra pressure of having a CPU
controlled enemy, the PadCorrect fared much better. Users also won
more matches when using the PadCorrect.

The subjective evaluation presented results that support the idea
that the PadCorrect improved the experience for our volunteers. The
SUS score for the regular gamepad averaged 46.458, substantially
lower than the minimal desirable score of 68. Users rated the Pad-

Accuracy Accuracy

Confort (tasks) (fight) Finger fatigue Response time
5
4
3
2
1
0

3.750 2.583  3.083 2.167 3.083 2.000 2.417 1.667 3.250 2.917

H PadCorrect ® Without correction

Figure 6: Ratings for controller attributes, reported using an 1 to 5
Likert scale.

Correct with a higher score (73.333), above the SUS baseline. This
shows that, according to the SUS evaluation, the input correction
system increased the usability to the point that a poorly performing
interface managed to improve significantly and surpass the baseline.

The NASA-TLX questionnaire measured the workload of perform-
ing the given tasks. We separated the evaluation with the first batch
of predefined tasks and the second part with the free three-rounds
fight. In both cases, users reported significantly lower workloads
when using the PadCorrect, which indicates lower mental and physi-
cal effort, less time pressure, better performance and decreased effort
and frustration.

The end questionnaire also resulted in higher scores for the Pad-
Correct in all cases, with comfort presenting a statistically significant
difference, supporting the idea that our system increased the comfort
of playing mobile games. The response time category is especially
interesting: while the PadCorrect fared better on average, we ex-
pected it to have a worse response time due to the increased input
lag. However, users felt that the regular version was not responding
to their commands and interpreted the lack of response as a poor
response time or input lag. We believe that this could indicate that the
trade-off (increasing input lag to improve the accuracy) was success-
ful. Further studies could help to clarify exactly how perceptible the
input lag is. With the positive results in our subjective evaluations,
it was also expected to see a higher preference for the PadCorrect
controller, with 75% of the volunteers reporting that they preferred
to play the game with the input correction system.

In general, users complained about the difficulty of performing the
movements with the regular version. It is interesting that some users
even asked if we changed something in the regular controller when
facing the CPU enemy, since it was much harder to perform the com-
bos. In those situations, the PadCorrect led to a better performance
since it was adjusted to faster inputs.

7 CONCLUSION

Companies keep pushing the boundaries of mobile games with ports
of console titles and downsized versions of modern videogame fran-
chises. Adapting games created to be played with a gamepad to a
touch interface, while keeping the same gameplay and general feel of
the original version, is a difficult task. While a virtual gamepad em-
ulates the original controls, it results in a poor gaming performance
and frustrates the consumers. We presented an input correction sys-
tem (PadCorrect) based on a buffer that delays inputs while analyzing
the touch patterns and correcting interaction errors. The intention
is to increase the performance of virtual gamepads to the point that
more games become playable (and enjoyable) on smartphones.

The response from our tests was encouraging, showing a good
reception of our system. The increase of the SUS score above the
baseline and the lower workload are good evidences to support
the claim that we were able to improve usability while decreasing
effort, frustration, and general workload, providing a more enjoyable
experience. Users also had a clear preference for the PadCorrect,
showing that a better gaming experience was achieved. With further
adjustments to better detect slow actions and a more comprehensive
sample database, we believe these results can be further improved,
making several classic console titles effectively playable on smart
devices.

8 FUTURE WORKS

To detect slow gestures, one could increase the size of the secondary
buffer, which does not affect the general responsiveness since it only
contains events that were already sent to the game. A more complete
database, with more gestures, is also a natural direction.

The PadCorrect is currently limited to correcting long command
sequences and will not help in games where the input is composed
of single button presses (as discussed on Section 3.4). One possible
solution to this limitation is to use a more sophisticated machine
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learning approach, with the PadCorrect actively evaluating what is
happening on the game at the moment, predicting the best actions
and correcting user input accordingly.
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