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Fig. 1. We introduce a surface-aware feature embedding space based on 2D pre-trained foundational models. In contrast to related works, our embedding
space separates instances of the same semantic class (e.g. right vs. left instances for “hand/paw”) which facilitates many downstream applications: a) Texturing
of even incomplete 3D shapes based on a 2D image (the input image was produced by ChatGPT), b) 3D correspondences between non-isometric shapes, c)
Re-posing of meshes based on a single source and target pair, d) Pose alignment of 3D meshes with dense and sparse point correspondences.

Many 3D tasks such as pose alignment, animation, motion transfer, and 3D

reconstruction rely on establishing correspondences between 3D shapes.

This challenge has recently been approached by pairwise matching of seman-

tic features from pre-trained vision models. However, despite their power,

these features struggle to differentiate instances of the same semantic class

such as “left hand” versus “right hand” which leads to substantial mapping

errors. To solve this, we learn a surface-aware embedding space that is robust

to these ambiguities while facilitating shared mapping for an entire family

of 3D shapes. Importantly, our approach is self-supervised and requires

only a small number of unpaired training meshes to infer features for new

possibly imperfect 3D shapes at test time. We achieve this by introducing a

contrastive loss that preserves the semantic content of the features distilled

from foundational models while disambiguating features located far apart

on the shape’s surface. We observe superior performance in correspondence

matching benchmarks and enable downstream applications including 2D-to-

3D and 3D-to-3D texture transfer, in-part segmentation, pose alignment, and

motion transfer in low-data regimes. Unlike previous pairwise approaches,

our solution constructs a joint embedding space, where both seen and unseen

3D shapes are implicitly aligned without further optimization. The code is

available at https://graphics.tudelft.nl/SurfaceAware3DFeatures.

CCS Concepts: • Computing methodologies → Shape analysis; Dimen-

sionality reduction and manifold learning; Motion processing.

Additional KeyWords and Phrases: Semantic Features, Contrastive Learning,

Motion Transfer, Reposing, Shape Correspondences

1 Introduction
Mapping 3D shapes into a shared space guaranteeing mutual cor-

respondences is important for many applications, including 3D

registration, pose alignment, motion transfer, as well as static and

dynamic 3D reconstruction. Historically, geometric descriptors have

been used to determine matches between pairs of 3D shapes under
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isometric deformations, but they struggle with non-isometric de-

formations [Aubry et al. 2011; Sun et al. 2009; Tombari et al. 2010].

In contrast, neural features, stemming from pre-trained 2D vision

models, have recently achieved great success in identifying corre-

spondences between pairs of vastly different shapes [Luo et al. 2023;

Tang et al. 2023; Wimmer et al. 2024; Zhang et al. 2024b], such as

mapping from cats to lions. In this paper, wemake another important

step by moving from one-to-one pairwise shape correspondence

matching to a joint embedding space establishing many-to-many

shape correspondences.

Despite their inter-class robustness, neural features often struggle

to disambiguate between instances of the same class like “left hand”

and “right hand” (see Fig. 3). Suchmismatches can lead to substantial

errors in downstream applications (see Sec. 6). Recent research has

demonstrated that these features contain global pose information

and that disambiguation is possible in a 2D scenario [Zhang et al.

2024a]. However, achieving the same effect on distilled 3D features

is not trivial, especially in a low-data regime, which is prevalent in

3D, where data acquisition and labeling is difficult.

Our work improves 3D neural features distilled from pre-trained

2D vision models by embedding them into a space disambiguat-

ing intraclass instances. We achieve this without large annotated

datasets using a self-supervised learning scheme guided by in-shape

geodesic distances without the need for shape pairs. Training with

a limited number of 3D meshes, our method produces space of

surface-aware features establishing multi-faceted correspondences

for diverse new shapes without any further fine-tuning. In quanti-

tative and qualitative comparisons to prior work, we demonstrate

superior suitability of these features to serve as robust descriptors

for matching and as building blocks for solving other tasks. Since

geodesic distances are not used during inference, our method has

only a minimal overhead from its shallow neural encoder and its

point-wise nature makes it robust to varying mesh complexity or

shape incompleteness. Finally, the encoder preserves compatibility
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with per-pixel image features, and hence, also naturally establishes

robust 2D-to-3D mappings.

In summary, we make the following contributions: 1. We intro-

duce a novel contrastive loss for self-supervised distillation of 3D

features. 2. We quantitatively demonstrate the effectiveness of our

surface-aware features in pose transfer, correspondence matching

and skinning weight regression. 3. We showcase versatility of our

approach in additional downstream applications including pose

alignment, instance-based part segmentation and 2D-to-3D or 3D-

to-3D texture transfer. 4. We show the versatility of our features

when matching many-to-many shapes of not only humanoids and

animals but also other classes.

2 Related Works
Our method utilizes contrastive learning to embed semantic features

from foundational models to a space enabling robust n-to-n 3D shape

matching. In this section, we discuss prior work in these three areas.

2.1 Image-based features for 3D shapes
Image-based features emerge in large visual models for 2D image

tasks. Self-supervised features from Vision Transformers, such as

DINO-ViT [Caron et al. 2021] and DINOv2 [Oquab et al. 2024], lo-

cally encode semantic information useful for segmentation [Caron

et al. 2021] or image-to-image correspondence matching [Amir

et al. 2021]. SD-DINO [Zhang et al. 2023a] adds complementary fea-

tures from the diffusion-based image synthesis model Stable Diffu-

sion [Rombach et al. 2022]. Lifting these features to 3D has enabled

the self-supervised construction of canonical surface maps [Sht-

edritski et al. 2024], transfer of appearance between 3D shapes [Fis-

cher et al. 2024], 3D animation [Uzolas et al. 2024], keypoint de-

tection [Wimmer et al. 2024] or matching of surface correspon-

dences [Chen et al. 2025; Dutt et al. 2024; Morreale et al. 2024].

However, despite their semantic versatility, disambiguating between

intraclass instances, such as left and right hands, remains challeng-

ing but possible, as shown in a recent 2D image study [Zhang et al.

2024a]. This motivates our 3D shape descriptors for resolving in-

stance ambiguity.

Prior work tackled this ambiguity by mapping shapes to a spher-

ical template [Mariotti et al. 2024], which is difficult for complex

shapes including humans. Alternatively, Liu et al. [2025] recovered

non-isometric correspondences from a 2D semantic flow learned

from vision features. Instead, we adapt Diff3F features [Dutt et al.

2024] in 3D space and resolve the ambiguity through contrastive

learning enforcing geodesic distances.

Geodesic distances have previously supported point cloud analy-

sis [He et al. 2019] and more recently, NIE [Jiang et al. 2023] and the

concurrent work DV-Matcher [Chen et al. 2025] similarly utilize

geodesic distances for feature disambiguation. Yet, the previously

mentioned methods rely on aligned mesh pairs or a learned align-

ment, while our method learns purely from intrinsic properties of

individual shapes. This eases adaptation to less common classes

beyond humanoids and animals (Fig. 8) and cross-class mappings

(Fig. 9).

Beyond vision-only models, multimodal large language models

have recently been effective in image and 3D shape analysis includ-

ing keypoint labeling [Gong et al. 2024] and shape co-segmentation

[Abdelreheem et al. 2023]. In our work, we focus on vision-only

models because of their simplicity, but we consider a model combi-

nation a promising research direction.

2.2 Contrastive Learning
Contrastive learning embeds similar samples close to each other

while keeping dissimilar samples apart. This can be achieved directly

by minimizing and maximizing embedding distances for positive

and negative pair samples, respectively [Chopra et al. 2005; Had-

sell et al. 2006; Schroff et al. 2015; Weinberger and Saul 2009] or

indirectly, such as by optimizing performance in an auto-regressive

task [Oord et al. 2018]. Training pairs can be obtained by data aug-

mentation [Chen et al. 2020], from memory banks [He et al. 2020;

Wu et al. 2018], or by clustering [Caron et al. 2018, 2020]. Learning

with cross-domain labels yields joint embeddings, as demonstrated

by CLIP [Radford et al. 2021] for text and images. Contrastive learn-

ing was applied to learn end-to-end pose transfer from multiple

unregistered meshes of the same identity in different poses [Sun

et al. 2023a]. We design our contrastive loss to disambiguate intra-

class instances guided by a geodesic metric, while learning from

intrinsic properties of individual meshes rather than same-identity

shape pairs.

2.3 Shape correspondences
Point-to-Point. Classical shape registration methods directly mini-

mize global [Besl andMcKay 1992] or local [Brown and Rusinkiewicz

2007] inter-shape distances making them susceptible to local min-

ima [Yang et al. 2015]. This motivates the design of more informa-

tive local geometric descriptors [Aubry et al. 2011; Sun et al. 2009;

Tombari et al. 2010]. These can alternatively be learned [Corman

et al. 2014; Guo et al. 2015] from voxelized patches [Attaiki et al.

2023; Gojcic et al. 2019; Zeng et al. 2017] or from point clouds [Deng

et al. 2018a,b, 2023; Elbaz et al. 2017; Yew and Lee 2018]. The learn-

ing can be supervised by labels [Corman et al. 2014] or achieved

without them [Elbaz et al. 2017; Groueix et al. 2018; Lang et al. 2021;

Zeng et al. 2021]. Our method falls into the latter category, as our

contrastive loss motivates our encoder to separate instances by ap-

proximating geodesic distances [Xia et al. 2021] without training

data labels. This is conceptually similar to previous methods for

near-isometric shape deformations [Halimi et al. 2019; Mémoli and

Sapiro 2005; Shamai and Kimmel 2017]. However, we distinctly do

not measure geodesic distortions between shape pairs, and therefore

we do not limit our method to isometric deformations, and we do

not compute any geodesics during inference. Instead, we only use

the geodesics to disambiguate information already available in the

image-based features, which is critical for our results.

The correspondences can be recovered from descriptors by a

matching [Fischler and Bolles 1981], directly regressed [Lu et al.

2019; Wang and Solomon 2019] or established on parametric tem-

plates [Deprelle et al. 2019; Groueix et al. 2018]. Here, we focus on

the descriptors themselves, and we show several different applica-

tion scenarios in Sec. 6.
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Surface mapping. Functional Maps (FMs) [Ovsjanikov et al. 2012]

allow for matching on a surface. FMs are real-valued surface func-

tions in the space of Laplace-Bertrami eigenfunctions, supporting

linear transformations between shapes. Constrained to match sur-

face descriptors for each shape [Aubry et al. 2011; Sun et al. 2009;

Tombari et al. 2010] they allow extracting point-wise correspon-

dences [Ovsjanikov et al. 2012; Rodolà et al. 2015]. These functions

can also be learned [Litany et al. 2017] often with little or no super-

vision [Donati et al. 2020; Ginzburg and Raviv 2020; Halimi et al.

2019; Roufosse et al. 2019; Sun et al. 2023b]. Extrinsic alignment

can support nonisotropic deformations [Eisenberger et al. 2020a,b].

In this work, we focus on improving features for direct point-to-

point matching in the spatial domain, but we later demonstrate a

combination of our features with FM.

3 Preliminaries
We build upon methods that aggregate features from pre-trained

2D vision models on 3D meshes [Chen et al. 2025; Dutt et al. 2024;

Morreale et al. 2024; Wimmer et al. 2024]. In this section, we give a

brief overview on these methods.

3.1 Reprojection of 2D Features
We represent a 3D shape as a triangular mesh with a tuple of 𝑁

vertices and 𝑀 triangular faces, that is, M := ({p𝑛 ∈ R3 |𝑛 =

1, ..., 𝑁 }, {t𝑚 ∈ N3 |𝑚 = 1, ..., 𝑀}). The rendering function 𝑅𝑟𝑔𝑏 :

(M, C) → I𝑟𝑔𝑏 projectsM into a camera C and outputs an image

I𝑟𝑔𝑏 ∈ R𝐻×𝑊 ×3
, with height 𝐻 and width𝑊 . Optionally, textur-

ing is possible in 𝑅𝑟𝑔𝑏 (.) or as a ControlNet [Zhang et al. 2023b]

post-processing. The image is then passed to a pre-trained vision

model [Caron et al. 2021; Oquab et al. 2024; Rombach et al. 2022;

Zhang et al. 2023a] to obtain dense semantic feature maps F ∈
Rℎ×𝑤×𝑓

with ℎ,𝑤, 𝑓 as two spatial and one feature dimension. Fi-

nally, per-vertex features f𝑛 ∈ R𝑓
are obtained by projective texture

mapping of F onto M. To cover the whole surface, features are

aggregated across multiple cameras, resulting in a set of features

FM := {f𝑛 ∈ R𝑓 |𝑛 = 1, ..., 𝑁 }. Throughout this work, we refer to
FM as the base features on which our method is built. The exact

choice of FM is orthogonal to our contribution but must encode

semantic information. To this extent, we use Diff3F [Dutt et al. 2024]

in this work.

Correspondence Matching. Features FM have been shown to en-

code strong semantic information useful for correspondence match-

ing [Dutt et al. 2024; Tang et al. 2023]. In the simplest case, the

feature f𝑛 ∈ FT of a target mesh T that best matches the feature

f𝑚 ∈ FS of a source meshS is determined by maximizing the cosine

similarity 𝜙 : R𝑓 × R𝑓 → R:

𝜙 (f𝑖 , f𝑗 ) =
f𝑇𝑖 f𝑗

∥f𝑖 ∥2∥f𝑗 ∥2

, (1)

such that 𝜏 (p𝑚) = arg maxp𝑛 𝜙 (p𝑛 → f𝑛, p𝑚 → f𝑚) is the best

matching point. However, the features FM do not differentiate be-

tween semantic instances well (see Fig. 6) which we address by

learning robust surface-aware features SM .

4 Method
Our goal is to learn an embedding resolving instance ambiguities of

the base features FM and obtain surface-aware features SM (see

Fig. 2). We achieve this by training a point-based feature auto-

encoder with a limited set of training meshes and our contrastive

loss for self-supervision. At test time, we can produce surface-aware
features for novel unseen shapes without additional fine-tuning.

4.1 Setup
Our method requires a potentially small set of training meshes

M𝑡 = {M𝑖 |𝑖 = 1, ..., 𝐾}, each associated with base features FM
obtained following Sec. 3 and normalized by a Euclidean norm such

that ∀f𝑛 ∈ FM , ∥f𝑛 ∥2:= 1.

Unlike other approaches [Deng et al. 2023; Jiang et al. 2023], we do

not require extrinsic canonical mesh alignment during training, be-

cause we rely only on intrinsic properties of individual meshes. Sim-

ilar considerations were previously made for Functional maps [Ovs-

janikov et al. 2012]. Moreover, we inherit the rotation invariance of

the base features demonstrated by Dutt et al. [2024, Supplement “Ro-

bustness to Rotation”], although we observe a performance degra-

dation if meshes are upside down and we avoid this in our inputs

(see Appendix A.1).

Furthermore, our encoder is point-based and does not rely on

shape completeness or a consistent topology. Both of these design

choices favor generalization under transformations ranging from

coordinate swap to shape reposing, and memory-unconstrained

batch-based processing of even large shapes.

4.2 Separating Front Paw from Back Paw
Our embedding aims to separate multiple instances of the same

class that are difficult to directly disambiguate in FM . For example,

consider the two surface points, p1 and p2, on the bear’s paws in

Fig. 2. The prevalent semantic significance of the “paw” concept

hinders the separability of the corresponding base features f1 and

f2. Fig. 3 illustrates this for human arms and Diff3F features [Dutt

et al. 2024]. To solve this, we train a point-wise feature autoencoder,

producing our surface-aware features SM ⊂ R𝑠
in its embedding

space. We motivate the feasibility of separation by the prior obser-

vations that vision features additionally carry information about the

global pose [Zhang et al. 2024a]. We postulate that this enables our

model to distinguish between part instances when guided by their

intrinsic distance. We adopt the geodesic distance 𝑑1,2 between p1

and p2 for this purpose. Following contrastive learning, we sample

point pairs on a single shape to enforce 𝜙 (s1, s2) ≈ 𝑑1,2 for s𝑛 ∈ SM .

We validate our choice of hyperspherical embedding space against

Euclidean space in Sec. 5.5.

Model. We train a base feature encoder E(.), such that, following

a normalization, s𝑛 = E(f𝑛)/∥E(f𝑛)∥2 is a surface-aware feature
s𝑛 ∈ R𝑠

in a hypersphere embedding. During training, we randomly

sample an unpaired training mesh M ∈ M𝑡 with base features FM ,

which we encode pointwise to obtain SM .

In each training iteration, we use furthest-point sampling to

choose a random subset of 𝐴 anchor points p𝑎 among the mesh

vertices p𝑖 ∈ M and compute geodesic distances 𝑑𝑛,𝑎 for each pair
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Fig. 2. Overview of our method. We feed images of a 3D shape rendered from multiple viewpoints to a pre-trained 2D vision model and extract features
that are then projected back onto surface points p𝑖 and aggregated into per-point features f𝑖 (Sec. 3). Next, we pointwise embed the base features f𝑖 into our
surface-aware features s𝑖 residing in a lower-dimensional space learned using our contrastive loss preserving geodesic distances 𝑑𝑖,𝑗 and a reconstruction loss
matching decoded features f̄𝑖 to f𝑖 (Sec. 4). The surface-aware features s𝑖 serve as robust descriptors for correspondence matching (Sec. 5) and base blocks for
many down-stream applications (Sec. 6).

of a mesh and anchor point. We additionally rescale 𝑑𝑛,𝑎 to a maxi-

mum of one, such that 𝑑 ′𝑛,𝑎 := 𝑑𝑛,𝑎/max𝑛,𝑎 (𝑑𝑛,𝑎), which removes the

dependency on the scale of the mesh. We find this robust and lead-

ing to features later generalizing across morphologically equivalent

shapes with different proportions (see an elephant vs. a giraffe in

Fig. 8).

Subsequently, our contrastive loss preserves the rescaled geodesic

distances in the embedding space:

L𝑐 =
1

𝑁𝐴

𝑁∑︁
𝑛

𝐴∑︁
𝑎

����𝑑 ′𝑛,𝑎 − (
1 − 𝜙 (s𝑛, s𝑎)

2

)���� . (2)

This loss operates in a hyperspherical embedding space and utilizes

cosine similarity mapped to the [0, 1] range. Hereby, L𝑐 penalizes

features close in the embedding space but distant on the shape

surface and vice versa.

Furthermore, we found it beneficial for the preservation of seman-

tic information to train a feature decoder f̄𝑛 = D(s𝑛)/∥D(s𝑛)∥2 in

an autoencoder fashion. To this extent, we utilize a reconstruction

loss:

L𝑟 =
1

𝑁

∑︁
𝑛

1 − 𝜙 (f𝑛, f̄𝑛). (3)

We train both the encoder and the decoder end-to-end with the

combined lossL =𝑤𝑟L𝑟+𝑤𝑐L𝑐 , where a choice𝑤𝑟 =𝑤𝑐 = 1 works

well in our tests. We do not observe an increase in performance

with a higher𝑤𝑐 .

Note that our training procedure, in contrast to relatedworks [Chen

et al. 2025; Deng et al. 2023; Lang et al. 2021], does not require target

and source shape pairs.

4.3 Implementation
During preprocessing, we rasterize our triangular meshes and pre-

compute base features for all vertices following Sec. 3. We imple-

ment our autoencoder in PyTorch2 [Ansel et al. 2024] and use the

Polyscope renderer [Sharp et al. 2019b] for visualizations. The en-

coder E is a Multilayer Perceptron (MLP) consisting of three blocks,

where each block has two linear layers, SiLU activation [Elfwing

et al. 2018], and layer normalization [Ba et al. 2016]. The first layer

in each block employs a skip connection [He et al. 2016], while

the second reduces the dimensionality by a factor of two. With

Diff3F [Dutt et al. 2024] as base features, E reduces feature dimen-

sionality from 𝑓 = 2048 to 𝑠 = 256. The decoder D is a mirrored

copy of the encoder. We train our model on NVIDIA RTX 3090 for

50k iterations with the AdamW optimizer [Loshchilov and Hutter

2017] and a learning rate of 0.0001 which takes ≈ 2 hours.

We choose an exponential moving average [Polyak and Juditsky

1992] of the model with the lowest validation loss, without the need

for any correspondence labels. Geodesic distances for training are

calculated on the fly with the heat method [Crane et al. 2017] imple-

mented in Geometry Central [Sharp et al. 2019a]. No geodesics are

required during inference and the computational cost is determined

by the Diff3F baseline with a only a negligible overhead from our

shallow encoder E. For a shape with 10k vertices, this is less than 5

milliseconds on top of ≈ 4 minutes from Diff3F. Moreover, down-

stream tasks cost benefits from the smaller feature dimensionality.

Functional maps are calculated with the base algorithm [Ovsjanikov

et al. 2012], provided by the Diff3F implementation [Dutt et al. 2024].

5 Experiments
Here, we first motivate the benefits of our surface-aware feature
embedding space by visualizing its distribution. Next, we evaluate

their effectiveness in tasks with quantitative benchmarks including

pose transfer, skinning weight regression and 3D correspondence

matching. Finally, we analyze the impact of our design choices in

an ablation experiment.

Training. We train a single autoencoder on a joint dataset consist-

ing of 49 animal samples from the SMAL dataset [Zuffi et al. 2017]

and 49 humans from the SURREAL dataset [Groueix et al. 2018].

We choose 2 samples from each dataset for validation. We use this

single shared model without any additional optimization for all

experiments, unless stated otherwise.

5.1 Exploration of Embedding Space
To illustrate the effect of our contrastive loss on feature separation,

we compare the 2D projections of the Diff3F [Dutt et al. 2024] base
features with our surface-aware features.

Setup. We create two dataset SMPLeval and SMALeval unseen dur-

ing training. The former consists of 50 randomly-sampled SMPL
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Shapes Ours Diff3F

Fig. 3. Two shapes (left) and a PCA-based 2D projections of their aggre-
gated Diff3F base features and our surface-aware features (right). Notice the
separation of limbs in our result compared to Diff3F. Our features originate
from the same encoder for both shapes. The animal legs appear merged
along the sagittal plane due limitations of the PCA projection, but they
remain disambiguated in our feature space as demonstrated in Fig. 9.

[Loper et al. 2023] shapes and poses from AMASS [Mahmood et al.

2019], while the latter consists of 50 randomly-sampled SMAL [Biggs
et al. 2018; Zuffi et al. 2017] shapes in canonical poses. For each

sample, we obtain the base features and surface-aware features as
described in Sec. 3 and Sec. 4

Embedding. We project Diff3F features aggregated from SMPLeval

to two dimensions using principal component analysis (PCA). In

Fig. 3, we visualize the projection for two selected shapes from

the same dataset. We repeat this with our surface-aware features.
To avoid bias, we derive the visualized colors from the true SMPL

[Loper et al. 2023] skinning weights w𝑛 ∈ R𝐵
for both methods,

where 𝐵 is the skinningweight dimension.We repeat this process for

SMALeval. In Fig. 3, our method yields an interpretable embedding

that separates the leg and hand instances for animals and humans

despite not having access to extrinsic (𝑥,𝑦, 𝑧) point positions. This
validates the suitability of our features for downstream tasks and

highlights the limitations of the Diff3F base features.

5.2 One-shot Pose Transfer
We evaluate the performance of the surface-aware features in a one-

shot re-posing task for arbitrary 2-manifold meshes. We use our

features to fit a Neural Jacobian Field (NJF) [Aigerman et al. 2022]

between poses of two input shapes and then apply it to re-pose a

new target shape as described in Appendix B.

We sample 5 input shape pairs from SMPLeval by choosing one

challenging pose as a target and one random shape as an initial

pose. The remaining shape samples serve as test inputs for pose

transfer with known ground truth. We report MSE for 240 such test

pairs (see upper row, Fig. 4). Next, we repeat the same procedure

with the base features and with the Geometric descriptors (Geo)

[Aigerman et al. 2022], consisting of the face centroid, face normals,

and a Wave-Kernel Signature [Aubry et al. 2011]. Finally, we pro-

vide additional qualitative results for transfer of animal poses from

TOSCA to SMALeval in Fig. 4.

Input Pairs Ours Diff3F Geo

1.4 ± 3.1 56.8 ± 70.4 1.9 ± 3.9
MSE

Learn deformation

A

pply deformation

MSE MSE

Fig. 4. One-shot pose transfer using our features, Diff3F features, or Geo-
metric descriptors. MSE ×10

−4 is reported for human shapes.

Ours Diff3F

SMPLeval SMALeval

Ours .0014±.0006 .0048±.0008
Diff3F .0058±.0024 .0086±.0028

Geo .0210±.0031 .0287±.0017

Fig. 5. Mean Squared Error of skinning weight regression (↓ is better) and
its distribution across the SMPL mesh surface.

We observe that our surface-aware features outperform the base
features both quantitatively and qualitatively by correctly distin-

guishing individual posed limbs. The Geometric descriptors also

perform well for humans, but they struggle with larger input and

output shape differences in animals. Our features perform well in

both cases.

5.3 Skinning Weight Regression
We train a simple regressor to predict skinning weights of a kine-

matic model, based on a single training sample.

Our pointwise regressor Ws (s𝑛) consists of a linear layer and
a Softmax activation and regresses skinning weights w̄𝑛 from our

surface-aware features or, in case of Wf (f𝑛) and Wg (g𝑛), from the

base features or the Geometric descriptors, respectively. We train all

models fivefold supervised with the Mean Squared Error (MSE) and

true weights separately on the SMPLeval and dsmalours datasets,

and we report test MSE for the remaining unseen samples in the

source datasets (see Fig. 5). Our features achieve lower errors and

exhibit better robustness to instance ambiguities than the two alter-

natives. It is worth noting that the relatively lower dimensionality

of the Geometric descriptors and base features affects the number

of regressor parameters, impact of which is not studied in this ex-

periment. However, our conclusions also hold for a 2-layer MLP

regressor with an equal hidden dimensionality of 106 which matches

the dimensionality of the Geometric descriptors.
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5.4 Point-to-Point Correspondence Matching
Our features can be easily integrated into correspondence matching

pipelines. Therefore, we replicate the evaluation setup of Diff3F [Dutt

et al. 2024] and assess our surface-aware features in a correspondence
matching task on human and animal shapes.

Data. For testing we use re-meshed versions of humans from

SHREC’19 [Donati et al. 2020; Melzi et al. 2019] and animals from

both SHREC’20 [Dyke et al. 2020] and the animal-only subset of

TOSCA [Bronstein et al. 2008].

Baselines. We compare our method against the unsupervised

image-based Diff3F method [Dutt et al. 2024], which also provides

our base features, and against 3DCODED [Groueix et al. 2018],

DPC [Lang et al. 2021] and SE-OrNet [Deng et al. 2023], which

have been trained on thousands of samples, while our method is

trained on less than 100 samples.

Metrics. We report commonly used point correspondence met-

rics for 1024 points per mesh [Deng et al. 2023; Dutt et al. 2024;

Groueix et al. 2018; Lang et al. 2021]
1
. The correspondence er-

ror measures a distance between the computed correspondence

point 𝜏 (p𝑛) (see Sec. 3) and the ground-truth correspondence point

t𝑔𝑡𝑛 : 𝑒𝑟𝑟 = 1

𝑛

∑
p𝑛 ∈S ∥𝜏 (p𝑛) − t𝑔𝑡𝑛 ∥2

2
. The accuracy is the fraction

of points with an error below a threshold 𝜖 ∈ [0, 1]: 𝑎𝑐𝑐 (𝜖) =
1

𝑛

∑
p𝑛 ∈S I(∥𝜏 (p𝑛) − 𝑡𝑔𝑡𝑛 ∥2 < 𝜖𝑔), where 𝑔 is the maximal Euclidean

distance in the target shape and I(.) is the indicator function.

Results. We provide quantitative results in Tbl. 1 and qualitative

comparisons in Fig. 6. We find that our method achieves the lowest

error on SHREC’19 and TOSCA, despite being trained on fewer

samples than the supervised baselines. Furthermore, we outperform

the Diff3F base features on both SHREC datasets in terms of accuracy.

While Diff3F achieves a higher accuracy at 1% threshold in TOSCA,
Fig. 7 shows that the accuracy of our model is higher for thresholds

above ≈ 2%. This suggests that our method excels in the removal of

outliers that can be caused bymismatched components. Additionally,

adapting our features to Functional maps [Ovsjanikov et al. 2012]

(+ FM) distributes the error towards a lower mean at the cost of

accuracy, and maintains the beneficial comparison to Diff3F+FM.

Fig. 6 shows that Diff3F struggles to separate intraclass instances

such as left and right legs. In contrast, the results confirm the effec-

tiveness of our contrastive loss in mitigating this issue. We observe

the same behavior for SHREC’20 in Fig. 8 (top), which contains highly
diverse animal shapes. Furthermore, our method generally produces

visually smoother results (see Appendix D.1 and the supplementary

videos on the project website).

Other Shapes. Our method is applicable beyond humanoid and

animal shapes, which we show by training two additional encoders

for a subset of 50 chairs and 50 airplanes from ShapeNet [Chang

et al. 2015]. Here, we uniformly resample the mesh vertices for a

better surface coverage [Wang et al. 2022].

For unseen shapes in Fig. 8, our surface-aware features again better
distinguish same-class instances such as chair legs and airplane

1
We use the provided code and validate that we follow the same experimental procedure

and metric definitions.

Table 1. Comparison of our 3D correspondence matching to prior works
3DC (3D-CODED [Groueix et al. 2018]), DPC [Lang et al. 2021], SEN (SE-
OrNet [Deng et al. 2023]), and Diff3F [Dutt et al. 2024]. †) Numbers originate
from [Dutt et al. 2024], *) Experiments were replicated, x) Omitted due to
non-manifold meshes, + FM) Semantic features combined with Functional
Maps. Accuracy is for the commonly used 𝜖 = 1%. The per-column best
results are bold and the second-to-best results are underlined.

SHREC’19 TOSCA SHREC’20

3DC†

err ↓ 8.10 19.20 -

acc ↑ 2.10 0.50 -

DPC†

err ↓ 6.26 3.74 2.13

acc ↑ 17.40 30.79 31.08

SEN†

err ↓ 4.56 4.32 1.00
acc ↑ 21.41 33.25 31.70

Diff3F*

err ↓ 1.69±1.44 4.51±5.48 5.34±10.22

acc ↑ 26.25±9.30 31.00±15.73 69.50±24.99

Diff3F + FM*

err ↓ 1.51±1.65 x 4.44±7.87

acc ↑ 21.71±7.12 x 58.03±25.94

Ours

err ↓ 0.43±0.76 1.65±2.15 3.89±8.90

acc ↑ 28.78±9.30 29.35±14.53 73.97±26.47

Ours + FM

err ↓ 0.24±0.64 x 3.54±7.59

acc ↑ 24.83±6.80 x 63.61±24.34

wings, supporting a wider applicability of our methodology. More

examples are shown in Appendix D.2 and the supplementary videos.

5.5 Ablations
We motivate our design choices by ablation on various parts of our

method in Tbl. 2 following the setup of Sec. 5.4.

Choice of Angular Space. We demonstrate the effectiveness of

our hyperspherical embedding by replacing our contrastive loss

L𝑐 (Eq. 4.2) with three different options inspired by related work

(see Appendix A.2). First, the Relative Geodesic Loss (RGL) [Jiang
et al. 2023] optimizes relative distances in a Euclidean embedding.

Similarly, the Naive Geodesic Loss (NGL) minimizes absolute dis-

tances. Finally, the Geometrical Similarity Loss (GSL) [Chen et al.

2025] enforces similarity of feature and surface distances in a lo-

cal neighborhood. We remove feature and geodesic normalization

wherever absolute magnitude needs to be learned. In Tbl. 2 (top),

we observe that, except for correspondence accuracy for TOSCA,

our contrastive loss L𝑐 outperforms all of the alternatives in the

correspondence matching task.

Contrastive and Reconstruction Loss. In Tbl. 2 (bottom), we indi-

vidually assess our two losses. We see that the performance with

only the reconstruction loss L𝑟 is close to Diff3F. This indicates that

the gain in performance does not originate predominantly from a

smaller embedding space or from access to training data. Similarly,

the contrastive loss L𝑐 alone results in an accuracy drop compared

to our full model. This justifies our autoencoder approach with both

losses playing an import role. Ablations on the number of anchors

can be found inAppendix A.2.



Surface-Aware Distilled 3D Semantic Features • 7

Source Ground Truth Ours Diff3F

Fig. 6. Qualitative comparison on the SHREC’19 and TOSCA datasets with dense true correspondence labels provided by their authors. We show the source and
target meshes with their ground truth correspondence labels (the two left-most columns) in comparison to correspondences computed using our surface-aware
features (the forth column) and Diff3F base features (the right-most column). We further highlight the correspondence error on the mesh surface (the third and
the fifth column). The error colormap is normalized per sample by the maximal error over both methods to keep the error scale comparable across columns but
not across rows. Our surface-aware features notably improve separation of the limb instances.
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Fig. 7. Correspondence accuracy (↑ is better) at different error distance
thresholds for our own and Diff3F features.

Source Ours Diff3F

Fig. 8. Qualitative comparison of correspondence matching on TOSCA and
ShapeNet [Chang et al. 2015] (dense ground truth labels not available).
Source shape (left) matched to target (right) using our and Diff3F features.
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Table 2. Ablation on our method. Above the bar: Ablation on alternative
losses inspired by related work [Chen et al. 2025; Jiang et al. 2023] compared
to the unmodified Diff3F features. Below the bar: Our full method compared
to its reduced variant omitting losses L𝑐 or L𝑟 . The per-column best results
are bold and the second-to-best results are underlined.

SHREC’19 TOSCA SHREC’20

RGL

err ↓ 0.80±1.08 2.74±2.53 5.29±9.85

acc ↑ 20.16±10.03 16.53±10.41 55.23±21.93

NGL

err ↓ 0.54±0.90 2.11±2.02 4.86±9.49

acc ↑ 18.84±9.59 18.86±11.50 58.97±23.12

GSL

err ↓ 1.72±1.45 4.17±5.21 4.34±9.23

acc ↑ 26.89±9.07 29.77±14.92 73.39±26.31

Diff3F

err ↓ 1.69±1.44 4.51±5.48 5.34±10.22

acc ↑ 26.25±9.30 31.00±15.73 69.50±24.99

only L𝑟
err ↓ 1.65±1.44 4.70±5.64 4.87±9.38

acc ↑ 26.53±9.19 30.27±15.17 72.94±26.21

only L𝑐
err ↓ 0.38±0.61 1.67±2.29 4.30±9.31

acc ↑ 26.21±8.78 25.58±13.88 70.08±25.17

Ours

err ↓ 0.43±0.76 1.65±2.15 3.89±8.90
acc ↑ 28.78±9.30 29.35±14.53 73.97±26.47

6 Applications
We present additional downstream tasks that benefit from our

surface-aware features learned in Sec. 5.

6.1 Instance-based Part Segmentation
Following the prior work [Dutt et al. 2024], we segment a target

shape by clustering features around centroids from K-means cluster-

ing of source-shape features. In the top row of Fig. 9, we demonstrate

a transfer from a big cat to a human and see that, unlike the Diff3F

features, our surface-aware features disambiguate the limbs. In the

bottom two rows, we repeat this experiment with a shared encoder

trained on human, animals, and a subset of ShapeNet (see Appen-
dix D.4) where a true mapping cannot be defined but our method

finds reasonable analogies between the classes.

In Fig. 11, we repeat this with centroids obtained jointly from

all SMPLeval and TOSCA samples. In contrast to Diff3F, our method

successfully matches features across diverse shapes, which demon-

strates our embedding’s capability of many-to-many shape match-

ing without any additional pairwise optimization. Finally, we show

similar results for chairs and airplanes in Fig. 12.

6.2 Pose Alignment
Our surface-aware features are also useful for pose alignment of a

kinematic model to another 3D shape. To this end, we establish point

correspondences between shape pairs as in Sec. 5.4 and optimize

the kinematic pose parameters to minimize point-to-point distances

(see Appendix C).

In Fig. 10, we align SMPLeval to SHREC’19, and SMALeval to De-

formingThings4D [Li et al. 2021] animals. Benefiting from the robust

instance separation, our method produces poses closer to the targets

for both dense and sparse correspondences. See our video for a 3D

shape animation obtained by aligning to a target shape sequence.

Ours

Ours Diff3F

Ours Diff3F

Diff3F

Fig. 9. In the top row, 10 k-means cluster centers from the big cat were used
to segment the human. In the bottom two rows, 8 k-means cluster centers
from the animals were used to segment the chairs and airplanes with a
shared encoder. Unlike Diff3F, our method successfully separates all limbs
for a plausible mapping from animal limbs to human limbs, chair legs, or
airplane wings.

Fig. 10. Pose alignment of a source shape (color) into the pose of a target
(gray). The boxes highlight challenging areas handled well by our method.
For humans, we densely fit all the target vertices, while for animals, we only
fit 5% of the vertices as highlighted.

6.3 Texturing
Since the base features are obtained from image models (see Sec. 3)

and our pointwise encoder can process points sampled from a mesh

as easily as pixels sampled from an image, we can establish corre-

spondences between a 2D image and a 3D mesh. We demonstrate

this by texturing 3Dmeshes from amasked target image and individ-

ually assign each vertex a color from the image pixel that maximizes

the mutual feature similarity (Eq. 3.1) (see Fig. 13 and Appendix D.3).
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Fig. 11. Results when clustering features across all samples in SMPLeval and TOSCA. Our method implicitly aligns semantically-related regions (shown as the
same colors) across diverse 3D shapes in a self-supervised manner (the top row). Diff3F produces inconsistent labeling across different shape categories as well
as lack of separability between instanced components such as individual limbs (the bottom row).

Fig. 12. Results when clustering the surface-aware features across chairs (top row) and airplanes (bottom row) from ShapeNet [Chang et al. 2015]. Note, that
while we use a single shared encoder for all humanoid and animal shapes, we train a separate encoder for each ShapeNet class due to the large domain gap.

We observe that our features produce a more coherent mapping

leading to a better preservation of the source appearance when com-

pared to the Diff3F base features. In Fig. 14, we further show that

textures can also be effectively transferred between two 3D shapes

using a combination our surface-aware features with Functional

Maps like in Sec. 5.4.

7 Discussion
Limitations and Future Work. Our method inherits limitations

connected to the extraction of the base features. Specifically, the
extraction of Diff3F features [Dutt et al. 2024] takes several minutes

per mesh and its vision model is sensitive to rendering artifacts or

upside-down mesh orientations. We expect that advances in ren-

dering of point representations increase the applicability across

representations [Kerbl et al. 2023]. Furthermore, our method cannot

establish a consistent partitioning for objects that are both geo-

metrically and semantically isotropic (e.g., a round table). Hence,

while our embedding separates human legs following the body’s

notion of front and rear, it cannot do so for table legs. However,

this is not an issue for applications such as shape morphing [Sun

et al. 2024]. Lastly, our method relies on consistency of geodesic

distances between semantically distinct parts, and therefore it will

be affected by geodesic shortcuts for partially blended parts in noisy

3D reconstructions (e.g., touching hands).

Beyond 3D alignment, our methodology could inspire 3D-to-2D

pose estimation [Kanazawa et al. 2018; Peng et al. 2019], articulated

3D reconstruction [Uzolas et al. 2023; Yao et al. 2022], automated

rigging [Xu et al. 2020] or 2D-to-3D uplifting [Liu et al. 2023; Poole

et al. 2022], where our features could support more view-consistent

representations. Finally, an interesting topic for future research is

the development of foundational features using massive datasets,

such as Objaverse [Deitke et al. 2023].

Conclusion. We have introduced novel surface-aware features for
3D shape matching that disambiguate intra-class instances among

semantic features derived from pre-trained 2D vision models. Our

descriptors have proven effective in distinguishing instances of

the same semantic class and they generalize even when trained

on a limited number of 3D shapes. Furthermore, our contrastive

loss facilitates easy integration in future unsupervised methods

which reduces data labeling effort. Consequently, our method is a

promising building block toward adapting pre-trained 2D models

to 3D tasks.
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Source
Texture

Fig. 13. Texturing of 3D meshes from SMPLeval and TOSCA, based on a 2D image generated with ChatGPT. The appearance is transferred by establishing
correspondence between the image features and 3D mesh features. In contrast to Diff3F, our surface-aware features represent the input image more faithfully.

Source
Texture

Fig. 14. Texturing of 3D meshes based on a source 3D mesh. The appearance is transferred based on correspondences established by combining our surface-
aware features with Functional Maps. The data originate from SMPLeval, SMPLitex [Casas and Comino-Trinidad 2023], and DeformingThings4D [Li et al. 2021].
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A Additional implementation details
Here, we provide additional details to reproduce our experiments.

A.1 Diff3F
We use the authors’ code to compute the Diff3F features [Dutt

et al. 2024] for our base features and as a baseline method for our

comparisons.

Since we observed that the camera poses used for sampling in

the TOSCA dataset are biased towards a specific up-direction, we

modified the code to flip the coordinate system for only this dataset.

Doing so yields ≈ 10% increase in correspondence accuracy in

TOSCA for both our method and the Diff3F baseline, when compared

to the numbers reported in the Diff3F paper [Dutt et al. 2024]. An

alternative solution could be a modification of the camera sampling

algorithm itself.

A.2 Ablations
Number of Anchors. We train our method for different anchor

counts 𝐴 with a constant two-hour training budget per model. In

Fig. 15, we observe a low sensitivity to the anchor count. Due to

repeated random sampling over the course of training, even 𝐴 = 1

outperforms the correspondence error of Diff3F. Ultimately, we opt

for 𝐴 = 100 in all our experiments, as it balances computation cost

and matching performance well. Note that neither the parameter

𝐴 nor any computation of geodesic distances in generally are used

during inference.

Losses. Utilizing the geodesic distance as a supervision signal

for embeddings has been explored in related works [Chen et al.

2025; Jiang et al. 2023]. However, in our ablations, we show that we

achieve superior results with our formulation. In this section, we

discuss the key differences.

Relative Geodesic Loss (RGL). Based on two points, 𝑣𝑝 and 𝑣𝑞 , the

Relative Geodesic Loss [Jiang et al. 2023] minimizes the difference

between the geodesic distance 𝑑𝑆 and the Euclidean embedding

distance 𝑑𝐸 of those two points, relative to the surface distance:

𝐿𝑅𝐺𝐿 =
∑︁
𝑖

∑︁
(𝑝,𝑞) ∈𝑆𝑖

|𝑑𝐸𝑖 (𝑣𝑝 , 𝑣𝑞) − 𝑑𝑆 (𝑣𝑝 , 𝑣𝑞) |2

𝑑𝑆 (𝑣𝑝 , 𝑣𝑞)2

. (4)

The normalization term is introduced to prioritize local distance

preservation. We do not utilize this normalization term, because the

base features struggle to disambiguate samples that are far away on
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Fig. 15. Ablation on the anchor count 𝐴 on SHREC’19. In terms of the
correspondence error, our method improves upon Diff3F already starting
from 𝐴 = 1.

the surface but close in feature space, such as “left hand” and “right

hand”.

Naive Geodesic Loss (NGL). NGL is discussed by Jiang et al. [2023]

but not used for training, as the authors state that it might hamper

local distance preservation. Indeed, in our ablations, it achieves

worse results in terms of correspondence accuracy when compared

to RGL. It is identical to RGL but it omits the normalization term:

𝐿𝑁𝐺𝐿 =
∑︁
𝑖

∑︁
(𝑝,𝑞) ∈𝑆𝑖 ∈[𝑛𝑖 ]2

|𝑑𝐸𝑖 (𝑣𝑝 , 𝑣𝑞) − 𝑑𝑆 (𝑣𝑝 , 𝑣𝑞) |2 (5)

While not actually utilized in their work, the NGL formulation is the

closest of the three to our own formulation. However, our choice of

a hyperspherical rather than Euclidean embedding space in combi-

nation with our autoencoder setup achieves notably better results.

Geometric Similarity Loss (GSL). A concurrent work proposes to

maximize the local angular similarity between geodesic distances

and Euclidean feature vectors for a set of neighbors for each point [Chen
et al. 2025]. Crucially, the similarity is only maximized for a set of

𝑘 point pairs nearest in the embedding space. The loss is a cosine

metric between a vector of geodesic distances m𝑖 ∈ R𝑘
and a vector

of Euclidean embedding distances d𝑖 ∈ R𝑘
:

LGSL =
1

𝑁

𝑁∑︁
𝑖=1

(
1 − d𝑖 · m𝑖

∥d𝑖 ∥∥m𝑖 ∥

)
. (6)

This restricts GSL supervision to a fixed neighborhood size and

potentially limits disambiguation of features that are close in fea-

ture space but not among the 𝑘 nearest neighbors. In contrast, our

method follows a global approach by sampling anchors based on a

furthest point sampling.

Conclusion. Ourmethod differs from recent and concurrent works

utilizing vision-based features for 3D shape matching in three main
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aspects: 1) we follow a global approach when enforcing distances

in the embedding space; 2) our embedding space is hyperspherical

and it only encodes angular information; 3) in the context of the

whole pipeline, we solely rely on intrinsic properties.

B One Shot Pose Transfer
We train an MLP to model the deformation between the paired input

source mesh M𝑠𝑟𝑐
𝑡𝑟𝑎𝑖𝑛 and the output target mesh M𝑡𝑔𝑡

𝑡𝑟𝑎𝑖𝑛
obtained

from SMPLevaland thus not used for training of our features. The

paired training meshes share the same identity 𝛽 but they differ in

poses 𝜃 such that

M𝑠𝑟𝑐
𝑡𝑟𝑎𝑖𝑛 := 𝑆𝑀𝑃𝐿(𝛽𝑠𝑟𝑐 , 𝜃𝑠𝑟𝑐 )

M𝑡𝑔𝑡

𝑡𝑟𝑎𝑖𝑛
:= 𝑆𝑀𝑃𝐿(𝛽𝑠𝑟𝑐 , 𝜃𝑡𝑔𝑡 ) .

We train an MLPM𝑡𝑔𝑡

𝑡𝑟𝑎𝑖𝑛
= J (M𝑠𝑟𝑐

𝑡𝑟𝑎𝑖𝑛,Ssrc
M ) to produce the target

pose meshM𝑡𝑔𝑡

𝑡𝑟𝑎𝑖𝑛
conditioned on the source meshM𝑠𝑟𝑐

𝑡𝑟𝑎𝑖𝑛 and its

surface-aware features Ssrc
M . These features are produced by our

pre-trained general encoder E(.) from Sec. 5 without any further

fine-tuning. Alternatively, other features are used for comparisons.

During training, J (.) learns a per-face residual function [Mura-

likrishnan et al. 2024] to model a Neural Jacobian Field [Aigerman

et al. 2022] while being supervised by MSE between the predicted

re-posed mesh and the target M𝑡𝑔𝑡

𝑡𝑟𝑎𝑖𝑛
.

Crucially, J (.) is defined on a per-face basis, which means that

the input meshes used in test time do not need to have the same

connectivity as the training mesh pair. In quantitative comparisons,

we apply the learned mapping J (.) to input meshes of unseen

identities M𝑠𝑟𝑐
𝑡𝑒𝑠𝑡 := 𝑆𝑀𝑃𝐿(𝛽𝑡𝑒𝑠𝑡 , 𝜃𝑠𝑟𝑐 ) and compare against their

ground truthsM𝑡𝑔𝑡

𝑡𝑒𝑠𝑡 := 𝑆𝑀𝑃𝐿(𝛽𝑡𝑒𝑠𝑡 , 𝜃𝑡𝑔𝑡 ). For other shape classes,
we provide qualitative comparisons.

C Pose Alignment
We establish correspondences between two input shapes based on

the feature cosine similarity 𝜙 (.) (Sec. 3), such that each point xS
𝑖
in

the source shape is assigned a target point xT
𝑖
in the target shape.

Next, we align the source to the target by minimizing the following

L1 loss:

L𝑝𝑜𝑖𝑛𝑡 =
1

𝑁

𝑁∑︁
𝑖

| |xS
𝑖 − xT

𝑖 | |1 . (7)

For the first half of the optimization steps, we only optimize the

root rotation R, the root translation t, and the scale 𝑠 , which roughly

rigidly aligns the meshes. In the second half, we additionally opti-

mize the rotation R𝑏 of each kinematic bone 𝑏. The parameters are

optimized based on a gradient-descent for 4000 iterations, which

takes approximately 30 seconds for a static pose.

Furthermore, we found it beneficial to use an as-rigid-as-possible

regularization [Sorkine and Alexa 2007], which penalizes the de-

viation between the initial edge lengths of the mesh 𝛿𝑖𝑛𝑖𝑡𝑒 and the

current edge length 𝛿𝑒 for each edge 𝑒:

L𝑎𝑟𝑎𝑝 =
1

𝐸

𝐸∑︁
𝑒

|𝛿𝑖𝑛𝑖𝑡𝑒 − 𝛿𝑒 |. (8)

When fitting an animation as a pose sequence, we optimize the

pose parameters for each time step 𝑡 . Furthermore, we apply point-

wise temporal smoothing for neighboring frames:

L𝑠𝑚𝑜𝑜𝑡ℎ =
1

𝑁 (𝑇 − 1)

𝑇−1∑︁
𝑡

𝑁∑︁
𝑖

| |xS
𝑖,𝑡 − xS

𝑖,𝑡+1
| |2

2
. (9)

The final loss is L𝑝𝑜𝑠𝑒 =𝑤𝑝L𝑝𝑜𝑖𝑛𝑡 +𝑤𝑎L𝑎𝑟𝑎𝑝 +𝑤𝑠L𝑠𝑚𝑜𝑜𝑡ℎ with

𝑤𝑝 =𝑤𝑎 =𝑤𝑠 = 1 for animations and𝑤𝑠 = 0 otherwise.

D Additional results

D.1 Qualitative Results on SHREC’20
Fig. 16 presents additional results for the SHREC’20 dataset. As the
dataset only provides ≈ 50 correspondences for each shape pair,

we display the predicted correspondences without dense ground-

truth labels. However, we find that our features generally produce

smoother correspondences (e.g., bottom left) and a better separation

of legs (e.g., the second to last row on the right).

D.2 Qualitative Results on ShapeNet
In Fig. 17, we show additional results for chairs and airplanes from

ShapeNet [Chang et al. 2015]. Since no dense ground truth labels

are available, we show the predicted correspondences alone. We

find that our surface-aware features achieve results better than the

Diff3F baseline when separating the chair legs (see the top left row)

and the airplane wings (see the top right row).

D.3 Texturing
We provide additional examples of 2D-to-3D texturing based on our

own features in Fig. 18.

Table 3. Correspondence metrics measured for human and animal test
shapes. The Specialized encoder was trained on a join set of humans and
animals following our point-to-point correspondence experiment procedure
in Sec. 5.4, and thus, the values match Tbl. 1 in the paper (see Ours). All-
shape encoder was trained on a larger more generalized training set covering
humans and animals but also chairs and airplanes.

Encoder SHREC’19 TOSCA SHREC’20

Specialized

err ↓ 0.43±0.76 1.65±2.15 23.89±8.90
acc ↑ 28.78±9.30 29.35±14.53 73.97±26.47

All-shape

err ↓ 0.56±1.03 1.62±2.08 4.37±9.47

acc ↑ 27.53±9.47 27.45±14.56 70.33±24.86

D.4 Using a Shared Encoder for All Shapes
In Sec. 5, we train a shared encoder for (SURREAL) and animals

(SMAL) shapes as well as separate encoders for chair and airplanes

(ShapeNet). Here, we follow the same procedure and train a new

single shared encoder on a union of all these shapes and test it on

human and animal shapes as in the paper Tbl. 1 to assess further

generalization of our approach. The correspondencemetrics in Tbl. 3

show that the all-shape encoder generally slightly under-performs

the specialized encoders but it still improves upon the baselines (see

Tbl. 1 in the paper). TOSCA is an exception, as the larger combined

train set marginally reduces the error.
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Source Target Ours Diff3F Source Target Ours Diff3F

Fig. 16. Qualitative results on SHREC’20. Our features result on average in a more accurate smooth mapping between different limbs.

D.5 Ablating the Number of Training Shapes
In Tbl. 4, we explore how the number of training shapes affects

the correspondence error with the same fixed validation set and

training policy as in the main experiments. We vary the number

of training samples while retaining a constant animal-to-human

shape ratio. We find that just 2 training samples already decrease

the error when compared to Diff3F. As expected, additional samples

lead to further improvements for SHREC’19 and TOSCA. This trend

is more subtle for SHREC’20.
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Fig. 17. Qualitative results on ShapeNet [Chang et al. 2015]. Our features result on average in a more accurate smooth mapping between chair legs and wings.
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Fig. 18. Texturing of 3D meshes from SMPLeval and TOSCA, based on a 2D image generated with ChatGPT. The appearance is transferred by establishing
correspondence between the image features and 3D mesh features. Our method performs well even on incomplete meshes (notice the bear in the second row).

Table 4. Training set size (columns) vs. correspondence error.

Diff3f 2 10 50 94

SHREC’19 1.69±1.44 1.32±1.22 1.31±1.31 0.48±0.85 0.43±0.76

TOSCA 4.51±5.48 3.75±3.50 2.60±2.74 1.84±2.47 1.65±2.15

SHREC’20 5.34±10.22 3.89±8.49 4.05±9.90 3.96±9.33 3.89±8.90


