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Fig. 1. A rendering of the Intel cloud under direct illumination from a light probe at 32 samples per pixel (spp). While biased ray marching [Kettunen et al.

2021] overestimates transmittance visibly, the bias of our jackknife transmittance estimator is negligible. Additionally, it is less prone to fireflies and faster
than unbiased ray marching [Kettunen et al. 2021] and has lower variance than the track-length estimate and ratio tracking.

A core operation in Monte Carlo volume rendering is transmittance estima-
tion: Given a segment along a ray, the goal is to estimate the fraction of light
that will pass through this segment without encountering absorption or out-
scattering. A naive approach is to estimate optical depth 7 using unbiased
ray marching and to then use exp(—7) as transmittance estimate. However,
this strategy systematically overestimates transmittance due to Jensen’s
inequality. On the other hand, existing unbiased transmittance estimators ei-
ther suffer from high variance or have a cost governed by random decisions,
which makes them less suitable for SIMD architectures. We propose a biased
transmittance estimator with significantly reduced bias compared to the
naive approach and a deterministic and low cost. We observe that ray march-
ing with stratified jittered sampling results in estimates of optical depth that
are nearly normal-distributed. We then apply the unique minimum variance
unbiased (UMVU) estimator of exp(—7) based on two such estimates (using
two different sets of random numbers). Bias only arises from violations of the
assumption of normal-distributed inputs. We further reduce bias and vari-
ance using a variance-aware importance sampling scheme. The underlying
theory can be used to estimate any analytic function of optical depth. We use
this generalization to estimate multiple importance sampling (MIS) weights
and introduce two integrators: Unbiased MIS with biased MIS weights and a
more efficient but biased combination of MIS and transmittance estimation.
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1 Introduction

Physically-based volume rendering for participating media such as
fog, steam or smoke is challenging. In the presence of such media,
radiance is no longer constant along a ray between two surface
interactions. Instead, we have to estimate integrals along the ray to
account for absorption, out-scattering, in-scattering and emission
of light. In many aspects, these effects can be handled similarly to
surface rendering, e.g. by using a unidirectional path tracer. A major
difference is that distance sampling and transmittance estimation
take the place of ray tracing [Novak et al. 2018]. Distance sampling
determines the distance to the next path vertex, whereas transmit-
tance estimation computes the fraction of light that passes through
the volume along a given ray segment. For heterogeneous (i.e. spa-
tially varying) media, these two operations contribute substantially
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to the overall cost of volume rendering since they are the main way
in which the renderer interacts with the volume data.

Our main contribution in this work is an efficient and GPU-
friendly solution for transmittance estimation. Let the extinction
along a ray segment be given by p(t) where t € [0, tmax] C R is the
ray parameter. Then the transmittance is

tmax
T := T(tmax) = exp(—7), where 7 := 7(tmayx) := / p(t)de.
0
1

The integral 7 is called optical depth. The naive approach to es-
timate T is to compute an unbiased Monte Carlo estimate X of 7,
e.g. by using ray marching with uniform jittered sampling [Kettunen
et al. 2021; Pauly et al. 2000] and to use exp(—X) as transmittance
estimate. However, this strategy systematically overestimates the
transmittance, because by Jensen’s inequality the expected value
satisfies

E(exp(—X)) > exp(E(-X)) = exp(-1) =T.

There are three major classes of unbiased transmittance estima-
tors: Regular tracking [Amanatides and Woo 1987; Szirmay-Kalos
et al. 2010] incurs a high cost to compute 7 exactly. Null-collision
methods [Coleman 1968; Novak et al. 2014] stochastically traverse
a homogenized medium and estimate transmittance based on the
difference to the original medium. Unbiased ray marching [Georgiev
et al. 2019; Kettunen et al. 2021] combines a stochastically chosen
and unbounded number of independent optical depth estimates to
estimate the power series exp(-7) = Y72, (3?, . Regular tracking
has a predictable but high cost. The other two approaches are prone
to divergent execution on GPUs since the amount of work that
is conducted is random. Additionally, null-collision methods have
relatively high variance.

At the same time, real-time volume rendering on GPUs is becom-
ing viable, increasing the demand for efficient and GPU-friendly
algorithms [Hofmann et al. 2021, 2023; Schneider 2023]. In this con-
text, a small amount of bias is acceptable. However, the estimate
exp(—X) seems suboptimal. The fact that its bias is always positive
hints at the possibility for a better estimate. The bias grows with the
variance of X. If we could somehow get a good estimate of the bias,
we could compensate for it to form a better transmittance estimate.

To accomplish this, we rely on a single strong assumption: We
assume that estimates of optical depth are normal-distributed, i.e. dis-
tributed with Gaussian density (Sec. 3.1). Under this assumption the
unique minimum variance unbiased (UMVU) estimate of exp(—7)
is known. It has been derived using the so-called generalized jack-
knife [Gray et al. 1973] (Sec. 3.2). We use it with two unbiased,
independent and identically distributed (i.i.d.) estimates of optical
depth Xj, Xj, i.e. we estimate the optical depth 7 twice in the same
way, but using different random numbers. As a result of this choice,
we obtain the following stunningly simple formula for our novel
jackknife transmittance estimate (Sec. 3.3):

X0 — X1 Xo + X1
T = cos — exp |- 5 .

Under the assumption of normal-distributed optical depth esti-
mates, this estimate is unbiased. In practice, we expect this assump-
tion to be violated, which results in bias. However, we can keep this
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bias small by using stratified jittered sampling instead of uniform
jittered sampling [Pauly et al. 2000] (Sec. 4.1). This way, the optical
depth estimate is a sum of independent random variables and the
central limit theorem [Knight 1999, p. 145] implies that it approaches
a normal distribution as the sample count grows. To make this rea-
soning more reliable in the presence of sparse volumes, we propose
a variance-aware [Pantaleoni and Heitz 2017] importance sampling
scheme (Sec. 4.2) and we keep the sample count fixed (Sec. 4.3).

The underlying theory [Gray et al. 1973] of our estimate is not
restricted to estimating exp(—7). It can estimate g(7) for any an-
alytic function g : C — C (Sec. 5.1). We use this capability to
implement multiple importance sampling (MIS) for distance sam-
pling techniques, e.g. to combine free-flight distance sampling with
equiangular sampling [Kulla and Fajardo 2012]. A well-known prob-
lem in doing so is that the probability density of free-flight sampling
is T(t)p(t) and is thus not known exactly [Miller et al. 2019; Novak
et al. 2018]. We address this problem in two ways (Sec. 5.2): Either
we estimate MIS weights in a biased fashion, which still results in
an unbiased MIS estimate [Veach and Guibas 1995], or we estimate
the product of MIS weight, reciprocal density and transmittance
directly, which reduces the overall cost but introduces slight bias.

Our transmittance estimate has considerably lower bias than
existing biased alternatives [Kettunen et al. 2021], lower variance
than the track-length estimate or ratio tracking [Novék et al. 2014]
and a lower cost than unbiased ray marching [Kettunen et al. 2021]
(Sec. 6.1). Our MIS weight estimation offers considerably reduced
variance compared to a technique based on ratio tracking [Miller
et al. 2019] at equal sample count (Sec. 6.2). The source code of our
GPU implementation is available on the project webpage.

2 Background and Related Work

The goal of volume rendering is to solve the radiative transfer equa-
tion. Let x(¢) € R? be the point at ray parameter t along the ray
considered in Eq. 1 and let € S? be the ray direction, where
S? c R3 is the unit sphere. Let p denote the phase function of
the volume. Disregarding volume emission for simplicity, the in-
coming radiance at x(0) satisfies the following integral equation
[Chandrasekhar 1950; Novak et al. 2018]:

L;(x(0), w) :/0 T(t)u(t) ./Szp(x(t), —w, w;)Li(x(t), ;) dw; dt
)

It is a transmittance-weighted integral over in-scattered radiance at
each point along the ray. For rays that hit a surface, this equation is
coupled with the usual rendering equation, including emission.

A simple unidirectional path tracer proceeds in the following
steps to estimate this radiance [Novak et al. 2018]: First it samples
a distance ¢ proportional to T(t)u(t) such that these factors can-
cel with the density. Then it samples a direction w; proportional
to the phase function [Jendersie and d’Eon 2023; Witt 1977] and
estimates the incoming radiance L;(x(t), w;) recursively. As with
surface rendering, next-event estimation is a useful strategy to sam-
ple directions towards light sources at each vertex of the generated
path. In this case, the transmittance from the path vertex to the light
source must be estimated explicitly [Kettunen et al. 2021; Novak
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et al. 2014]. Compared to surface rendering, distance sampling plays
a similar role as closest-hit ray tracing and transmittance estima-
tion replaces any-hit ray tracing for shadow rays. There are many
alternative strategies for path construction [Novak et al. 2018], but
they are orthogonal to our work.

Through more powerful graphics hardware and recent work on
neural denoising [Hofmann et al. 2021, 2023], GPU-accelerated real-
time volume rendering is becoming viable. The underlying vol-
ume data can be specified procedurally and/or using voxel grids
[Schneider 2023]. OpenVDB is a widely used data structure for voxel
data, which uses a shallow hierarchy of sparse grids [Museth 2013].
NanoVDB is a stripped down version designed for access to volume
data from GPUs [Museth 2021].

In the following, we discuss the two main operations through
which a volume renderer interacts with the volume data in more
detail: Distance sampling (Sec. 2.1) and transmittance estimation
(Sec. 2.2). Then we discuss the challenges of using MIS [Veach and
Guibas 1995] for distance sampling and existing solutions (Sec. 2.3).

2.1 Distance Sampling

Free-flight distance sampling uses the density T (¢)u(t) and is the
most common strategy [Novak et al. 2018]. It provides perfect impor-
tance sampling for these factors and sidesteps the need for transmit-
tance estimation since the transmittance cancels with the density. If
& € [0,1) is sampled uniformly, the distance t where T(t) =1 - ¢
has the desired density.

Regular tracking computes this distance exactly, but at a high cost.
It assumes a piecewise homogeneous volume, e.g. a voxel grid with
nearest-neighbor interpolation. Using a digital differential analyzer
(DDA) [Amanatides and Woo 1987] it steps along the ray one voxel
at a time up to the point where T(t) = 1 — £ [Szirmay-Kalos et al.
2010]. A biased alternative is ray marching with fixed step size.

Delta tracking [Coleman 1968; Novak et al. 2018] uses an up-
per bound fi > p(t) for the extinction. It then samples a tenta-
tive distance according to a homogenized medium with extinction
[ in closed form. With probability % this distance is returned.
Otherwise, it is treated as null-scattering event, meaning that the
distance sampling procedure starts over from this distance. Null-
scattering events can be interpreted as collisions with perfectly
forward-scattering particles. A constant upper bound /i may be
too large for this method to be efficient. Szirmay-Kalos et al. [2010]
instead prepare a low-resolution super-voxel grid, where each super-
voxel stores a local maximum extinction and use regular tracking
for this low-resolution grid. A k-d-tree with adaptive subdivision
provides even better bounds [Yue et al. 2011].

Free-flight distance sampling becomes ineffective when the in-
scattered radiance has high dynamic range. That happens for exam-
ple when there are point lights in the volume, since their geometry
terms approach infinity. To counteract that, equiangular sampling
uses these geometry terms as density [Kulla and Fajardo 2012]. It
can be generalized to area lights by first sampling a point on them.

2.2 Transmittance Estimation

With the sampling density of equiangular sampling, the transmit-
tance T(t) does not cancel in the Monte Carlo estimate, so it must
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be estimated explicitly. The same holds true when next-event esti-
mation is used to be able to deal with small or distant light sources.

Regular tracking as described above [Novak et al. 2018; Szirmay-
Kalos et al. 2010] computes the exact optical depth 7 along a ray
and thus it can also compute the exact transmittance exp(—7), but
at a high cost. As explained in the introduction, a biased alternative
is to use a form of ray marching to obtain an unbiased estimate X
of 7 and to use exp(—X) as naive transmittance estimate.

Any free-flight distance sampling method can be turned into a
transmittance estimator since it produces a sample t > tnay with
probability T (#max). That gives rise to the track-length estimator,
which is 1 if t > ty.c and 0 otherwise. This estimate is unbiased,
and when combined with delta tracking, its overhead is relatively
low. However, it has the worst possible variance among unbiased
estimates that return a transmittance in [0, 1], namely (1 — T)T.

To reduce the variance, ratio tracking [Novak et al. 2014] replaces
the random termination of delta tracking by accumulation of contin-
uation probabilities. If tentative distances ¢/, ..., t;( € [0, tmax] were
u(t})
()
tracking [Novak et al. 2014] additionally stores a low-resolution
extinction estimate for which the transmittance is computed exactly
and only uses ratio tracking to estimate transmittance for the resid-
ual. These techniques force the traversal to continue longer than
the track-length estimator, thus increasing the cost. Ratio tracking
has lower variance than the track-length estimate when extinction
bounds are inaccurate, but the same variance for perfect bounds.

Georgiev et al. [2019] develop the theory for a new class of trans-
mittance estimators. The product of j € N unbiased i.i.d. estimates
of optical depth is an unbiased estimate of 7/. That gives rise to an
o (=1))
Jj=0  j!
a random and unbounded number of estimates. The unbiased ray
marching transmittance estimator [Kettunen et al. 2021] is a practi-
cal realization of this theory. All possible permutations of estimates
are treated equally to lower the variance (so-called U-statistics) and
one estimate serves as expansion point for the power series. Ad-
ditionally, aggressive Russian roulette limits the number of used
estimates to just one most of the time, since more estimates give
diminishing returns. Misso et al. [2022] introduce a similar method
for pink-noise transmittance. They also propose an unbiased trans-
mittance estimator that applies Russian roulette to a telescoping
sum, which starts with a ray marching estimate and then corrects
that using estimates with doubling sample counts.

On GPUs and other SIMD architectures, this Russian roulette
causes thread divergence: Each thread in a SIMD group pays the
same cost as the worst thread. Besides, it is tricky to allocate space
for an unbounded number of estimates [Kettunen et al. 2021]. To
estimate optical depth, Kettunen et al. use an adaptive sample count
and importance sampling based on mean values in a super-voxel
grid. This way, they also obtain an improved version of the naive
biased transmittance estimate exp(—X).

. Residual ratio

sampled, the transmittance estimate is Hﬂ:ll 1-

unbiased estimate of the power series exp(—7) = }; using

2.3 Multiple Importance Sampling

MIS [Veach and Guibas 1995] is essential to combine sampling strate-
gies in a way that retains their strengths. It may, for example, be
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used to combine a distance sampling strategy with known prob-
ability density function py(t) such as equiangular sampling with
free-flight distance sampling, where p;(t) = T(t)u(t). When ty, t;
are sampled proportional to po(t), p1(t), respectively, we get the
following MIS estimate:

max 1 s
t f@)dt = ij(tj)j%, where w;(t) :=

pi(t)
po(t) + p1(t)’

j=0
Here we have used the balance heuristic to define the MIS weights
w;(t). However, it is important to note, that the MIS estimate is
unbiased for any choice as long as wy(¢) + wy(t) = 1 [Veach and
Guibas 1995].

A well-known problem in this context is that costly regular track-
ing is the only way to compute the density p;(t) = T(t)u(t) exactly.
When we merely have an unbiased estimate of p; (), obtained e.g. us-
ing ratio tracking, the estimate of the MIS weights will still be biased
since division is a non-linear operation. Additionally, it will inherit
variance from the transmittance estimate. On this subject, Novak
et al. [2018] write: “Since MIS only needs weights that sum up to
one to be correct, it is possible to instead use crude approximations
of the free-flight PDF. This may however deteriorate the variance
of the combined estimator, so one may prefer to use deterministic
transmittance estimators in scenarios where an algorithm depends
heavily on MIS”

Miller et al. [2019] dismiss biased MIS weights entirely and instead
propose to work with a path space that treats null-scattering events
as actual path vertices in a perfectly forward scattering medium.
For ray segments that were not already generated by delta tracking,
they use ratio tracking to produce null-scattering events. With this
reinterpretation, all sampling densities are known exactly and MIS
is applicable. However, the resulting MIS weights are different from
the ones defined above and vary based on the random sample of
null-scattering events. If ratio tracking has high variance in the
rendered volume, the MIS estimates inherit this variance.

3 Our Transmittance Estimator

We now develop our novel transmittance estimator. To achieve a
low and predictable computational cost, we sacrifice unbiasedness
by making the assumption that optical depth estimates are normal-
distributed (Sec. 3.1). Under this assumption, the optimal estimate of
exp(—7) has been derived by Gray et al. [1973] (Sec. 3.2). We special-
ize their results to arrive at our jackknife transmittance estimator
(Sec. 3.3). Suitable estimators of optical depth, which come close to
being normal-distributed, are developed in Sec. 4.

3.1 Our Approach

We have discussed shortcomings of existing unbiased transmittance
estimators in Sec. 2.2. Regular tracking is the only option with a
deterministic cost, but this cost is the worst case. For delta tracking,
ratio tracking [Novak et al. 2014] and unbiased ray marching [Ket-
tunen et al. 2021], the number of samples of u(t) is random and
unbounded. This randomness incurs incoherent execution on SIMD
architectures, which increases the overall cost. We conjecture that
this is an inherent consequence of the lack of assumptions on the
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extinction profile p(t) and the fact that the exponential is a tran-
scendental function. The interpretation of the problem as integral in
an infinite-dimensional domain supports this conjecture [Georgiev
et al. 2019].

If this is true, we have to make stronger assumptions to arrive at a
technique with bounded cost. We seek a model of the distribution of
optical depth estimates that is simple enough to compute our trans-
mittance estimate efficiently without any additional assumptions. A
normal distribution satisfies this requirement as we will see shortly.
At the same time, we want our model to be reasonably close to the
ground truth distribution. The reason why the normal distribution
is of such great importance in statistics is the central limit theorem:
Under relatively weak assumptions, a sum of independent random
variables approaches a normal distribution as the number of random
variables grows [Knight 1999, p. 145]. In Sec. 4.1, we demonstrate
that this applies to a ray marching estimate of optical depth, as long
as we jitter each sample independently. Thus, the normal distribu-
tion is a pragmatic and natural choice. It is not a perfect model,
and therefore our estimate remains biased, but it is good enough to
achieve much lower bias than with the naive estimate exp(—X).

3.2 Unique Minimum Variance Unbiased Estimation

To construct a better transmittance estimate than exp(—X), we need
more than one estimate of optical depth. Thus, we compute multiple
i.i.d. estimates of optical depth, i.e. we evaluate the same estimate
multiple times using different random numbers. Based on our ap-
proach, we assume that each estimate is normal-distributed with
unknown mean 7 and unknown standard deviation. We then seek an
unbiased estimate of the transmittance T = exp(—7). Additionally,
we want this estimate to have minimal variance. In short, we want
the UMVU estimate. UMVU estimates are well-studied in statistics.
They are known for many different statistics and different distribu-
tions of X [Voinov and Nikulin 1993]. We found the solution for our
specific case in the literature [Gray et al. 1973, Example 4]:

Theorem 1. Let m € N withm > 2 and let Xy, ..., Xpm—1 be i.id.
samples of a normal distribution with unknown mean r € R and
unknown standard deviation o > 0. Consider the sample mean, biased
sample variance and biased sample standard deviation defined by

1 m—1 1 m—1
X==3X, S=—>x-X, $§=V&
m & m &
Let
m-1)(2\"T
K:=T (—2 ) (5) ]m74 (S) exp(—X), (3

where T' denotes the gamma function and Jm-3 denotes the Bessel
2

function of order mT_3 [Akhmedova and Akhmedov 2019, p. 44]. Then K
is the UMVU estimate of exp(—7), i.e. E(K) = exp(—7) and if another
function L(Xo, . .., Xm-1) satisfies E(L(X, ..., Xm-1)) = exp(-1),
its variance cannot be lower:

V(K) < V(L(Xo, - . ., Xm_1))-

As is, Eq. 3 requires us to evaluate the Bessel function, but we will
eliminate the need for that shortly. Other than that, this looks like a
straight-forward solution to our problem with all the properties that
we wanted. The naive estimate exp(—X) is a factor in the estimate
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Fig. 2. A comparison of the jackknife estimate against the naive estimate
exp(—X) using m = 2 i.i.d. optical depth estimates. We use various hy-
pothetical distributions of optical depth estimates and compare the two
transmittance estimates in terms of their mean and standard deviation. The
jackknife estimate (Eq. 3) always reduces the bias.

K, but there are additional factors depending on the sample standard
deviation S, which compensate for the bias of this estimate.

To derive Eq. 3, Gray et al. [1973] apply the “generalized jackknife”
to a biased estimate, thus removing the bias, and then use so-called
Rao-Blackwellization to arrive at the UMVU estimate. The jackknife
in turn is called that because it is “a useful tool in a variety of
situations” [Gray et al. 1973]. Therefore, we refer to the estimate in
Eq. 3 as jackknife estimate.

If our assumption of normal-distributed estimates holds true,
the jackknife estimate is unbiased. Fig. 2 demonstrates that it still
achieves lower bias than exp(—X) for a variety of other distributions.
In these experiments, the improvement is smallest for single-sided
distributions. The Laplace distribution is remarkable in that the
jackknife estimate slightly underestimates the transmittance. By
Jensen’s inequality, the naive estimate can never do so. In terms of
their standard deviation, both methods perform similarly.

3.3 Jackknife Transmittance Estimation

We now introduce our jackknife transmittance estimator. The main
design decision that we still have to make to complete this part of
our technique is what number of i.i.d. optical depth estimates m
we should use. We have to use at least m = 2 estimates, because
otherwise it is not possible to estimate the sample variance S2. On
the other hand, we would like to use as few independent estimates
as possible, for two reasons: If we use fewer estimates, we can
afford more ray marching steps per estimate. Thus, the reasoning
that these estimates, as sum of many independent samples, are
normal-distributed is more sound and we expect less bias. Besides, X
converges at a rate of #, whereas stratified jittered sampling with

N e N samples has a convergence rate closer to % (Fig. 5). Therefore,
it is preferable to invest the available sample budget into more
ray marching steps. The data in Table 1 (and in the supplemental)
support this reasoning: The choice m = 2 is optimal in terms of bias
and standard deviation.
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Table 1. Statistics about the accuracy of the estimate in Eq. 3 when esti-
mating transmittance for the extinction profile p(#) shown in Fig. 4a. Each
estimate uses mN = 24 samples of u(t) overall, but using the maximal
number of samples for ray marching with m = 2 is optimal. The bias for
m = 2 is below the margin of error with 108 trials. The row for m = 1
uses the naive estimate exp(—X), which has much higher bias but slightly
smaller standard deviation (std.).

Estimate  Ray marching Transmittance estimate

count m sample count N | mean bias std.
2 12 0.13411  0.00000 0.0405
3 8 0.13425 0.00014 0.0440
4 6 0.13421  0.00010 0.0528
6 4 0.13433  0.00022  0.0490
8 3 0.13485 0.00074 0.0694
1 24 0.13797 0.00386  0.0331

This choice also has a third advantage in that it simplifies evalu-
ation of Eq. 3. We know [Akhmedova and Akhmedov 2019, p. 49]

that
J.1(8) =) = cos($) r(i)=ve
! = g 0s(5): 5] =V
Then for m = 2
2 -3 2 _ _
K=+r|= — cos(S) exp(—X) = cos(S) exp(—X).
S )
Furthermore,

S:\/X3+X12_(X0+X1)2: X02—2X0X1+X12:|X0—X1|
2 2 4 2

With that, we have derived the core of our method. Given two
unbiased i.i.d. estimates of optical depth X;, Xj, our jackknife trans-
mittance estimate is

1Xo — Xi

, S= PR 4)
The computational cost is negligible. It is quite surprising that the
cosine shows up in this manner, but even without diving into the
proof of Thm. 1, we can convince ourselves that it is plausible. The
estimate exp(—X) systematically overestimates the transmittance.
The factor cos(S) € [—1, 1] reduces this estimate to compensate for
this bias. For small sample standard deviation S, the correction factor
remains close to 1. For large standard deviations, our transmittance
estimate can become negative. That is an undesirable property, but
we found these negative values to be rare unless the transmittance
is close to zero (see the supplemental document) and clamping them
away causes increased bias. Sec. 5.1 generalizes Eq. 4 and provides
another explanation why cos(S) arises in this formula.

In Appendix A.2, we derive the variance of our estimate for m = 2
and normal-distributed X,, X; with standard deviation ¢ > 0:

_ X0+ X
K = cos(S) exp(—X), where X = 0 5 !

1
V(K) = E(exp(ol) — 1) exp(—27).
The corresponding relative root mean square error (rRMSE) is

VV(K) _ fexp(c?) -1
T _\/ 2 '
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In Appendix A.1, we derive the rRMSE of exp(—X) for the same two

samples:
2
\/exp(az) —2exp (Uz) + 1.

Fig. 3 shows plots of these two functions and their ratio. We observe
that the error of our method is never worse and lower by a factor of

nearly V2 for large o. We note however, that this comparison is not
entirely fair, since the naive estimate could also use m = 1 to benefit
from the faster convergence rate of stratified jittered sampling.

4 Our Optical Depth Estimator

We now have to design an optical depth estimator that fits the
requirements of our jackknife transmittance estimator well. First,
we elaborate on our reasoning that stratified jittered sampling re-
sults in nearly normal-distributed estimates (Sec. 4.1). Since this
reasoning can fail for sparse volumes, we use importance sampling
with a variance-minimizing strategy [Pantaleoni and Heitz 2017]
(Sec. 4.2). Finally, we describe non-trivial aspects of the implemen-
tation (Sec. 4.3).

4.1 Stratified Jittered versus Uniform Jittered Sampling

Ray marching with uniform jittered sampling [Pauly et al. 2000]
is a well-established way to attain unbiased estimates of optical
depth [Kettunen et al. 2021]. It depends on a single uniform random
number & € [0,1) and uses it to jitter N € N equidistant samples.
Sample j € {0,...,N—1}isplacedatt; := 1%5 max- Stratified jittered
sampling similarly ensures exactly one sample per stratum [ﬁ %
but places each sample independently. Sample j is placed at ¢; :=
%ijtmax where &, ..., én-1 € [0,1) are uniform and independent.
In both cases, the Monte Carlo estimate of the optical depth is
X =t S ().

In Fig. 4, we show histograms of optical depth estimates ob-
tained using many evaluations of both of these techniques. It clearly
shows that the distribution of stratified jittered sampling quickly
approaches a normal distribution. With ten samples only minor
deviations from a normal distribution remain. On the other hand,
the distribution of the estimates from uniform jittered sampling
does not approach a normal distribution at all.

This behavior can be explained by consulting the central limit
theorem (CLT) [Knight 1999]. The most common formulations of
the CLT deal with a sum of i.i.d. random variables. That does not
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Fig. 4. Histograms of 10° estimates of optical depth for the shown extinc-
tion profile p(¢). With stratified jittered sampling, the distribution already
approaches a normal distribution for N = 5 samples and is close to normal
at N = 10. The black line shows a fitted normal density. Uniform jittered
sampling shows no sign of approaching a normal distribution at N = 20.

match stratified jittered sampling where each term of the sum has a
different distribution describing a different stratum. However, the
Lyapunov CLT [Knight 1999, p. 145] is applicable. In Appendix B,
we make the following claim precise and prove it: As long as we
keep encountering samples with non-zero variance, the distribution
of the optical depth estimate converges to a normal distribution as
we continue marching along the ray.

Since our jackknife transmittance estimate depends on normal-
distributed inputs to be unbiased, it is clear now that we should
prefer stratified jittered sampling over uniform jittered sampling.
Nonetheless, bias is not the only concern. We also want low variance.
Fig. 5 compares convergence rates of three variants of stratified sam-
pling as well as i.i.d. sampling, which chooses each t; € [0, tmax)
uniformly. Like uniform jittered sampling, stratified jittered sam-
pling converges faster than i.i.d. sampling at a rate close to 4. For
sample counts between 1 and 100, which is the regime we care
about based on Fig. 4, the two techniques perform similarly. Once
ray marching steps reach the scale of individual voxels, the tech-
niques with equidistant samples begin to outpace stratified jittered
sampling. That is probably because uniform jittered sampling inher-
itsa # convergence rate from the midpoint rule in this case. We
provide graphs for other extinction profiles y(t) as supplemental,
which confirm these conclusions.

4.2 Variance-Aware Importance Sampling

Our reasoning using the CLT has a caveat: If a ray mostly travels
through homogeneous regions of the volume, many samples will
not contribute any variance to the estimate of optical depth. Usually,
that would be desirable. In our case, however, it means that we
wind up with an estimate of optical depth that is farther from being
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Fig. 6. A histogram like the ones in Fig. 4 but for a sparse extinction profile
£1(2). In spite of using 20 samples, the distribution is still far from normal.

normal-distributed and thus it drives up bias in the transmittance
estimate. Fig. 6 demonstrates that this is not a purely theoretical
concern.

To remedy this problem, we use importance sampling, similar
to Kettunen et al. [2021]. That is also an effective way to reduce
variance. We compute a low-resolution super-voxel grid, where
each super-voxel stores an importance for R = r* voxels (we use
16%). Then the sampling density within each super-voxel is made to
be proportional to its importance (Sec. 4.3).

Let g, ..., ur-1 = 0 be the extinction values of all the voxels
that fall into the super-voxel in question. We have flattened the 3D
index into a 1D index here for notational convenience. Kettunen
et al. [2021] use the mean as importance, i.e. % 252—01 uj. Although
importance sampling proportional to the integrand is perfect, this
strategy is known to give a suboptimal piecewise constant density.
The optimal piecewise constant density within each super-voxel
is proportional to the root mean square extinction along the ray
segment within the super-voxel [Pantaleoni and Heitz 2017]. Since
it is not practical to compute this optimal density for every ray,

we approximate it by . ’1—12 2;3:—01 yjz., similar to the mean used by
Kettunen et al. [2021].

One problem remains: The volume may contain large homoge-
neous regions with a non-zero extinction. Ray marching samples in
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these regions do not contribute to the variance either, so our impor-
tance sampling scheme should avoid them. To this end, we compute
the minimal extinction iy := min{y; }f;ol for each super-voxel.
Then our importance sampling and the integration only account
for the difference y1j — pimin. The optical depth of the low-resolution
minimum volume is computed exactly using regular tracking and
added to the end result. This is a typical application of control vari-
ates in volume rendering [Novak et al. 2014]. Our final super-voxel
importance is

®)

In principle, we can also use control variates that exceed the mini-
mum value, but we do not recommend it. With such control variates,
the noisy estimate of optical depth X can become negative. Most
of the time this is not a problem, but in rare cases the exponential
growth of exp(—X) will make an outlier sample much worse. Thus,
control variates in excess of the minimum introduce fireflies and
harm robustness. Without them, our transmittance estimates are
guaranteed to remain in the interval [-1, 1] (Eq. 4).

4.3 Implementation

Designing a good implementation of our optical depth estimator
is slightly challenging. It has to support our importance sampling
scheme in conjunction with stratified jittered sampling, whilst also
producing m = 2 optical depth estimates at the same time. Alg. 1
presents pseudo code for our implementation. Until it reaches the
end of the ray, each pass through the outer loop takes exactly one
sample u(t) of the high-resolution volume. On SIMD architectures,
that ensures coherent execution of this expensive step. Prior to
each sample, the inner loop advances traversal of the super-voxel
grid until the cumulative distribution function (CDF) F exceeds the
CDF value for the next sample F5I;. Note that the used CDF is an
unnormalized integral over super-voxel importance values.

An input to Alg. 1 is the CDF step size Fj, i.e. the integral of
importance within each stratum. Since our importance values in
Eq. 5 are essentially extinctions, this value has the same unit as
optical depth. It is meaningful in an absolute and scene-independent
sense and can be set manually. However, that has two drawbacks:
First, a ray traveling through dense and high-frequency regions
of the volume will take an unnecessarily high number of samples,
especially when the final transmittance is close to zero. Second, rays
that only traverse thin parts in the outer rim of a volume do not
take enough samples to arrive at a normal-distributed estimate.

To address these problems, we advocate for a fixed sample count N:
We run regular tracking through the super-voxels twice. The first
traversal computes the unnormalized CDF F as shown in Alg. 2.
Then we set the CDF step size to Fp := % This is also a good op-
portunity to determine a tighter ray segment [, . .t;.. ] for use in
Alg. 1 since we enforce a small non-zero importance for all non-
empty super-voxels. If F = 0, optical depth estimation returns 0.
With this strategy, the cost of the transmittance estimator is entirely
predetermined by the length of the ray segment and our evaluation
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Algorithm 1 Our optical depth estimator.
Input: Ray x(0), @, tymax and CDF step size Fa.
Output: Two i.i.d. optical depth estimates Xp, X;.
F:=0,7.:=0
X0:=0,X;:=0
Iy :=rand(), [; :=rand() » CDFs at next sample, divided by Fy
Jj = argminge(o1} I
Initalize DDA super-voxel traversal for the ray x(0) + tw.
tp =0, tpe1 =0, pimin :=0, P :=0
while FpI; < F or tpy1 < tpax:

> Current CDF and control variate

> Optical depth estimates

> Which estimate is next?

> Loop over high-res. samples

while FAI; > F and t,41 < tmax: > Loop over super-voxels
DDA step to next super-voxel with ray segment [t,, t,41] €
[0, tmax ], importance P and minimum extinction fiy;y.
F:=F+ (ty41 — ty)P > Update the CDF

Te :=Tc + (tp+1 — tn) fmin > Update the control variate
if FAI; < F: > If we are not at t,y yet:
F—Fplj . .
Li=tp — —p > Rewind to the sample location

X;=X; + ”(t)_# > Accumulate the sample
= ceil(f;) + rand()
Jj = argminge(o,1} Ik
Xo = FaXo + 70, Xq = FAXy + 7,
Return (Xp, X1).

> Advance CDF for next sample

> Which estimate is next?

> Complete the estimates

Algorithm 2 Preparations for optical depth estimation.

Input: Ray x(0), @, tmax-

Output: The integral of importance F (such that Fy = %) and a
tighter ray segment [¢] . .t/ .. ].
F:=0,t . :=t

> "min max; max =0
Initalize DDA super-voxel traversal for the ray x(0) + tw.
For each super-voxel, covering a ray segment [ty, ty+1] € [0, tmax]:
Read the super-voxel importance P.
F:=F+ (tn+1 — tn)P
if P #0: tmm =min{ty, £}, ey = Max{tn1, Loy}
Return F, t’

> "min’ max

in Sec. 6.1 shows that it usually gives less bias. The cost of low-
resolution regular tracking is significant though. We could store
importance values in Alg. 2, but on GPU we prefer to reread them.

Our implementation stores high-resolution extinction values as
16-bit floats. For all low-resolution grids, we use BC4 compres-
sion [Hofmann and Evans 2021] but found that it makes a relatively
minor difference. During compression, we take special care of proper
rounding: Densities are always rounded up, because rounding to
zero causes bias. Minima are always rounded down to avoid negative
estimates of optical depth.

Rather than using trilinear interpolation for the high-resolution
volume, we jitter each sample location stochastically [Hofmann et al.
2021; Pharr et al. 2024]. When that is enabled, we use overlapping
super-voxels. To compute the jitters, we use PCG3D. For stratified
jittered sampling, we choose PCG as inexpensive random number
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generator with reasonable quality [Jarzynski and Olano 2020] (rand()
in Alg. 1).

5 Our MIS Weight Estimator

At this point, we have established that the assumption of normal-
distributed optical depth estimates is a good approximation. A nat-
ural next question is whether there are more ways to utilize this
insight and the work of Gray et al. [1973]. And indeed, it turns out
that we can not only estimate exp(—7) but any analytic function of
optical depth (Sec. 5.1). As an important application, we demonstrate
how to estimate MIS weights for distance sampling (Sec. 5.2).

5.1 Jackknife Function Estimation

We now introduce the UMVU estimate of g(r) € R. We demand
that g is an analytic function, i.e. a function that can be written
as a power series ¢g(7) = Z;';O ajrj with coefficients ag, a,... € R.
The coefficients can be obtained as derivatives using a Taylor series:
aj = g(J (0) for all j € Ny. Then the UMVU estimate of g(r) is
known [Gray et al. 1973, Theorem 4]:

Theorem 2. Letm, Xy, ..., Xm-1, X and S be defined as in Thm. 1.
Letg(r) = Z 0 aj ) € R be analytzc on the real axis R. Let

’"—1 —1)J 4(2)) 2\J
_g(X)+Z 2 ( 1) gj! (X) (SZ) ) (6)

Then under approprlate regularlty condltions, G is the UMVU estimator
of g(7).

The aforementioned “appropriate regularity conditions” are stated
implicitly in the proof of this theorem [Gray et al. 1973]. Alterna-
tively, Gray et al. recommend to verify directly that the estimator is
unbiased, for any specific function of interest g(7).

It is not immediately clear how we should evaluate the series in
Eq. 6 algorithmically. However, we found that this problem goes
away in the special case m = 2.In Appendix C, we use basic algebraic
manipulations to show that for m = 2

Z( 1)’9(2’)(X) 2

We now combine the sample mean and standard deviation into a
single complex number X +iS € C, where i := V—1 is the imaginary
unit. Next, we study the real part of g(X + iS) using a Taylor series
expansion around X:

Rg(X +iS) = Q&Z-"J )(51”29(2), (i5)%

Z( 1)/g (21)(X)52] G @

This turns out to be the sought-after UMVU estimate G for m = 2!
In the step marked (), we have exploited that R (i/) = 0 for odd j.

This result is rather confounding. We have interpreted the sample
standard deviation S of our optical depth estimate as imaginary
component of a complex optical depth estimate. Then simply feeding
this complex optical depth into g and taking the real part gives us



the desired UMVU estimate. Although we have a proof that this is
indeed correct, we do not have a simple intuitive argument why.
However, we can at least convince ourselves that it is consistent
with our formula for the jackknife transmittance estimate:

R exp(—(X +i5)) = R(exp(-iS)) exp(—X) = cos(S) exp(—X).

5.2 Jackknife MIS Weight Estimation

We will now apply this kind of function estimation to compute MIS
weights [Veach and Guibas 1995]. As explained in Sec. 2.3, MIS still
gives unbiased results when the MIS weights themselves are biased,
but prior work has dismissed this approach [Miller et al. 2019; Novak
et al. 2018].

To keep our discussion simple, we focus on the MIS combination
of two distance sampling strategies: One strategy (e.g. equiangular
sampling [Kulla and Fajardo 2012]) uses a known density po(t), the
other is free-flight distance sampling with density p;(t) = T(¢)u(t).
Then the MIS weight for strategy j € {0, 1} with the balance heuris-
tic is

__T@ut) e
wj(t) := L — 1 TIZ?)UU)T“)”([) ifj=0, ®
DPo(t) + pa(t) m i1,

It is also useful to study the MIS estimate more holistically. Let
to, t; denote the distances sampled from po(t), p1(t), respectively. Let
Ls, Ls 1 denote the Monte Carlo estimates of in-scattered radiance
for these distance samples. Then the MIS estimate for the incoming
radiance described in Eq. 2 is

Liis = Z w;(t;) T(tj;ﬂ((tt,)) L, '

Expanding this slightly and cancehng p1(t1) with T(#;)p(#) in the
second term, we arrive at

Li (X(O), CL)) ~

T(to)p(to)Lsp
Po(to)

Alternatively, we can merge MIS weight estimation and transmit-

Limrs = wo(to) +wy(t1)Ls 1. 9

tance estimation:
1
T(t)p(ty)

Limis = — L ;. (10)

= D ) S T

No matter whether we use Eq. 8 or Eq. 10, we have to estimate
T(t)pu(t) upexp(—7(t)) +u

e L=ig(r(n), (1)
po(t) + T(H)u(t) voexp(—7(t)) + vy

where ug := vy := p(t), u; := 0 and v; := po(t) do not depend on
7(t). Applying Eq. 7, we get the biased estimate

ug exp(=(X +1i5)) +
vg exp(—(X +iS)) + oy

g9(r) = (12)
In this estimate, X, S are computed from two unbiased estimates
of optical depth Xp, X; exactly as in Eq. 4. Appendix F provides
formulas that avoid complex arithmetic.

To evaluate our unbiased MIS estimate of L; (x(0), ), we produce
distance samples t, t;, invoke Algs. 2 and 1 and Eq. 12 twice to
estimate wy(#y), wi (#;) and finally use an unbiased transmittance
estimator with independent random numbers for T(#). Then using
these estimates in Eq. 9 gives an unbiased estimate (see Appendix D).
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Fig. 7. We estimate g(7) as defined in Eq. 11 for (uo, u1, vo, v1) = (1,0, 1,1/2)
and analyze the bias. For this experiment, the optical depth estimates are
normal-distributed with varying mean r and standard deviation . The
dashed line marks o = 1.6457, where the normal distribution has 5% of its
mass across negative values. Our jackknife MIS weight estimate has low
bias below this line and generally much less bias than the naive estimate
g(X). Both estimates have little bias for 7 = In %‘1), which aligns with the
location of poles of g(7) (Appendix E). Our supplemental material provides
results for other choices of u, 11, vy, v1, which support these conclusions.

Compared to the method of Miller et al. [2019], this procedure
has more steps: Miller et al. reuse intermediate results from delta
tracking and only need one invocation of ratio tracking for T(#,)
on top of that. However, their MIS weights are defined differently.
In our method, we can avoid the cost of estimating T (¢,) separately,
by using Eq. 10 instead of Eq. 9, but that introduces bias. Either way,
we can also use the naive estimate of MIS weights g(X) instead of
our jackknife estimate. The unbiased estimate of radiance remains
unbiased then.

It should be noted that g(r) is not actually analytic, due to the divi-
sion. Appendix E explains that the convergence radius of the power

series g(7) = 272, a;vl is

In2 + l7l'| Since analytic functions must

have infinite convergence radlus, Thm. 2 does not apply. Again, this
is not a purely theoretical problem: Fig. 7 shows that our jackknife
MIS weight estimator is indeed biased, even when the optical depth
estimates are exactly normal-distributed. However, this bias is much
weaker than for the naive estimate g(X). In addition, the bias is
small for combinations of optical depth 7 and standard deviation o
that we care about: Our optical depth estimates are non-negative
by design, but for o > 1.6457 the normal distribution has more than
5% of its mass across negative values. In this case, our optical depth
estimates cannot be close to being normal-distributed. Thus, the
relevant parts of Fig. 7 are the parts below the dashed line, where
our estimator has negligible bias.

Our derivation above only covers the simplest case, namely the
balance heuristic for two strategies with one sample each. However,
the procedure is easy to generalize, e.g. to the power heuristic:
Derive MIS weights as function of optical depth g(7) and evaluate
Rg(X +iS).

6 Results

We now evaluate our techniques in comparison to related work.
We start with transmittance estimation (Sec. 6.1), proceed to MIS
(Sec. 6.2) and finally discuss shared limitations (Sec. 6.3). To this end,
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we use four volumes: Bunny cloud (576 X 571 X 437), Intel cloud
(625 % 349 X 566), Disney cloud (993 X 675 X 1224) and explosion
(200 x 271 x 229). Our supplemental material provides an interactive
viewer with full sets of results for seven volumes.

Our implementation runs in a Vulkan fragment shader. All tech-
niques use BC4-compressed super-voxel grids with one super-voxel
per 16° voxels. For unbiased ray marching [Kettunen et al. 2021], we
limit the maximal degree of the power series to eight, to avoid the
need for dynamic memory allocation within a shader, we do not use
endpoint matching and we use a variant of Alg. 1 for mean-based
importance sampling, including tight ray segments from Alg. 2. All
other parameters are chosen as proposed by Kettunen et al. [2021],
although we sometimes double the sample count for higher quality.
All transmittance estimators use stochastic texture filtering instead
of trilinear interpolation. The reported timings refer to frames of
resolution 1920 x 1080 rendered on an NVIDIA RTX 5070 Ti with
GPU and memory clocks locked to 2452 MHz and 13801 MHz, re-
spectively.

6.1 Transmittance Estimation

To evaluate transmittance estimators, we compute, display and ana-
lyze the transmittance for primary rays (with the exception of Figs. 1
and 12). That is not how they are typically used in a renderer (Sec. 2)
but makes it easier to assess the bias and variance.

Biased Techniques. In Fig. 8, we compare different biased tech-
niques: The biased ray marching technique of Kettunen et al. [2021]
with doubled sample count and super-voxel size (compared to their
evaluation) and three variants of our method. The supplemental
additionally includes results for ray marching with equidistant steps
throughout the volume bounding box, but techniques with impor-
tance sampling consistently perform better.

Among these techniques, our jackknife transmittance estimator
with N = 10 samples is a clear winner (Fig. 8e). For three of the
four volumes, it has the lowest bias. As expected (Sec. 3.3), the naive
estimate with the same overall sample count (Fig. 8c) has slightly
lower standard deviation but roughly three times more bias. Tying
the ray marching sample count to the overall importance along the
ray instead of keeping it fixed (Fig. 8d) is only beneficial for the
explosion. On all scenes, biased ray marching (Fig. 8b) has greater
bias than our method with fixed sample count. The frame times
of all techniques are quite similar. The insets focus on challenging
regions, but Fig. 10a provides full-size bias images for our technique.

The explosion is a failure case of most ray marching techniques,
with clearly visible bias due to poor importance sampling. We dis-
cuss it in more detail under limitations (Sec. 6.3).

Variance-Aware Importance Sampling. As an ablation, Fig. 9 com-
pares our variance-aware importance sampling with the minimum
as control variate (Sec. 4.2) to importance sampling proportional to
the super-voxel mean without a control variate. We observe a clear
reduction of bias in all cases and a slight reduction of the standard
deviation, which confirms that our approach is beneficial.

Unbiased Techniques. Fig. 10 compares our technique to unbiased
transmittance estimators using the same scenes as in Fig. 8. In this
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comparison, the timings and standard deviations have greater varia-
tion. Timings of our method (Fig. 10f) and the track-length estimate
are similar and much lower than for ratio tracking and unbiased
ray marching. However, the track-length estimate (Fig. 10b) has
the worst possible standard deviation for a transmittance estimate
that produces estimates in [0, 1]: It is 4/(1 — T)T. Our transmittance
estimator achieves much lower standard deviation.

Ratio tracking still has much greater standard deviation and its
frame times are 2 to 3 times greater than for our method (Fig. 10c).
The standard deviation of unbiased ray marching [Kettunen et al.
2021] depends heavily on the quality of the importance sampling
(Fig. 10d). In this regard, the explosion is a serious failure case (more
so than for our method) with extreme fireflies. Doubling the sample
count (Fig. 10e) mitigates this problem, but makes the frame times
be inferior to ratio tracking.

Sample Count. Fig. 11 compares various techniques in terms of
the number of samples in the high-resolution volume. Samples
in the BC4-compressed super-voxel grid are not counted, but are
predictable for all methods except the track-length estimate: Per
traversed super-voxel, ratio tracking queries one value, unbiased
ray marching two values and ours three values. Note that these
reads are extremely cache coherent: Even for the Disney cloud, a
single super-voxel grid takes only 102 KiB of memory.

The number of samples for the track-length estimate is extremely
low. Though the timings in Fig. 10a hardly reflect that, presumably
due to thread divergence. Ratio tracking and unbiased ray marching
take most samples in regions of low transmittance, where they
might not contribute meaningfully to the end result. Our method is
configured to take exactly mN = 20 samples when it encounters a
non-empty super-voxel and zero otherwise.

6.2 Multiple Importance Sampling

As explained in Sec. 2.3, there is little related work on MIS for
distance samplers. To the best of our knowledge, the naive estimate

(1) exp(~X)
po(t) + (1) exp(~X)

g(X) =

was mentioned [Novéak et al. 2018] but never systematically eval-
uated in a peer-reviewed publication. We do so, using our optical
depth estimates. One can argue about whether or not that constitutes
a contribution, but our jackknife MIS weight estimate Rg(X + iS)
certainly does.

Other than that, the MIS of Miller et al. [2019] is the most impor-
tant related work. Miller et al. describe the measurement contribu-
tion function and sampling density for complete transport paths
with null-scattering vertices. In our experiments, we focus on direct
illumination from point lights with equiangular sampling [Kulla
and Fajardo 2012] as sampling strategy po(t). We found that for
MIS weights with the balance heuristic, many factors cancel. What
remains of their MIS weight estimate is

k-1 ’

u(t})

where T (t) := 1- —~
+l !:1[ At)

p(O) T (1)

w0~ R + AT (D)
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Fig. 8. Results of biased transmittance estimators. We show 1 sample per pixel (spp) full-size images for our main technique (a) and magnified insets for other
techniques (b-d). Additional insets show the bias and standard deviation (computed from 2'® spp). For each full-size image, we report the total frame time at
1 spp as well as the average bias and standard deviation across all pixels. Our main technique achieves remarkably low bias and a good standard deviation (e).

is the transmittance estimate of ratio tracking (Sec. 2.2). For free-
flight sampling, T;¢(#;) reuses the null-scattering events of delta
tracking.

Fig. 12 shows our results. Since it is not obvious whether the
MIS of Miller et al. [2019] is compatible with stochastic texture
filtering, this figure uses nearest-neighbor interpolation. In this test
case, we observe typical shortcomings of free-flight sampling and
equiangular sampling: Free-flight sampling undersamples bright
regions close to the point lights and deep inside the volume (green
inset, Fig. 12a). Equiangular sampling undersamples the front of the
volume (red inset, Fig. 12b). The improvement over pure free-flight
sampling with the MIS of Miller et al. is relatively small (Fig. 12c). It
inherits variance from ratio tracking and the Disney cloud is a worst
case in this regard: Its interior has a constant extinction, where ratio
tracking is no better than the track-length estimate.

The remaining three techniques, which all use our optical-depth
estimator with N = 10, all succeed in combining the strengths of

free-flight and equiangular sampling. Their differences are largest
in the purple inset, but even there they are hardly visible. The high
quality of the naive estimate g(X) with m = 1 (Fig. 12d) is surpris-
ing, given the dismissive statements about this approach in prior
work [Miller et al. 2019; Novak et al. 2018] (Sec. 2.3). Apparently,
our optical depth estimates make this approach viable. Fig. 7 clearly
shows that our jackknife MIS weight estimator (Fig. 12f) produces
considerably less bias. Though, bias in MIS weights does not cause
bias in radiance estimates (Appendix D).

The biased version of our MIS produces nearly identical results
(Fig. 12e), so it is justifiable as a way to avoid the cost of an addi-
tional transmittance estimation, especially when the transmittance
estimate would be biased anyway. Fig. 13 shows that the combi-
nation of biased MIS (Eq. 10) with the naive estimate g(X) gives
visible bias, while our jackknife MIS weight estimation does not.
The timings for our MIS variants are comparatively high, but clearly
justified by the significant reduction in variance (Fig. 12).
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Fig. 9. An ablation study comparing our variance-aware importance sam-
pling with the minimum as control variate (Sec. 4.2) to importance sampling
proportional to the super-voxel mean. Both results use 2 - 10 samples for
our jackknife transmittance estimate. The insets in (b) are the same as in
Fig. 8e and the same colorbars apply. Variance-aware sampling reduces the
bias considerably and the standard deviation slightly.

6.3 Limitations

The accuracy of our method is wholly dependent on the quality of
the importance sampling for the optical depth estimates. As illus-
trated in Fig. 6, a sparse extinction signal may result in optical depth
estimates that are far from being normal-distributed. Most of the
time, our variance-aware importance sampling (Sec. 4.2) mitigates
this problem, but sometimes it fails. The blue inset of the explosion
(Fig. 10a) shows such a failure case and Fig. 14 provides further
analysis: Since the ray traverses non-empty super-voxels without
actually interacting with the volume, too few samples remain for
the parts of the ray where the extinction is non-zero. For N = 10
samples, we can say with certainty that eight of them will make zero
contribution and the ninth will make a small contribution most of
the time. In this case, the assumption of normal-distributed optical
depth estimates fails and the result is clear bias.

It should be noted that our method still gives results in [—1, 1]
with moderate standard deviation, whereas unbiased ray marching
produces extremely high variance with transmittance estimates far
outside the range [—-1, 1] (Fig. 10d). Null-scattering methods can
handle this situation well, by simply taking smaller steps, which is
reflected by their longer timings for the explosion in comparison
to our method (Figs. 10b, 10c and 10f). The most pragmatic mit-
igation for the problem is to use smaller super-voxels. With our
chosen super-voxel size of 16%, the super-voxel grid for the (fairly
low-resolution) explosion contains only 13 X 17 X 15 super-voxels.
At a super-voxel size of 123, the problems are mostly gone. For use
cases in production rendering with much larger volumes, we antici-
pate that larger ray marching sample counts N would be used and
that also mitigates these problems: Every good sample brings the
estimate closer to a normal distribution. In general, the choice of the
sample count N after the first pass through the volume (Alg. 2) is
not set in stone and can be changed depending on the requirements
of a renderer.
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7 Conclusions

The bias of our biased transmittance estimator is so low that it is
a serious contender for unbiased techniques. At the same time, its
variance and run time cost are low and predictable. Failure cases
arise when the importance sampling works poorly. Future work
could address this problem using more sophisticated data structures,
e.g. k-d trees with adaptive subdivision [Yue et al. 2011] or hierar-
chies of sparse grids [Museth 2021]. Our MIS weight estimation also
works as desired and supports unbiased rendering.

All of this is accomplished using stunningly simple formulas,
which date back five decades [Gray et al. 1973]. Beyond our specific
applications, the concept of UMVU estimates holds great promise
for Monte Carlo rendering and graphics in general: Our reasoning
with the central limit theorem is quite broadly applicable and UMVU
estimates are known for many statistics [Voinov and Nikulin 1993].
For example, we can use this method to estimate the reciprocal of a
quantity for which an unbiased estimate is available. The estimate
from Eq. 7 for g(r) := 771 is

Xo + X1 Xo— X1 -
1
2 2

_ 2(Xo + X1)

T (X0 +X1)? + (X - X))
In the supplemental document, we show the bias and standard
deviation of this estimate, which look promising. We would have

shown the same figure for the naive estimate but neither the mean
nor the standard deviation of X! converge [Robert 1991].

_ XO +X1
T y2 2"
X5+ X

R
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A Bias, Variance and RMSE

We now derive formulas for the bias, variance and RMSE of the naive
transmittance estimator exp(—X) and our jackknife transmittance
estimator under the assumption of normal-distributed estimates of
optical depth. In doing so, we repeatedly make use of the moment-
generating function of a normal-distributed random variable X with
mean 7 and standard deviation o for an s € C [Knight 1999, p. 44]:

$252
E(exp(sX)) = exp (sr + T) (13)
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(e) Our biased MIS (Eq. 10), 50.5 ms (f) Our unbiased MIS (Eq. 9), 55.5 ms

Fig. 12. The Disney cloud, directly lit by two point lights inside the cloud.
All images use 16 spp, but for MIS that amounts to 32 distance samples. The
timings are frame times for 16 spp. Additionally, we report the symmetric
mean absolute percentage error (SMAPE) with ¢ := 0.01 added to the mean
linear RGB value in the denominator. Transmittance estimation for the ray
to the chosen point light uses our jackknife transmittance estimator with
N =10 in all cases. The improvement of the MIS of Miller et al. [2019]
over free-flight sampling is moderate. All other variants of MIS successfully
combine the strengths of both strategies with minor differences.
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(a) Naive biased MIS (b) Our biased MIS

(c) Our unbiased MIS

Fig. 13. We render the purple inset from Fig. 12 at 2!® spp using three
variants of MIS. The images show the rendering itself and the bias in the
luminance. The bias with our jackknife MIS weight estimation is not visible,
whereas the result with the naive estimate is visibly too bright.

A.1 Naive Transmittance Estimation

The ground-truth transmittance is T = exp(—7). According to Eq. 13,
the first two moments of the transmittance estimate L := exp(—X)
for a normal-distributed optical depth estimate X are

E(L) =E(exp((-1)X)) = exp (—T + O;) = exp (%Z) T,

E(L?) = E(exp((=2)X)) = exp(—27 + 20%) = exp(20%)T>.
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Fig. 14. An analysis of the source of the problems for a pixel in the middle of
the blue inset of the explosion (Fig. 10a). Since the ray traverses several non-
empty super-voxels without encountering parts of the volume, 86% of all
samples contribute nothing to the estimate of optical depth. Note that this
figure does not use stochastic trilinear interpolation or BC4 compression
and that BC4 compression aggravates the problem further.

Thus, we get the

bias: E(L)-T= (exp (%2) - 1) T,
variance: E(L?) — (E(L))? = (exp(20?) — exp(c?))T?,
RMSE: E((L-T)?) =E(L? - 2LT + T?)

o2
= (eXp(ZUZ) —2exp (?) + 1) T2

In Sec. 3.3, we use the mean X of m = 2 estimates instead of a single

sample X. That halves the variance o?2.

A.2 Jackknife Transmittance Estimation
Since the sign of S is irrelevant for the value of cos(S), we use
§ .= XX Xl for the following derivation. Since the matrix \f( It

is orthogonal the random variables S and X are independent and
normal-distributed [Knight 1999, p. 84]. Furthermore X has mean 7

2
and variance %- and S has mean 0 and variance <-. First, we prove

unbiasedness using cos(S) = R exp(iS) and Eq. 13
E(K) = RE(exp(iS))E(exp(-X))

2 2 2
—‘Rexp(l 7 )exp (—T+ %) =exp(-1) =T

We already knew that this estimate is unbiased [Gray et al. 1973]
(for normal-distributed optical depth estimates), but now we have a
concise proof. Computing the second moment works similarly, but
exploits cos?(S) = 1/2(1 + cos(25)):

E(K?) = E(cos?(S))E(exp(—2X))
= 1/2E(1 + R exp(2iS)) exp(—-27 + 62)
=1/2(1 + R exp(—c?)) exp(c?)T?
= 1/2(exp(c?) + 1)T2.
The variance is
V(K) = E(K?) - T? = 1/2(exp(c®) — 1)T%.

Since the estimate is unbiased, the RMSE matches the standard
deviation.
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B Applying the Central Limit Theorem

The Lyapunov CLT is essential to our reasoning, since it explains
why our estimates of optical depth with stratified jittered sampling
are approximately normal-distributed. We will show that as a ray
travels through a volume with enough variation, the sum in the
ray marching estimate approaches a normal distribution. Arguably,
it would be preferable to show that the optical depth estimate for
a fixed ray segment approaches a normal distribution as the sam-
ple count N increases. That is however not viable, since each new
sample count gives us a new set of strata with new distributions of
extinction values. By considering the sum along a ray with a fixed
step size, we avoid this issue. Our precise statement is as follows:

Proposition 3. Consider an extinction profile 0 < u(t) < fi with
ray parametert > 0. Let &, &1, ... € [0,1) be uniform and i.i.d.. Let
ta > 0 be the used ray marching step size such that sample j € Ny
is taken at tj := (j + &;)ta. Let Y; := p(t;) denote the corresponding
extinction values. The stratified jittered sampling estimate of T(ntp)
is ta Z;':_Ol Y;. Assume that
2

lim ———— =0, (14)

n—oo ;}:01 V(Yj)
i.e. the sum of variances grows faster than ni. Then forn — oo, the
following normalized version of the optical depth estimate converges
in distribution to a standard normal distribution:

(A 20 Y)) - /()"‘Apu) dt

tA\[ j:O V(Y])

Proor. We consider a scaled zero-mean version of Y}, along with
its variance and the third moment of its absolute value:
(J+1)tp

p(t) de,

(15)

Zj = tpY; — E(taY)) = taY; - /
Jin
o7 :=V(Z;) = (zV(Y)),
v == E(Z)) < E((taf)®) = (ta)*
Raising Eq. 14 to the 3-th power and multiplying by (taf1)* gives
Y55 (taf)? XY

lim 2" _ -0 = lim =

n—oo n—l 2 n—oo n— 1 2 %
(255 ven) (255 <)

This is exactly the prerequisite to be able to apply the Lyapunov CLT
[Knight 1999, p. 145], which then tells us that the following random
variable converges in distribution to a standard normal distribution:

52 (3 Y)—/O"‘Apmdt

jars “Jz tay 2750 V(Y))

Taken literally, this proof requires an infinite volume with never-
ending variation. More pragmatically, it tells us that the ray march-
ing estimate approaches a normal distribution with each new sample
that has non-zero variance. Fig. 4 underpins this finite interpreta-
tion empirically and Sec. 4.2 ensures that most samples will have
non-zero variance.

O
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C Jackknife Function Estimation for Two Samples

Our goal is to prove that for m = 2

L(70) g™ ® (5_2 )"

_ (—1)j9(2j)(X)szj.
ri=+j)  J 4

T (@))!

Forall j € N, the gamma function satisfies [Akhmedova and Akhme-
dov 2019, pp. 7, 3]

27T (j)r (% +j) =Vl @), T()=0G-D.
Thus,
Iz _ 277'TOr()
L(3+))  297TOX (3 +))
2N -)WE (- )!
C o Var@) 20— DY
Now
r) ¢ ® (5_2)1
I (22 +)) J! 4
1 (X o (X))
22j-101 (2))! '

D Unbiasedness of MIS

As explained in Sec. 2.3, MIS is unbiased for any choice of MIS
weights as long as wy (t) + w; (¢) = 1 [Veach and Guibas 1995]. How-
ever, this result pertains to deterministic MIS weights, whereas our
MIS weights are random variables. Additionally, we have canceled
p1(t) with T(#)u(t1) in Eq. 9. We now prove that our variants of
MIS based on Eq. 9 are unbiased nonetheless. We are interested in
conditional expectations of random variables w.rt. t; = t € R where
J € {0, 1}. We denote the random variable for the estimate of the MIS
weight w;(t) by w;(t). Similarly, we denote the unbiased estimates
of transmittance and inscattered radiance at ¢ by T(t) and Ly(t),
respectively. The estimates w;(t), T(t), Ly (t) all consume differ-
ent, independent random numbers. Therefore, E(w j(t)f(t)is(t)) =
E(ﬁ/j(t))T(t)E(I:s(t)). The values of p(t), po(t), p1(t) are determin-
istic. Then the expected value of Eq. 9 is:

po(to) + w1 (t1)Ls(t1)

E(Limis) = E (Wo(to)

_ / mE(Wo(t)w)Po(t) +EGn (DL, (0)py (1) dt
0 po(t)

=/ E (o (1)) T (£)p()E(Ls (1)) + E(w1 (1) B(Ls () T (1) (1) dt
0
:/ (E(wo(t)) +E(w1 (1)) E(Ls ()T (t)pu(t) dt
0
Therefore, this radiance estimate will be unbiased if E(wq(t)) +
E(w;(t)) =1forall t > 0. A trivial way to satisfy this requirement
is to define Wy (¢) := 1 — wy(t) as suggested by Eq. 8 (using different

random numbers for evaluation). Though, applying our jackknife
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estimate for wy(t), wy (¢) more directly also works:
(0 exp(=(X +i5) )
po(t) + p(t) exp(=(X +i5))
. (%Po(t) + (1) exp(=(X +i8)) = po(1) )
po(t) + p(t) exp(=(X +iS))
=1—-E (% pO(t) _ :

po() + pu(t) exp(=(X +iS))

Replacing X by X, and S by 0 in this derivation shows that the naive

MIS weight estimate also satisfies this requirement for unbiasedness.

Of course, the MIS weight estimates also contribute to the variance
but our results in Sec. 6.2 validate our approach in this regard.

E(w:(1))

) — 1 E((1)

E Poles and Convergence Radius

% is not well-defined for all 7 € C.

Since we know v, v; > 0, the denominator vy exp(—7) + v; cannot
vanish for real 7. However, there are poles in the complex plane:

The function g(7) =

voexp(—7) +0; =0
< exp(—Rr1) exp(-idr) = exp(-1) = o
Yo

o exp(-Rr7) = Z—l A
0

exp(—iJr) = -1

(z)‘)%fz—lnv—lzlnv—0 AN 3ke€Z:3r=n+2nk.

Yo U1
The convergence radius of the power-series representation g(z) =

2o a;t/ will end exactly at one of these poles, i.e. it is |In z—‘l’ +inm|.

F Evaluating MIS Weights
Without using complex arithmetic explicitly, our goal is to evaluate
U _ RURV + JUIV U := ugexp(—(X +iS)) + uy,
Vo (RV)2+(JV)2° V=g exp(—(X +iS)) + 0y,
for real ug, Uy, vo, v1, X, S. We note

R exp(—(X +iS)) = R exp(—iS) exp(—X) = cos(S) exp(-X),

Jexp(—(X +i5)) = T exp(—iS) exp(—X) = sin(=S) exp(-X).
Thus,

RU = ug cos(S) exp(=X) + uy,

RV =0y cos(S) exp(=X) + vy,

R

where

JU = uy sin(-S) exp(-X),
IV = vy sin(=S) exp(-X).
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