
Jackknife Transmittance and MIS Weight Estimation
CHRISTOPH PETERS, Delft University of Technology, Netherlands

Our jackknife transmittance estimate with 2 · 10 samples, 42.0 ms

0.10 0.05 0.00 0.05 0.10
Bias

Biased ray marching, 32.9 ms

Track-length estimate, 28.4 ms

0.0 0.2 0.4 0.6 0.8
Standard deviation

Unbiased ray marching, 68.8 ms

Ratio tracking, 69.4 ms

Fig. 1. A rendering of the Intel cloud under direct illumination from a light probe at 32 samples per pixel (spp). While biased ray marching [Kettunen et al.
2021] overestimates transmittance visibly, the bias of our jackknife transmittance estimator is negligible. Additionally, it is less prone to fireflies and faster
than unbiased ray marching [Kettunen et al. 2021] and has lower variance than the track-length estimate and ratio tracking.

A core operation in Monte Carlo volume rendering is transmittance estima-

tion: Given a segment along a ray, the goal is to estimate the fraction of light

that will pass through this segment without encountering absorption or out-

scattering. A naive approach is to estimate optical depth 𝜏 using unbiased

ray marching and to then use exp(−𝜏 ) as transmittance estimate. However,

this strategy systematically overestimates transmittance due to Jensen’s

inequality. On the other hand, existing unbiased transmittance estimators ei-

ther suffer from high variance or have a cost governed by random decisions,

which makes them less suitable for SIMD architectures. We propose a biased

transmittance estimator with significantly reduced bias compared to the

naive approach and a deterministic and low cost. We observe that ray march-

ing with stratified jittered sampling results in estimates of optical depth that

are nearly normal-distributed. We then apply the unique minimum variance

unbiased (UMVU) estimator of exp(−𝜏 ) based on two such estimates (using

two different sets of random numbers). Bias only arises from violations of the

assumption of normal-distributed inputs. We further reduce bias and vari-

ance using a variance-aware importance sampling scheme. The underlying

theory can be used to estimate any analytic function of optical depth. We use

this generalization to estimate multiple importance sampling (MIS) weights

and introduce two integrators: Unbiased MIS with biased MIS weights and a

more efficient but biased combination of MIS and transmittance estimation.
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1 Introduction
Physically-based volume rendering for participating media such as

fog, steam or smoke is challenging. In the presence of such media,

radiance is no longer constant along a ray between two surface

interactions. Instead, we have to estimate integrals along the ray to

account for absorption, out-scattering, in-scattering and emission

of light. In many aspects, these effects can be handled similarly to

surface rendering, e.g. by using a unidirectional path tracer. A major

difference is that distance sampling and transmittance estimation

take the place of ray tracing [Novák et al. 2018]. Distance sampling

determines the distance to the next path vertex, whereas transmit-

tance estimation computes the fraction of light that passes through

the volume along a given ray segment. For heterogeneous (i.e. spa-

tially varying) media, these two operations contribute substantially
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to the overall cost of volume rendering since they are the main way

in which the renderer interacts with the volume data.

Our main contribution in this work is an efficient and GPU-

friendly solution for transmittance estimation. Let the extinction

along a ray segment be given by 𝜇 (𝑡) where 𝑡 ∈ [0, 𝑡max] ⊂ R is the

ray parameter. Then the transmittance is

𝑇 :=𝑇 (𝑡max) := exp(−𝜏), where 𝜏 := 𝜏 (𝑡max) :=

∫ 𝑡max

0

𝜇 (𝑡) d𝑡 .

(1)

The integral 𝜏 is called optical depth. The naive approach to es-

timate 𝑇 is to compute an unbiased Monte Carlo estimate 𝑋 of 𝜏 ,

e.g. by using ray marching with uniform jittered sampling [Kettunen

et al. 2021; Pauly et al. 2000] and to use exp(−𝑋 ) as transmittance

estimate. However, this strategy systematically overestimates the

transmittance, because by Jensen’s inequality the expected value

satisfies

E(exp(−𝑋 )) ≥ exp(E(−𝑋 )) = exp(−𝜏) =𝑇 .
There are three major classes of unbiased transmittance estima-

tors: Regular tracking [Amanatides and Woo 1987; Szirmay-Kalos

et al. 2010] incurs a high cost to compute 𝜏 exactly. Null-collision

methods [Coleman 1968; Novák et al. 2014] stochastically traverse

a homogenized medium and estimate transmittance based on the

difference to the original medium. Unbiased ray marching [Georgiev

et al. 2019; Kettunen et al. 2021] combines a stochastically chosen

and unbounded number of independent optical depth estimates to

estimate the power series exp(−𝜏) =∑∞
𝑗=0

(−𝜏 ) 𝑗
𝑗 !

. Regular tracking

has a predictable but high cost. The other two approaches are prone

to divergent execution on GPUs since the amount of work that

is conducted is random. Additionally, null-collision methods have

relatively high variance.

At the same time, real-time volume rendering on GPUs is becom-

ing viable, increasing the demand for efficient and GPU-friendly

algorithms [Hofmann et al. 2021, 2023; Schneider 2023]. In this con-

text, a small amount of bias is acceptable. However, the estimate

exp(−𝑋 ) seems suboptimal. The fact that its bias is always positive

hints at the possibility for a better estimate. The bias grows with the

variance of 𝑋 . If we could somehow get a good estimate of the bias,

we could compensate for it to form a better transmittance estimate.

To accomplish this, we rely on a single strong assumption: We

assume that estimates of optical depth are normal-distributed, i.e. dis-

tributed with Gaussian density (Sec. 3.1). Under this assumption the

unique minimum variance unbiased (UMVU) estimate of exp(−𝜏)
is known. It has been derived using the so-called generalized jack-

knife [Gray et al. 1973] (Sec. 3.2). We use it with two unbiased,

independent and identically distributed (i.i.d.) estimates of optical

depth 𝑋0, 𝑋1, i.e. we estimate the optical depth 𝜏 twice in the same

way, but using different random numbers. As a result of this choice,

we obtain the following stunningly simple formula for our novel

jackknife transmittance estimate (Sec. 3.3):

𝑇 ≈ cos

(
𝑋0 − 𝑋1

2

)
exp

(
−𝑋0 + 𝑋1

2

)
.

Under the assumption of normal-distributed optical depth esti-

mates, this estimate is unbiased. In practice, we expect this assump-

tion to be violated, which results in bias. However, we can keep this

bias small by using stratified jittered sampling instead of uniform

jittered sampling [Pauly et al. 2000] (Sec. 4.1). This way, the optical

depth estimate is a sum of independent random variables and the

central limit theorem [Knight 1999, p. 145] implies that it approaches

a normal distribution as the sample count grows. To make this rea-

soning more reliable in the presence of sparse volumes, we propose

a variance-aware [Pantaleoni and Heitz 2017] importance sampling

scheme (Sec. 4.2) and we keep the sample count fixed (Sec. 4.3).

The underlying theory [Gray et al. 1973] of our estimate is not

restricted to estimating exp(−𝜏). It can estimate 𝑔(𝜏) for any an-

alytic function 𝑔 : C → C (Sec. 5.1). We use this capability to

implement multiple importance sampling (MIS) for distance sam-

pling techniques, e.g. to combine free-flight distance sampling with

equiangular sampling [Kulla and Fajardo 2012]. A well-known prob-

lem in doing so is that the probability density of free-flight sampling

is 𝑇 (𝑡)𝜇 (𝑡) and is thus not known exactly [Miller et al. 2019; Novák

et al. 2018]. We address this problem in two ways (Sec. 5.2): Either

we estimate MIS weights in a biased fashion, which still results in

an unbiased MIS estimate [Veach and Guibas 1995], or we estimate

the product of MIS weight, reciprocal density and transmittance

directly, which reduces the overall cost but introduces slight bias.

Our transmittance estimate has considerably lower bias than

existing biased alternatives [Kettunen et al. 2021], lower variance

than the track-length estimate or ratio tracking [Novák et al. 2014]

and a lower cost than unbiased ray marching [Kettunen et al. 2021]

(Sec. 6.1). Our MIS weight estimation offers considerably reduced

variance compared to a technique based on ratio tracking [Miller

et al. 2019] at equal sample count (Sec. 6.2). The source code of our

GPU implementation is available on the project webpage.

2 Background and Related Work
The goal of volume rendering is to solve the radiative transfer equa-

tion. Let x(𝑡) ∈ R3
be the point at ray parameter 𝑡 along the ray

considered in Eq. 1 and let 𝜔 ∈ S2
be the ray direction, where

S2 ⊂ R3
is the unit sphere. Let 𝜌 denote the phase function of

the volume. Disregarding volume emission for simplicity, the in-

coming radiance at x(0) satisfies the following integral equation

[Chandrasekhar 1950; Novák et al. 2018]:

𝐿𝑖 (x(0), 𝜔) =
∫ ∞

0

𝑇 (𝑡)𝜇 (𝑡)
∫
S2

𝜌 (x(𝑡),−𝜔,𝜔𝑖 )𝐿𝑖 (x(𝑡), 𝜔𝑖 ) d𝜔𝑖 d𝑡

(2)

It is a transmittance-weighted integral over in-scattered radiance at

each point along the ray. For rays that hit a surface, this equation is

coupled with the usual rendering equation, including emission.

A simple unidirectional path tracer proceeds in the following

steps to estimate this radiance [Novák et al. 2018]: First it samples

a distance 𝑡 proportional to 𝑇 (𝑡)𝜇 (𝑡) such that these factors can-

cel with the density. Then it samples a direction 𝜔𝑖 proportional

to the phase function [Jendersie and d’Eon 2023; Witt 1977] and

estimates the incoming radiance 𝐿𝑖 (x(𝑡), 𝜔𝑖 ) recursively. As with
surface rendering, next-event estimation is a useful strategy to sam-

ple directions towards light sources at each vertex of the generated

path. In this case, the transmittance from the path vertex to the light

source must be estimated explicitly [Kettunen et al. 2021; Novák
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et al. 2014]. Compared to surface rendering, distance sampling plays

a similar role as closest-hit ray tracing and transmittance estima-

tion replaces any-hit ray tracing for shadow rays. There are many

alternative strategies for path construction [Novák et al. 2018], but

they are orthogonal to our work.

Through more powerful graphics hardware and recent work on

neural denoising [Hofmann et al. 2021, 2023], GPU-accelerated real-

time volume rendering is becoming viable. The underlying vol-

ume data can be specified procedurally and/or using voxel grids

[Schneider 2023]. OpenVDB is a widely used data structure for voxel

data, which uses a shallow hierarchy of sparse grids [Museth 2013].

NanoVDB is a stripped down version designed for access to volume

data from GPUs [Museth 2021].

In the following, we discuss the two main operations through

which a volume renderer interacts with the volume data in more

detail: Distance sampling (Sec. 2.1) and transmittance estimation

(Sec. 2.2). Then we discuss the challenges of using MIS [Veach and

Guibas 1995] for distance sampling and existing solutions (Sec. 2.3).

2.1 Distance Sampling
Free-flight distance sampling uses the density 𝑇 (𝑡)𝜇 (𝑡) and is the

most common strategy [Novák et al. 2018]. It provides perfect impor-

tance sampling for these factors and sidesteps the need for transmit-

tance estimation since the transmittance cancels with the density. If

𝜉 ∈ [0, 1) is sampled uniformly, the distance 𝑡 where 𝑇 (𝑡) = 1 − 𝜉
has the desired density.

Regular tracking computes this distance exactly, but at a high cost.

It assumes a piecewise homogeneous volume, e.g. a voxel grid with

nearest-neighbor interpolation. Using a digital differential analyzer

(DDA) [Amanatides and Woo 1987] it steps along the ray one voxel

at a time up to the point where 𝑇 (𝑡) = 1 − 𝜉 [Szirmay-Kalos et al.

2010]. A biased alternative is ray marching with fixed step size.

Delta tracking [Coleman 1968; Novák et al. 2018] uses an up-

per bound 𝜇 ≥ 𝜇 (𝑡) for the extinction. It then samples a tenta-

tive distance according to a homogenized medium with extinction

𝜇 in closed form. With probability
𝜇 (𝑡 )
𝜇

this distance is returned.

Otherwise, it is treated as null-scattering event, meaning that the

distance sampling procedure starts over from this distance. Null-

scattering events can be interpreted as collisions with perfectly

forward-scattering particles. A constant upper bound 𝜇 may be

too large for this method to be efficient. Szirmay-Kalos et al. [2010]

instead prepare a low-resolution super-voxel grid, where each super-

voxel stores a local maximum extinction and use regular tracking

for this low-resolution grid. A 𝑘-d-tree with adaptive subdivision

provides even better bounds [Yue et al. 2011].

Free-flight distance sampling becomes ineffective when the in-

scattered radiance has high dynamic range. That happens for exam-

ple when there are point lights in the volume, since their geometry

terms approach infinity. To counteract that, equiangular sampling

uses these geometry terms as density [Kulla and Fajardo 2012]. It

can be generalized to area lights by first sampling a point on them.

2.2 Transmittance Estimation
With the sampling density of equiangular sampling, the transmit-

tance 𝑇 (𝑡) does not cancel in the Monte Carlo estimate, so it must

be estimated explicitly. The same holds true when next-event esti-

mation is used to be able to deal with small or distant light sources.

Regular tracking as described above [Novák et al. 2018; Szirmay-

Kalos et al. 2010] computes the exact optical depth 𝜏 along a ray

and thus it can also compute the exact transmittance exp(−𝜏), but
at a high cost. As explained in the introduction, a biased alternative

is to use a form of ray marching to obtain an unbiased estimate 𝑋

of 𝜏 and to use exp(−𝑋 ) as naive transmittance estimate.

Any free-flight distance sampling method can be turned into a

transmittance estimator since it produces a sample 𝑡 > 𝑡max with

probability 𝑇 (𝑡max). That gives rise to the track-length estimator,

which is 1 if 𝑡 > 𝑡max and 0 otherwise. This estimate is unbiased,

and when combined with delta tracking, its overhead is relatively

low. However, it has the worst possible variance among unbiased

estimates that return a transmittance in [0, 1], namely (1 −𝑇 )𝑇 .
To reduce the variance, ratio tracking [Novák et al. 2014] replaces

the random termination of delta tracking by accumulation of contin-

uation probabilities. If tentative distances 𝑡 ′
1
, . . . , 𝑡 ′

𝑘
∈ [0, 𝑡max] were

sampled, the transmittance estimate is

∏𝑘−1

𝑗=1
1−

𝜇 (𝑡 ′
𝑗
)

𝜇 (𝑡 ′
𝑗
) . Residual ratio

tracking [Novák et al. 2014] additionally stores a low-resolution

extinction estimate for which the transmittance is computed exactly

and only uses ratio tracking to estimate transmittance for the resid-

ual. These techniques force the traversal to continue longer than

the track-length estimator, thus increasing the cost. Ratio tracking

has lower variance than the track-length estimate when extinction

bounds are inaccurate, but the same variance for perfect bounds.

Georgiev et al. [2019] develop the theory for a new class of trans-

mittance estimators. The product of 𝑗 ∈ N unbiased i.i.d. estimates

of optical depth is an unbiased estimate of 𝜏 𝑗 . That gives rise to an

unbiased estimate of the power series exp(−𝜏) =∑∞
𝑗=0

(−𝜏 ) 𝑗
𝑗 !

using

a random and unbounded number of estimates. The unbiased ray

marching transmittance estimator [Kettunen et al. 2021] is a practi-

cal realization of this theory. All possible permutations of estimates

are treated equally to lower the variance (so-called U-statistics) and

one estimate serves as expansion point for the power series. Ad-

ditionally, aggressive Russian roulette limits the number of used

estimates to just one most of the time, since more estimates give

diminishing returns. Misso et al. [2022] introduce a similar method

for pink-noise transmittance. They also propose an unbiased trans-

mittance estimator that applies Russian roulette to a telescoping

sum, which starts with a ray marching estimate and then corrects

that using estimates with doubling sample counts.

On GPUs and other SIMD architectures, this Russian roulette

causes thread divergence: Each thread in a SIMD group pays the

same cost as the worst thread. Besides, it is tricky to allocate space

for an unbounded number of estimates [Kettunen et al. 2021]. To

estimate optical depth, Kettunen et al. use an adaptive sample count

and importance sampling based on mean values in a super-voxel

grid. This way, they also obtain an improved version of the naive

biased transmittance estimate exp(−𝑋 ).

2.3 Multiple Importance Sampling
MIS [Veach and Guibas 1995] is essential to combine sampling strate-

gies in a way that retains their strengths. It may, for example, be
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used to combine a distance sampling strategy with known prob-

ability density function 𝑝0 (𝑡) such as equiangular sampling with

free-flight distance sampling, where 𝑝1 (𝑡) = 𝑇 (𝑡)𝜇 (𝑡). When 𝑡0, 𝑡1
are sampled proportional to 𝑝0 (𝑡), 𝑝1 (𝑡), respectively, we get the
following MIS estimate:∫ 𝑡max

0

𝑓 (𝑡) d𝑡 ≈
1∑︁
𝑗=0

𝑤 𝑗 (𝑡 𝑗 )
𝑓 (𝑡 𝑗 )
𝑝 𝑗 (𝑡 𝑗 )

, where 𝑤 𝑗 (𝑡) :=
𝑝 𝑗 (𝑡)

𝑝0 (𝑡) + 𝑝1 (𝑡)
.

Here we have used the balance heuristic to define the MIS weights

𝑤 𝑗 (𝑡). However, it is important to note, that the MIS estimate is

unbiased for any choice as long as 𝑤0 (𝑡) +𝑤1 (𝑡) = 1 [Veach and

Guibas 1995].

A well-known problem in this context is that costly regular track-

ing is the only way to compute the density 𝑝1 (𝑡) =𝑇 (𝑡)𝜇 (𝑡) exactly.
Whenwemerely have an unbiased estimate of 𝑝1 (𝑡), obtained e.g. us-
ing ratio tracking, the estimate of the MIS weights will still be biased

since division is a non-linear operation. Additionally, it will inherit

variance from the transmittance estimate. On this subject, Novak

et al. [2018] write: “Since MIS only needs weights that sum up to

one to be correct, it is possible to instead use crude approximations

of the free-flight PDF. This may however deteriorate the variance

of the combined estimator, so one may prefer to use deterministic

transmittance estimators in scenarios where an algorithm depends

heavily on MIS.”

Miller et al. [2019] dismiss biasedMISweights entirely and instead

propose to work with a path space that treats null-scattering events

as actual path vertices in a perfectly forward scattering medium.

For ray segments that were not already generated by delta tracking,

they use ratio tracking to produce null-scattering events. With this

reinterpretation, all sampling densities are known exactly and MIS

is applicable. However, the resulting MIS weights are different from

the ones defined above and vary based on the random sample of

null-scattering events. If ratio tracking has high variance in the

rendered volume, the MIS estimates inherit this variance.

3 Our Transmittance Estimator
We now develop our novel transmittance estimator. To achieve a

low and predictable computational cost, we sacrifice unbiasedness

by making the assumption that optical depth estimates are normal-

distributed (Sec. 3.1). Under this assumption, the optimal estimate of

exp(−𝜏) has been derived by Gray et al. [1973] (Sec. 3.2). We special-

ize their results to arrive at our jackknife transmittance estimator

(Sec. 3.3). Suitable estimators of optical depth, which come close to

being normal-distributed, are developed in Sec. 4.

3.1 Our Approach
We have discussed shortcomings of existing unbiased transmittance

estimators in Sec. 2.2. Regular tracking is the only option with a

deterministic cost, but this cost is the worst case. For delta tracking,

ratio tracking [Novák et al. 2014] and unbiased ray marching [Ket-

tunen et al. 2021], the number of samples of 𝜇 (𝑡) is random and

unbounded. This randomness incurs incoherent execution on SIMD

architectures, which increases the overall cost. We conjecture that

this is an inherent consequence of the lack of assumptions on the

extinction profile 𝜇 (𝑡) and the fact that the exponential is a tran-

scendental function. The interpretation of the problem as integral in

an infinite-dimensional domain supports this conjecture [Georgiev

et al. 2019].

If this is true, we have to make stronger assumptions to arrive at a

technique with bounded cost. We seek a model of the distribution of

optical depth estimates that is simple enough to compute our trans-

mittance estimate efficiently without any additional assumptions. A

normal distribution satisfies this requirement as we will see shortly.

At the same time, we want our model to be reasonably close to the

ground truth distribution. The reason why the normal distribution

is of such great importance in statistics is the central limit theorem:

Under relatively weak assumptions, a sum of independent random

variables approaches a normal distribution as the number of random

variables grows [Knight 1999, p. 145]. In Sec. 4.1, we demonstrate

that this applies to a ray marching estimate of optical depth, as long

as we jitter each sample independently. Thus, the normal distribu-

tion is a pragmatic and natural choice. It is not a perfect model,

and therefore our estimate remains biased, but it is good enough to

achieve much lower bias than with the naive estimate exp(−𝑋 ).

3.2 Unique Minimum Variance Unbiased Estimation
To construct a better transmittance estimate than exp(−𝑋 ), we need
more than one estimate of optical depth. Thus, we compute multiple

i.i.d. estimates of optical depth, i.e. we evaluate the same estimate

multiple times using different random numbers. Based on our ap-

proach, we assume that each estimate is normal-distributed with

unknownmean 𝜏 and unknown standard deviation. We then seek an

unbiased estimate of the transmittance 𝑇 = exp(−𝜏). Additionally,
we want this estimate to have minimal variance. In short, we want

the UMVU estimate. UMVU estimates are well-studied in statistics.

They are known for many different statistics and different distribu-

tions of 𝑋 [Voinov and Nikulin 1993]. We found the solution for our

specific case in the literature [Gray et al. 1973, Example 4]:

Theorem 1. Let 𝑚 ∈ N with 𝑚 ≥ 2 and let 𝑋0, . . . , 𝑋𝑚−1 be i.i.d.
samples of a normal distribution with unknown mean 𝜏 ∈ R and
unknown standard deviation 𝜎 ≥ 0. Consider the sample mean, biased
sample variance and biased sample standard deviation defined by

𝑋 :=
1

𝑚

𝑚−1∑︁
𝑗=0

𝑋 𝑗 , 𝑆2
:=

1

𝑚

𝑚−1∑︁
𝑗=0

𝑋 2

𝑗 − 𝑋 2, 𝑆 :=
√
𝑆2.

Let

𝐾 := Γ

(
𝑚 − 1

2

) (
2

𝑆

)𝑚−3

2

𝐽𝑚−3

2

(𝑆) exp(−𝑋 ), (3)

where Γ denotes the gamma function and 𝐽𝑚−3

2

denotes the Bessel

function of order 𝑚−3

2
[Akhmedova and Akhmedov 2019, p. 44]. Then𝐾

is the UMVU estimate of exp(−𝜏), i.e. E(𝐾) = exp(−𝜏) and if another
function 𝐿(𝑋0, . . . , 𝑋𝑚−1) satisfies E(𝐿(𝑋0, . . . , 𝑋𝑚−1)) = exp(−𝜏),
its variance cannot be lower:

V(𝐾) ≤ V(𝐿(𝑋0, . . . , 𝑋𝑚−1)).

As is, Eq. 3 requires us to evaluate the Bessel function, but we will

eliminate the need for that shortly. Other than that, this looks like a

straight-forward solution to our problem with all the properties that

we wanted. The naive estimate exp(−𝑋 ) is a factor in the estimate
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Fig. 2. A comparison of the jackknife estimate against the naive estimate
exp(−𝑋 ) using 𝑚 = 2 i.i.d. optical depth estimates. We use various hy-
pothetical distributions of optical depth estimates and compare the two
transmittance estimates in terms of their mean and standard deviation. The
jackknife estimate (Eq. 3) always reduces the bias.

𝐾 , but there are additional factors depending on the sample standard

deviation 𝑆 , which compensate for the bias of this estimate.

To derive Eq. 3, Gray et al. [1973] apply the “generalized jackknife”

to a biased estimate, thus removing the bias, and then use so-called

Rao-Blackwellization to arrive at the UMVU estimate. The jackknife

in turn is called that because it is “a useful tool in a variety of

situations” [Gray et al. 1973]. Therefore, we refer to the estimate in

Eq. 3 as jackknife estimate.

If our assumption of normal-distributed estimates holds true,

the jackknife estimate is unbiased. Fig. 2 demonstrates that it still

achieves lower bias than exp(−𝑋 ) for a variety of other distributions.
In these experiments, the improvement is smallest for single-sided

distributions. The Laplace distribution is remarkable in that the

jackknife estimate slightly underestimates the transmittance. By

Jensen’s inequality, the naive estimate can never do so. In terms of

their standard deviation, both methods perform similarly.

3.3 Jackknife Transmittance Estimation
We now introduce our jackknife transmittance estimator. The main

design decision that we still have to make to complete this part of

our technique is what number of i.i.d. optical depth estimates 𝑚

we should use. We have to use at least𝑚 = 2 estimates, because

otherwise it is not possible to estimate the sample variance 𝑆2
. On

the other hand, we would like to use as few independent estimates

as possible, for two reasons: If we use fewer estimates, we can

afford more ray marching steps per estimate. Thus, the reasoning

that these estimates, as sum of many independent samples, are

normal-distributed is more sound and we expect less bias. Besides,𝑋

converges at a rate of
1√
𝑚
, whereas stratified jittered sampling with

𝑁 ∈ N samples has a convergence rate closer to
1

𝑁
(Fig. 5). Therefore,

it is preferable to invest the available sample budget into more

ray marching steps. The data in Table 1 (and in the supplemental)

support this reasoning: The choice𝑚 = 2 is optimal in terms of bias

and standard deviation.

Table 1. Statistics about the accuracy of the estimate in Eq. 3 when esti-
mating transmittance for the extinction profile 𝜇 (𝑡 ) shown in Fig. 4a. Each
estimate uses𝑚𝑁 = 24 samples of 𝜇 (𝑡 ) overall, but using the maximal
number of samples for ray marching with𝑚 = 2 is optimal. The bias for
𝑚 = 2 is below the margin of error with 10

8 trials. The row for 𝑚 = 1

uses the naive estimate exp(−𝑋 ) , which has much higher bias but slightly
smaller standard deviation (std.).

Estimate Ray marching Transmittance estimate

count𝑚 sample count 𝑁 mean bias std.

2 12 0.13411 0.00000 0.0405

3 8 0.13425 0.00014 0.0440

4 6 0.13421 0.00010 0.0528

6 4 0.13433 0.00022 0.0490

8 3 0.13485 0.00074 0.0694

1 24 0.13797 0.00386 0.0331

This choice also has a third advantage in that it simplifies evalu-

ation of Eq. 3. We know [Akhmedova and Akhmedov 2019, p. 49]

that

𝐽− 1

2

(𝑆) =
√︂

2

𝜋𝑆
cos(𝑆), Γ

(
1

2

)
=
√
𝜋 .

Then for𝑚 = 2

𝐾 =
√
𝜋

(
2

𝑆

)− 1

2

√︂
2

𝜋𝑆
cos(𝑆) exp(−𝑋 ) = cos(𝑆) exp(−𝑋 ).

Furthermore,

𝑆 =

√︄
𝑋 2

0
+ 𝑋 2

1

2

−
(
𝑋0 + 𝑋1

2

)
2

=

√︄
𝑋 2

0
− 2𝑋0𝑋1 + 𝑋 2

1

4

=
|𝑋0 − 𝑋1 |

2

.

With that, we have derived the core of our method. Given two

unbiased i.i.d. estimates of optical depth 𝑋0, 𝑋1, our jackknife trans-

mittance estimate is

𝐾 = cos(𝑆) exp(−𝑋 ), where 𝑋 =
𝑋0 + 𝑋1

2

, 𝑆 =
|𝑋0 − 𝑋1 |

2

. (4)

The computational cost is negligible. It is quite surprising that the

cosine shows up in this manner, but even without diving into the

proof of Thm. 1, we can convince ourselves that it is plausible. The

estimate exp(−𝑋 ) systematically overestimates the transmittance.

The factor cos(𝑆) ∈ [−1, 1] reduces this estimate to compensate for

this bias. For small sample standard deviation 𝑆 , the correction factor

remains close to 1. For large standard deviations, our transmittance

estimate can become negative. That is an undesirable property, but

we found these negative values to be rare unless the transmittance

is close to zero (see the supplemental document) and clamping them

away causes increased bias. Sec. 5.1 generalizes Eq. 4 and provides

another explanation why cos(𝑆) arises in this formula.

In Appendix A.2, we derive the variance of our estimate for𝑚 = 2

and normal-distributed 𝑋0, 𝑋1 with standard deviation 𝜎 ≥ 0:

V(𝐾) = 1

2

(exp(𝜎2) − 1) exp(−2𝜏).

The corresponding relative root mean square error (rRMSE) is√︁
V(𝐾)
𝑇

=

√︂
exp(𝜎2) − 1

2

.
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Fig. 3. Left: The rRMSE of our jackknife transmittance estimator and the
naive estimate exp(−𝑋 ) for normal-distributed optical depth estimates
with standard deviation 𝜎 . Right: Their ratio.

In Appendix A.1, we derive the rRMSE of exp(−𝑋 ) for the same two

samples: √︄
exp(𝜎2) − 2 exp

(
𝜎2

4

)
+ 1.

Fig. 3 shows plots of these two functions and their ratio. We observe

that the error of our method is never worse and lower by a factor of

nearly

√
2 for large 𝜎 . We note however, that this comparison is not

entirely fair, since the naive estimate could also use𝑚 = 1 to benefit

from the faster convergence rate of stratified jittered sampling.

4 Our Optical Depth Estimator
We now have to design an optical depth estimator that fits the

requirements of our jackknife transmittance estimator well. First,

we elaborate on our reasoning that stratified jittered sampling re-

sults in nearly normal-distributed estimates (Sec. 4.1). Since this

reasoning can fail for sparse volumes, we use importance sampling

with a variance-minimizing strategy [Pantaleoni and Heitz 2017]

(Sec. 4.2). Finally, we describe non-trivial aspects of the implemen-

tation (Sec. 4.3).

4.1 Stratified Jittered versus Uniform Jittered Sampling
Ray marching with uniform jittered sampling [Pauly et al. 2000]

is a well-established way to attain unbiased estimates of optical

depth [Kettunen et al. 2021]. It depends on a single uniform random

number 𝜉 ∈ [0, 1) and uses it to jitter 𝑁 ∈ N equidistant samples.

Sample 𝑗 ∈ {0, . . . , 𝑁−1} is placed at 𝑡 𝑗 :=
𝑗+𝜉
𝑁
𝑡max. Stratified jittered

sampling similarly ensures exactly one sample per stratum [ 𝑗

𝑁
,
𝑗+1

𝑁
)

but places each sample independently. Sample 𝑗 is placed at 𝑡 𝑗 :=
𝑗+𝜉 𝑗
𝑁
𝑡max where 𝜉0, . . . , 𝜉𝑁−1 ∈ [0, 1) are uniform and independent.

In both cases, the Monte Carlo estimate of the optical depth is

𝑋 =
𝑡max

𝑁

∑𝑁−1

𝑗=0
𝜇 (𝑡 𝑗 ).

In Fig. 4, we show histograms of optical depth estimates ob-

tained using many evaluations of both of these techniques. It clearly

shows that the distribution of stratified jittered sampling quickly

approaches a normal distribution. With ten samples only minor

deviations from a normal distribution remain. On the other hand,

the distribution of the estimates from uniform jittered sampling

does not approach a normal distribution at all.

This behavior can be explained by consulting the central limit

theorem (CLT) [Knight 1999]. The most common formulations of

the CLT deal with a sum of i.i.d. random variables. That does not
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Fig. 4. Histograms of 10
6 estimates of optical depth for the shown extinc-

tion profile 𝜇 (𝑡 ) . With stratified jittered sampling, the distribution already
approaches a normal distribution for 𝑁 = 5 samples and is close to normal
at 𝑁 = 10. The black line shows a fitted normal density. Uniform jittered
sampling shows no sign of approaching a normal distribution at 𝑁 = 20.

match stratified jittered sampling where each term of the sum has a

different distribution describing a different stratum. However, the

Lyapunov CLT [Knight 1999, p. 145] is applicable. In Appendix B,

we make the following claim precise and prove it: As long as we

keep encountering samples with non-zero variance, the distribution

of the optical depth estimate converges to a normal distribution as

we continue marching along the ray.

Since our jackknife transmittance estimate depends on normal-

distributed inputs to be unbiased, it is clear now that we should

prefer stratified jittered sampling over uniform jittered sampling.

Nonetheless, bias is not the only concern.We also want low variance.

Fig. 5 compares convergence rates of three variants of stratified sam-

pling as well as i.i.d. sampling, which chooses each 𝑡 𝑗 ∈ [0, 𝑡max)
uniformly. Like uniform jittered sampling, stratified jittered sam-

pling converges faster than i.i.d. sampling at a rate close to
1

𝑁
. For

sample counts between 1 and 100, which is the regime we care

about based on Fig. 4, the two techniques perform similarly. Once

ray marching steps reach the scale of individual voxels, the tech-

niques with equidistant samples begin to outpace stratified jittered

sampling. That is probably because uniform jittered sampling inher-

its a
1

𝑁 2
convergence rate from the midpoint rule in this case. We

provide graphs for other extinction profiles 𝜇 (𝑡) as supplemental,

which confirm these conclusions.

4.2 Variance-Aware Importance Sampling
Our reasoning using the CLT has a caveat: If a ray mostly travels

through homogeneous regions of the volume, many samples will

not contribute any variance to the estimate of optical depth. Usually,

that would be desirable. In our case, however, it means that we

wind up with an estimate of optical depth that is farther from being
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Fig. 5. A log-log-plot illustrating the convergence rate of various optical
depth estimators for the extinction 𝜇 (𝑡 ) shown in Fig. 4a. We compute
the RMSE for each sample count 𝑁 using 10

4 random realizations of each
optical depth estimate. The deterministic midpoint rule is an exception.
The stratified techniques are closer to linear convergence than to the 1√

𝑁

convergence of uniform i.i.d. samples in [0, 𝑡max ) . Between 1 and 100 sam-
ples, stratified and uniform jittered sampling perform similarly. We provide
examples with other extinction profiles 𝜇 (𝑡 ) as supplemental material.
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Fig. 6. A histogram like the ones in Fig. 4 but for a sparse extinction profile
𝜇 (𝑡 ) . In spite of using 20 samples, the distribution is still far from normal.

normal-distributed and thus it drives up bias in the transmittance

estimate. Fig. 6 demonstrates that this is not a purely theoretical

concern.

To remedy this problem, we use importance sampling, similar

to Kettunen et al. [2021]. That is also an effective way to reduce

variance. We compute a low-resolution super-voxel grid, where

each super-voxel stores an importance for 𝑅 = 𝑟 3
voxels (we use

16
3
). Then the sampling density within each super-voxel is made to

be proportional to its importance (Sec. 4.3).

Let 𝜇0, . . . , 𝜇𝑅−1 ≥ 0 be the extinction values of all the voxels

that fall into the super-voxel in question. We have flattened the 3D

index into a 1D index here for notational convenience. Kettunen

et al. [2021] use the mean as importance, i.e.
1

𝑅

∑𝑅−1

𝑗=0
𝜇 𝑗 . Although

importance sampling proportional to the integrand is perfect, this

strategy is known to give a suboptimal piecewise constant density.

The optimal piecewise constant density within each super-voxel

is proportional to the root mean square extinction along the ray

segment within the super-voxel [Pantaleoni and Heitz 2017]. Since

it is not practical to compute this optimal density for every ray,

we approximate it by

√︃
1

𝑅

∑𝑅−1

𝑗=0
𝜇2

𝑗
, similar to the mean used by

Kettunen et al. [2021].

One problem remains: The volume may contain large homoge-

neous regions with a non-zero extinction. Ray marching samples in

these regions do not contribute to the variance either, so our impor-

tance sampling scheme should avoid them. To this end, we compute

the minimal extinction 𝜇min := min{𝜇 𝑗 }𝑅−1

𝑗=0
for each super-voxel.

Then our importance sampling and the integration only account

for the difference 𝜇 𝑗 − 𝜇min. The optical depth of the low-resolution

minimum volume is computed exactly using regular tracking and

added to the end result. This is a typical application of control vari-

ates in volume rendering [Novák et al. 2014]. Our final super-voxel

importance is

𝑃 :=

√√√
1

𝑅

𝑅−1∑︁
𝑗=0

(𝜇 𝑗 − 𝜇min)2
. (5)

In principle, we can also use control variates that exceed the mini-

mum value, but we do not recommend it. With such control variates,

the noisy estimate of optical depth 𝑋 can become negative. Most

of the time this is not a problem, but in rare cases the exponential

growth of exp(−𝑋 ) will make an outlier sample much worse. Thus,

control variates in excess of the minimum introduce fireflies and

harm robustness. Without them, our transmittance estimates are

guaranteed to remain in the interval [−1, 1] (Eq. 4).

4.3 Implementation
Designing a good implementation of our optical depth estimator

is slightly challenging. It has to support our importance sampling

scheme in conjunction with stratified jittered sampling, whilst also

producing𝑚 = 2 optical depth estimates at the same time. Alg. 1

presents pseudo code for our implementation. Until it reaches the

end of the ray, each pass through the outer loop takes exactly one

sample 𝜇 (𝑡) of the high-resolution volume. On SIMD architectures,

that ensures coherent execution of this expensive step. Prior to

each sample, the inner loop advances traversal of the super-voxel

grid until the cumulative distribution function (CDF) 𝐹 exceeds the

CDF value for the next sample 𝐹Δ𝐼 𝑗 . Note that the used CDF is an

unnormalized integral over super-voxel importance values.

An input to Alg. 1 is the CDF step size 𝐹Δ, i.e. the integral of

importance within each stratum. Since our importance values in

Eq. 5 are essentially extinctions, this value has the same unit as

optical depth. It is meaningful in an absolute and scene-independent

sense and can be set manually. However, that has two drawbacks:

First, a ray traveling through dense and high-frequency regions

of the volume will take an unnecessarily high number of samples,

especially when the final transmittance is close to zero. Second, rays

that only traverse thin parts in the outer rim of a volume do not

take enough samples to arrive at a normal-distributed estimate.

To address these problems, we advocate for a fixed sample count𝑁 :

We run regular tracking through the super-voxels twice. The first

traversal computes the unnormalized CDF 𝐹 as shown in Alg. 2.

Then we set the CDF step size to 𝐹Δ := 𝐹
𝑁
. This is also a good op-

portunity to determine a tighter ray segment [𝑡 ′
min
, 𝑡 ′

max
] for use in

Alg. 1 since we enforce a small non-zero importance for all non-

empty super-voxels. If 𝐹 = 0, optical depth estimation returns 0.

With this strategy, the cost of the transmittance estimator is entirely

predetermined by the length of the ray segment and our evaluation
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Algorithm 1 Our optical depth estimator.

Input: Ray x(0), 𝜔, 𝑡max and CDF step size 𝐹Δ.

Output: Two i.i.d. optical depth estimates 𝑋0, 𝑋1.

𝐹 := 0, 𝜏𝑐 := 0

𝑋0 := 0, 𝑋1 := 0

𝐼0 := rand(), 𝐼1 := rand()
𝑗 := arg min𝑘∈{0,1} 𝐼𝑘

⊲ Current CDF and control variate

⊲ Optical depth estimates

⊲ CDFs at next sample, divided by 𝐹Δ

⊲ Which estimate is next?

Initalize DDA super-voxel traversal for the ray x(0) + 𝑡𝜔 .
𝑡𝑛 := 0, 𝑡𝑛+1 := 0, 𝜇min := 0, 𝑃 := 0

while 𝐹Δ𝐼 𝑗 < 𝐹 or 𝑡𝑛+1 < 𝑡max:

while 𝐹Δ𝐼 𝑗 ≥ 𝐹 and 𝑡𝑛+1 < 𝑡max:

⊲ Loop over high-res. samples

⊲ Loop over super-voxels

DDA step to next super-voxel with ray segment [𝑡𝑛, 𝑡𝑛+1] ⊆
[0, 𝑡max], importance 𝑃 and minimum extinction 𝜇min.

𝐹 := 𝐹 + (𝑡𝑛+1 − 𝑡𝑛)𝑃
𝜏𝑐 := 𝜏𝑐 + (𝑡𝑛+1 − 𝑡𝑛)𝜇min

if 𝐹Δ𝐼 𝑗 < 𝐹 :

𝑡 := 𝑡𝑛+1 −
𝐹−𝐹Δ𝐼 𝑗

𝑃

𝑋 𝑗 := 𝑋 𝑗 + 𝜇 (𝑡 )−𝜇
min

𝑃

𝐼 𝑗 := ceil(𝐼 𝑗 ) + rand()
𝑗 := arg min𝑘∈{0,1} 𝐼𝑘

𝑋0 := 𝐹Δ𝑋0 + 𝜏𝑐 , 𝑋1 := 𝐹Δ𝑋1 + 𝜏𝑐
Return (𝑋0, 𝑋1).

⊲ Update the CDF

⊲ Update the control variate

⊲ If we are not at 𝑡max yet:

⊲ Rewind to the sample location

⊲ Accumulate the sample

⊲ Advance CDF for next sample

⊲ Which estimate is next?

⊲ Complete the estimates

Algorithm 2 Preparations for optical depth estimation.

Input: Ray x(0), 𝜔, 𝑡max.

Output: The integral of importance 𝐹 (such that 𝐹Δ = 𝐹
𝑁
) and a

tighter ray segment [𝑡 ′
min
, 𝑡 ′

max
].

𝐹 := 0, 𝑡 ′
min

:= 𝑡max, 𝑡
′
max

:= 0

Initalize DDA super-voxel traversal for the ray x(0) + 𝑡𝜔 .
For each super-voxel, covering a ray segment [𝑡𝑛, 𝑡𝑛+1] ⊆ [0, 𝑡max]:
Read the super-voxel importance 𝑃 .

𝐹 := 𝐹 + (𝑡𝑛+1 − 𝑡𝑛)𝑃
if 𝑃 ≠ 0: 𝑡 ′

min
:= min{𝑡𝑛, 𝑡 ′

min
}, 𝑡 ′

max
:= max{𝑡𝑛+1, 𝑡

′
max

}
Return 𝐹, 𝑡 ′

min
, 𝑡 ′

max
.

in Sec. 6.1 shows that it usually gives less bias. The cost of low-

resolution regular tracking is significant though. We could store

importance values in Alg. 2, but on GPU we prefer to reread them.

Our implementation stores high-resolution extinction values as

16-bit floats. For all low-resolution grids, we use BC4 compres-

sion [Hofmann and Evans 2021] but found that it makes a relatively

minor difference. During compression, we take special care of proper

rounding: Densities are always rounded up, because rounding to

zero causes bias. Minima are always rounded down to avoid negative

estimates of optical depth.

Rather than using trilinear interpolation for the high-resolution

volume, we jitter each sample location stochastically [Hofmann et al.

2021; Pharr et al. 2024]. When that is enabled, we use overlapping

super-voxels. To compute the jitters, we use PCG3D. For stratified

jittered sampling, we choose PCG as inexpensive random number

generator with reasonable quality [Jarzynski and Olano 2020] (rand()

in Alg. 1).

5 Our MIS Weight Estimator
At this point, we have established that the assumption of normal-

distributed optical depth estimates is a good approximation. A nat-

ural next question is whether there are more ways to utilize this

insight and the work of Gray et al. [1973]. And indeed, it turns out

that we can not only estimate exp(−𝜏) but any analytic function of

optical depth (Sec. 5.1). As an important application, we demonstrate

how to estimate MIS weights for distance sampling (Sec. 5.2).

5.1 Jackknife Function Estimation
We now introduce the UMVU estimate of 𝑔(𝜏) ∈ R. We demand

that 𝑔 is an analytic function, i.e. a function that can be written

as a power series 𝑔(𝜏) = ∑∞
𝑗=0
𝑎 𝑗𝜏

𝑗
with coefficients 𝑎0, 𝑎1, . . . ∈ R.

The coefficients can be obtained as derivatives using a Taylor series:

𝑎 𝑗 :=
𝑔 ( 𝑗 ) (0)

𝑗 !
for all 𝑗 ∈ N0. Then the UMVU estimate of 𝑔(𝜏) is

known [Gray et al. 1973, Theorem 4]:

Theorem 2. Let𝑚, 𝑋0, . . . , 𝑋𝑚−1, 𝑋 and 𝑆 be defined as in Thm. 1.
Let 𝑔(𝜏) =∑∞

𝑗=0
𝑎 𝑗𝜏

𝑗 ∈ R be analytic on the real axis R. Let

𝐺 := 𝑔(𝑋 ) +
∞∑︁
𝑗=1

Γ
(
𝑚−1

2

)
Γ
(
𝑚−1

2
+ 𝑗

) (−1) 𝑗𝑔 (2𝑗 ) (𝑋 )
𝑗 !

(
𝑆2

4

) 𝑗
. (6)

Then under appropriate regularity conditions,𝐺 is the UMVU estimator
of 𝑔(𝜏).

The aforementioned “appropriate regularity conditions” are stated

implicitly in the proof of this theorem [Gray et al. 1973]. Alterna-

tively, Gray et al. recommend to verify directly that the estimator is

unbiased, for any specific function of interest 𝑔(𝜏).
It is not immediately clear how we should evaluate the series in

Eq. 6 algorithmically. However, we found that this problem goes

away in the special case𝑚 = 2. In Appendix C, we use basic algebraic

manipulations to show that for𝑚 = 2

𝐺 =

∞∑︁
𝑗=0

(−1) 𝑗𝑔 (2𝑗 ) (𝑋 )
(2 𝑗)! 𝑆2𝑗

.

We now combine the sample mean and standard deviation into a

single complex number𝑋 + 𝑖𝑆 ∈ C, where 𝑖 :=
√
−1 is the imaginary

unit. Next, we study the real part of 𝑔(𝑋 + 𝑖𝑆) using a Taylor series

expansion around 𝑋 :

ℜ𝑔(𝑋 + 𝑖𝑆) =ℜ
∞∑︁
𝑗=0

𝑔 ( 𝑗 ) (𝑋 )
𝑗 !

(𝑖𝑆) 𝑗 (∗)
=

∞∑︁
𝑗=0

𝑔 (2𝑗 ) (𝑋 )
(2 𝑗)! (𝑖𝑆)2𝑗

=

∞∑︁
𝑗=0

(−1) 𝑗𝑔 (2𝑗 ) (𝑋 )
(2 𝑗)! 𝑆2𝑗 =𝐺 . (7)

This turns out to be the sought-after UMVU estimate 𝐺 for𝑚 = 2!

In the step marked (∗), we have exploited that ℜ(𝑖 𝑗 ) = 0 for odd 𝑗 .

This result is rather confounding. We have interpreted the sample

standard deviation 𝑆 of our optical depth estimate as imaginary

component of a complex optical depth estimate. Then simply feeding

this complex optical depth into 𝑔 and taking the real part gives us
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the desired UMVU estimate. Although we have a proof that this is

indeed correct, we do not have a simple intuitive argument why.

However, we can at least convince ourselves that it is consistent

with our formula for the jackknife transmittance estimate:

ℜ exp(−(𝑋 + 𝑖𝑆)) =ℜ(exp(−𝑖𝑆)) exp(−𝑋 ) = cos(𝑆) exp(−𝑋 ).

5.2 Jackknife MIS Weight Estimation
We will now apply this kind of function estimation to compute MIS

weights [Veach and Guibas 1995]. As explained in Sec. 2.3, MIS still

gives unbiased results when the MIS weights themselves are biased,

but prior work has dismissed this approach [Miller et al. 2019; Novák

et al. 2018].

To keep our discussion simple, we focus on the MIS combination

of two distance sampling strategies: One strategy (e.g. equiangular

sampling [Kulla and Fajardo 2012]) uses a known density 𝑝0 (𝑡), the
other is free-flight distance sampling with density 𝑝1 (𝑡) =𝑇 (𝑡)𝜇 (𝑡).
Then the MIS weight for strategy 𝑗 ∈ {0, 1} with the balance heuris-

tic is

𝑤 𝑗 (𝑡) :=
𝑝 𝑗 (𝑡)

𝑝0 (𝑡) + 𝑝1 (𝑡)
=

{
1 − 𝑇 (𝑡 )𝜇 (𝑡 )

𝑝0 (𝑡 )+𝑇 (𝑡 )𝜇 (𝑡 ) if 𝑗 = 0,

𝑇 (𝑡 )𝜇 (𝑡 )
𝑝0 (𝑡 )+𝑇 (𝑡 )𝜇 (𝑡 ) if 𝑗 = 1.

(8)

It is also useful to study the MIS estimate more holistically. Let

𝑡0, 𝑡1 denote the distances sampled from 𝑝0 (𝑡), 𝑝1 (𝑡), respectively. Let
𝐿𝑠,0, 𝐿𝑠,1 denote the Monte Carlo estimates of in-scattered radiance

for these distance samples. Then the MIS estimate for the incoming

radiance described in Eq. 2 is

𝐿𝑖 (x(0), 𝜔) ≈ 𝐿𝑖,MIS :=

1∑︁
𝑗=0

𝑤 𝑗 (𝑡 𝑗 )
𝑇 (𝑡 𝑗 )𝜇 (𝑡 𝑗 )𝐿𝑠,𝑗

𝑝 𝑗 (𝑡 𝑗 )
.

Expanding this slightly and canceling 𝑝1 (𝑡1) with 𝑇 (𝑡1)𝜇 (𝑡1) in the

second term, we arrive at

𝐿𝑖,MIS =𝑤0 (𝑡0)
𝑇 (𝑡0)𝜇 (𝑡0)𝐿𝑠,0

𝑝0 (𝑡0)
+𝑤1 (𝑡1)𝐿𝑠,1. (9)

Alternatively, we can merge MIS weight estimation and transmit-

tance estimation:

𝐿𝑖,MIS =

1∑︁
𝑗=0

𝑇 (𝑡 𝑗 )𝜇 (𝑡 𝑗 )
𝑝0 (𝑡 𝑗 ) +𝑇 (𝑡 𝑗 )𝜇 (𝑡 𝑗 )

𝐿𝑠,𝑗 . (10)

No matter whether we use Eq. 8 or Eq. 10, we have to estimate

𝑇 (𝑡)𝜇 (𝑡)
𝑝0 (𝑡) +𝑇 (𝑡)𝜇 (𝑡)

=
𝑢0 exp(−𝜏 (𝑡)) + 𝑢1

𝑣0 exp(−𝜏 (𝑡)) + 𝑣1

=: 𝑔(𝜏 (𝑡)), (11)

where 𝑢0 := 𝑣0 := 𝜇 (𝑡), 𝑢1 := 0 and 𝑣1 := 𝑝0 (𝑡) do not depend on

𝜏 (𝑡). Applying Eq. 7, we get the biased estimate

𝑔(𝜏) ≈ ℜ𝑢0 exp(−(𝑋 + 𝑖𝑆)) + 𝑢1

𝑣0 exp(−(𝑋 + 𝑖𝑆)) + 𝑣1

. (12)

In this estimate, 𝑋, 𝑆 are computed from two unbiased estimates

of optical depth 𝑋0, 𝑋1 exactly as in Eq. 4. Appendix F provides

formulas that avoid complex arithmetic.

To evaluate our unbiased MIS estimate of 𝐿𝑖 (x(0), 𝜔), we produce
distance samples 𝑡0, 𝑡1, invoke Algs. 2 and 1 and Eq. 12 twice to

estimate 𝑤0 (𝑡0),𝑤1 (𝑡1) and finally use an unbiased transmittance

estimator with independent random numbers for 𝑇 (𝑡0). Then using

these estimates in Eq. 9 gives an unbiased estimate (see Appendix D).
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Fig. 7. We estimate𝑔 (𝜏 ) as defined in Eq. 11 for (𝑢0,𝑢1, 𝑣0, 𝑣1 ) = (1, 0, 1, 1/2)
and analyze the bias. For this experiment, the optical depth estimates are
normal-distributed with varying mean 𝜏 and standard deviation 𝜎 . The
dashed line marks 𝜎 = 1.645𝜏 , where the normal distribution has 5% of its
mass across negative values. Our jackknife MIS weight estimate has low
bias below this line and generally much less bias than the naive estimate
𝑔 (𝑋 ) . Both estimates have little bias for 𝜏 = ln

𝑣
0

𝑣
1

, which aligns with the
location of poles of 𝑔 (𝜏 ) (Appendix E). Our supplemental material provides
results for other choices of 𝑢0,𝑢1, 𝑣0, 𝑣1, which support these conclusions.

Compared to the method of Miller et al. [2019], this procedure

has more steps: Miller et al. reuse intermediate results from delta

tracking and only need one invocation of ratio tracking for 𝑇 (𝑡0)
on top of that. However, their MIS weights are defined differently.

In our method, we can avoid the cost of estimating𝑇 (𝑡0) separately,
by using Eq. 10 instead of Eq. 9, but that introduces bias. Either way,

we can also use the naive estimate of MIS weights 𝑔(𝑋 ) instead of

our jackknife estimate. The unbiased estimate of radiance remains

unbiased then.

It should be noted that𝑔(𝜏) is not actually analytic, due to the divi-
sion. Appendix E explains that the convergence radius of the power

series 𝑔(𝜏) =∑∞
𝑗=0
𝑎 𝑗𝜏

𝑗
is

���ln 𝑣0

𝑣1

+ 𝑖𝜋
���. Since analytic functions must

have infinite convergence radius, Thm. 2 does not apply. Again, this

is not a purely theoretical problem: Fig. 7 shows that our jackknife

MIS weight estimator is indeed biased, even when the optical depth

estimates are exactly normal-distributed. However, this bias is much

weaker than for the naive estimate 𝑔(𝑋 ). In addition, the bias is

small for combinations of optical depth 𝜏 and standard deviation 𝜎

that we care about: Our optical depth estimates are non-negative

by design, but for 𝜎 ≥ 1.645𝜏 the normal distribution has more than

5% of its mass across negative values. In this case, our optical depth

estimates cannot be close to being normal-distributed. Thus, the

relevant parts of Fig. 7 are the parts below the dashed line, where

our estimator has negligible bias.

Our derivation above only covers the simplest case, namely the

balance heuristic for two strategies with one sample each. However,

the procedure is easy to generalize, e.g. to the power heuristic:

Derive MIS weights as function of optical depth 𝑔(𝜏) and evaluate

ℜ𝑔(𝑋 + 𝑖𝑆).

6 Results
We now evaluate our techniques in comparison to related work.

We start with transmittance estimation (Sec. 6.1), proceed to MIS

(Sec. 6.2) and finally discuss shared limitations (Sec. 6.3). To this end,
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we use four volumes: Bunny cloud (576 × 571 × 437), Intel cloud

(625 × 349 × 566), Disney cloud (993 × 675 × 1224) and explosion

(200× 271× 229). Our supplemental material provides an interactive

viewer with full sets of results for seven volumes.

Our implementation runs in a Vulkan fragment shader. All tech-

niques use BC4-compressed super-voxel grids with one super-voxel

per 163 voxels. For unbiased ray marching [Kettunen et al. 2021], we

limit the maximal degree of the power series to eight, to avoid the

need for dynamic memory allocation within a shader, we do not use

endpoint matching and we use a variant of Alg. 1 for mean-based

importance sampling, including tight ray segments from Alg. 2. All

other parameters are chosen as proposed by Kettunen et al. [2021],

although we sometimes double the sample count for higher quality.

All transmittance estimators use stochastic texture filtering instead

of trilinear interpolation. The reported timings refer to frames of

resolution 1920 × 1080 rendered on an NVIDIA RTX 5070 Ti with

GPU and memory clocks locked to 2452 MHz and 13801 MHz, re-

spectively.

6.1 Transmittance Estimation
To evaluate transmittance estimators, we compute, display and ana-

lyze the transmittance for primary rays (with the exception of Figs. 1

and 12). That is not how they are typically used in a renderer (Sec. 2)

but makes it easier to assess the bias and variance.

Biased Techniques. In Fig. 8, we compare different biased tech-

niques: The biased ray marching technique of Kettunen et al. [2021]

with doubled sample count and super-voxel size (compared to their

evaluation) and three variants of our method. The supplemental

additionally includes results for ray marching with equidistant steps

throughout the volume bounding box, but techniques with impor-

tance sampling consistently perform better.

Among these techniques, our jackknife transmittance estimator

with 𝑁 = 10 samples is a clear winner (Fig. 8e). For three of the

four volumes, it has the lowest bias. As expected (Sec. 3.3), the naive

estimate with the same overall sample count (Fig. 8c) has slightly

lower standard deviation but roughly three times more bias. Tying

the ray marching sample count to the overall importance along the

ray instead of keeping it fixed (Fig. 8d) is only beneficial for the

explosion. On all scenes, biased ray marching (Fig. 8b) has greater

bias than our method with fixed sample count. The frame times

of all techniques are quite similar. The insets focus on challenging

regions, but Fig. 10a provides full-size bias images for our technique.

The explosion is a failure case of most ray marching techniques,

with clearly visible bias due to poor importance sampling. We dis-

cuss it in more detail under limitations (Sec. 6.3).

Variance-Aware Importance Sampling. As an ablation, Fig. 9 com-

pares our variance-aware importance sampling with the minimum

as control variate (Sec. 4.2) to importance sampling proportional to

the super-voxel mean without a control variate. We observe a clear

reduction of bias in all cases and a slight reduction of the standard

deviation, which confirms that our approach is beneficial.

Unbiased Techniques. Fig. 10 compares our technique to unbiased

transmittance estimators using the same scenes as in Fig. 8. In this

comparison, the timings and standard deviations have greater varia-

tion. Timings of our method (Fig. 10f) and the track-length estimate

are similar and much lower than for ratio tracking and unbiased

ray marching. However, the track-length estimate (Fig. 10b) has

the worst possible standard deviation for a transmittance estimate

that produces estimates in [0, 1]: It is
√︁
(1 −𝑇 )𝑇 . Our transmittance

estimator achieves much lower standard deviation.

Ratio tracking still has much greater standard deviation and its

frame times are 2 to 3 times greater than for our method (Fig. 10c).

The standard deviation of unbiased ray marching [Kettunen et al.

2021] depends heavily on the quality of the importance sampling

(Fig. 10d). In this regard, the explosion is a serious failure case (more

so than for our method) with extreme fireflies. Doubling the sample

count (Fig. 10e) mitigates this problem, but makes the frame times

be inferior to ratio tracking.

Sample Count. Fig. 11 compares various techniques in terms of

the number of samples in the high-resolution volume. Samples

in the BC4-compressed super-voxel grid are not counted, but are

predictable for all methods except the track-length estimate: Per

traversed super-voxel, ratio tracking queries one value, unbiased

ray marching two values and ours three values. Note that these

reads are extremely cache coherent: Even for the Disney cloud, a

single super-voxel grid takes only 102 KiB of memory.

The number of samples for the track-length estimate is extremely

low. Though the timings in Fig. 10a hardly reflect that, presumably

due to thread divergence. Ratio tracking and unbiased ray marching

take most samples in regions of low transmittance, where they

might not contribute meaningfully to the end result. Our method is

configured to take exactly𝑚𝑁 = 20 samples when it encounters a

non-empty super-voxel and zero otherwise.

6.2 Multiple Importance Sampling
As explained in Sec. 2.3, there is little related work on MIS for

distance samplers. To the best of our knowledge, the naive estimate

𝑔(𝑋 ) = 𝜇 (𝑡) exp(−𝑋 )
𝑝0 (𝑡) + 𝜇 (𝑡) exp(−𝑋 )

was mentioned [Novák et al. 2018] but never systematically eval-

uated in a peer-reviewed publication. We do so, using our optical

depth estimates. One can argue aboutwhether or not that constitutes

a contribution, but our jackknife MIS weight estimate ℜ𝑔(𝑋 + 𝑖𝑆)
certainly does.

Other than that, the MIS of Miller et al. [2019] is the most impor-

tant related work. Miller et al. describe the measurement contribu-

tion function and sampling density for complete transport paths

with null-scattering vertices. In our experiments, we focus on direct

illumination from point lights with equiangular sampling [Kulla

and Fajardo 2012] as sampling strategy 𝑝0 (𝑡). We found that for

MIS weights with the balance heuristic, many factors cancel. What

remains of their MIS weight estimate is

𝑤1 (𝑡) ≈
𝜇 (𝑡)𝑇rt (𝑡)

𝑝0 (𝑡) + 𝜇 (𝑡)𝑇rt (𝑡)
, where 𝑇rt (𝑡) :=

𝑘−1∏
𝑗=1

1 −
𝜇 (𝑡 ′𝑗 )
𝜇 (𝑡 ′

𝑗
)
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0.10 0.05 0.00 0.05 0.10
Bias

0.0 0.1 0.2 0.3 0.4 0.5
Standard deviation

Bunny cloud

Intel cloud

Disney cloud

Explosion

(a) Our jackknife, variance-aware,
2 · 10 samples, 1 spp

0.29 ms 9.6e-4 8.1e-3

0.36 ms 2.0e-3 1.1e-2

0.81 ms 1.9e-3 1.4e-2

0.39 ms 8.2e-4 7.2e-3

(b) Biased ray marching,
doubled sample count
[Kettunen et al. 2021]

0.31 ms 3.9e-4 4.9e-3

0.35 ms 6.5e-4 6.7e-3

0.67 ms 5.4e-4 7.4e-3

0.22 ms 6.1e-4 5.4e-3

(c) Naive, variance-aware
(ours), 20 samples, uniform
jittered sampling

0.43 ms 3.4e-4 1.3e-2

0.54 ms 7.0e-4 1.8e-2

1.19 ms 9.9e-4 2.2e-2

0.62 ms 1.8e-4 1.0e-2

(d) Our jackknife, variance-
aware, CDF step 0.6

0.34 ms 1.3e-4 6.9e-3

0.40 ms 2.2e-4 9.3e-3

0.79 ms 1.9e-4 9.9e-3

0.26 ms 4.5e-4 8.1e-3

(e) Our jackknife, variance-
aware, 2 · 10 samples

Fig. 8. Results of biased transmittance estimators. We show 1 sample per pixel (spp) full-size images for our main technique (a) and magnified insets for other
techniques (b-d). Additional insets show the bias and standard deviation (computed from 2

18 spp). For each full-size image, we report the total frame time at
1 spp as well as the average bias and standard deviation across all pixels. Our main technique achieves remarkably low bias and a good standard deviation (e).

is the transmittance estimate of ratio tracking (Sec. 2.2). For free-

flight sampling, 𝑇rt (𝑡1) reuses the null-scattering events of delta

tracking.

Fig. 12 shows our results. Since it is not obvious whether the

MIS of Miller et al. [2019] is compatible with stochastic texture

filtering, this figure uses nearest-neighbor interpolation. In this test

case, we observe typical shortcomings of free-flight sampling and

equiangular sampling: Free-flight sampling undersamples bright

regions close to the point lights and deep inside the volume (green

inset, Fig. 12a). Equiangular sampling undersamples the front of the

volume (red inset, Fig. 12b). The improvement over pure free-flight

sampling with the MIS of Miller et al. is relatively small (Fig. 12c). It

inherits variance from ratio tracking and the Disney cloud is a worst

case in this regard: Its interior has a constant extinction, where ratio

tracking is no better than the track-length estimate.

The remaining three techniques, which all use our optical-depth

estimator with 𝑁 = 10, all succeed in combining the strengths of

free-flight and equiangular sampling. Their differences are largest

in the purple inset, but even there they are hardly visible. The high

quality of the naive estimate 𝑔(𝑋 ) with𝑚 = 1 (Fig. 12d) is surpris-

ing, given the dismissive statements about this approach in prior

work [Miller et al. 2019; Novák et al. 2018] (Sec. 2.3). Apparently,

our optical depth estimates make this approach viable. Fig. 7 clearly

shows that our jackknife MIS weight estimator (Fig. 12f) produces

considerably less bias. Though, bias in MIS weights does not cause

bias in radiance estimates (Appendix D).

The biased version of our MIS produces nearly identical results

(Fig. 12e), so it is justifiable as a way to avoid the cost of an addi-

tional transmittance estimation, especially when the transmittance

estimate would be biased anyway. Fig. 13 shows that the combi-

nation of biased MIS (Eq. 10) with the naive estimate 𝑔(𝑋 ) gives
visible bias, while our jackknife MIS weight estimation does not.

The timings for our MIS variants are comparatively high, but clearly

justified by the significant reduction in variance (Fig. 12).
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(a) Mean (b) Variance-aware

Fig. 9. An ablation study comparing our variance-aware importance sam-
pling with the minimum as control variate (Sec. 4.2) to importance sampling
proportional to the super-voxel mean. Both results use 2 · 10 samples for
our jackknife transmittance estimate. The insets in (b) are the same as in
Fig. 8e and the same colorbars apply. Variance-aware sampling reduces the
bias considerably and the standard deviation slightly.

6.3 Limitations
The accuracy of our method is wholly dependent on the quality of

the importance sampling for the optical depth estimates. As illus-

trated in Fig. 6, a sparse extinction signal may result in optical depth

estimates that are far from being normal-distributed. Most of the

time, our variance-aware importance sampling (Sec. 4.2) mitigates

this problem, but sometimes it fails. The blue inset of the explosion

(Fig. 10a) shows such a failure case and Fig. 14 provides further

analysis: Since the ray traverses non-empty super-voxels without

actually interacting with the volume, too few samples remain for

the parts of the ray where the extinction is non-zero. For 𝑁 = 10

samples, we can say with certainty that eight of them will make zero

contribution and the ninth will make a small contribution most of

the time. In this case, the assumption of normal-distributed optical

depth estimates fails and the result is clear bias.

It should be noted that our method still gives results in [−1, 1]
with moderate standard deviation, whereas unbiased ray marching

produces extremely high variance with transmittance estimates far

outside the range [−1, 1] (Fig. 10d). Null-scattering methods can

handle this situation well, by simply taking smaller steps, which is

reflected by their longer timings for the explosion in comparison

to our method (Figs. 10b, 10c and 10f). The most pragmatic mit-

igation for the problem is to use smaller super-voxels. With our

chosen super-voxel size of 16
3
, the super-voxel grid for the (fairly

low-resolution) explosion contains only 13 × 17 × 15 super-voxels.

At a super-voxel size of 12
3
, the problems are mostly gone. For use

cases in production rendering with much larger volumes, we antici-

pate that larger ray marching sample counts 𝑁 would be used and

that also mitigates these problems: Every good sample brings the

estimate closer to a normal distribution. In general, the choice of the

sample count 𝑁 after the first pass through the volume (Alg. 2) is

not set in stone and can be changed depending on the requirements

of a renderer.

7 Conclusions
The bias of our biased transmittance estimator is so low that it is

a serious contender for unbiased techniques. At the same time, its

variance and run time cost are low and predictable. Failure cases

arise when the importance sampling works poorly. Future work

could address this problem using more sophisticated data structures,

e.g. 𝑘-d trees with adaptive subdivision [Yue et al. 2011] or hierar-

chies of sparse grids [Museth 2021]. Our MIS weight estimation also

works as desired and supports unbiased rendering.

All of this is accomplished using stunningly simple formulas,

which date back five decades [Gray et al. 1973]. Beyond our specific

applications, the concept of UMVU estimates holds great promise

for Monte Carlo rendering and graphics in general: Our reasoning

with the central limit theorem is quite broadly applicable and UMVU

estimates are known for many statistics [Voinov and Nikulin 1993].

For example, we can use this method to estimate the reciprocal of a

quantity for which an unbiased estimate is available. The estimate

from Eq. 7 for 𝑔(𝜏) := 𝜏−1
is

ℜ
(
𝑋0 + 𝑋1

2

+ 𝑖 𝑋0 − 𝑋1

2

)−1

=
2(𝑋0 + 𝑋1)

(𝑋0 + 𝑋1)2 + (𝑋0 − 𝑋1)2
=
𝑋0 + 𝑋1

𝑋 2

0
+ 𝑋 2

1

.

In the supplemental document, we show the bias and standard

deviation of this estimate, which look promising. We would have

shown the same figure for the naive estimate but neither the mean

nor the standard deviation of 𝑋 −1
converge [Robert 1991].
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method is fixed to 20 for all rays that hit non-empty super-voxels.
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A Bias, Variance and RMSE
We now derive formulas for the bias, variance and RMSE of the naive

transmittance estimator exp(−𝑋 ) and our jackknife transmittance

estimator under the assumption of normal-distributed estimates of

optical depth. In doing so, we repeatedly make use of the moment-

generating function of a normal-distributed random variable𝑋 with

mean 𝜏 and standard deviation 𝜎 for an 𝑠 ∈ C [Knight 1999, p. 44]:

E(exp(𝑠𝑋 )) = exp

(
𝑠𝜏 + 𝑠2𝜎2

2

)
. (13)

11.87

(a) Free-flight only, 14.5 ms

20.24

(b) Equiangular only, 34.0 ms

11.03

(c) MIS [Miller et al. 2019], 45.4 ms

7.963

(d) Naive unbiased MIS, 53.0 ms

7.941

(e) Our biased MIS (Eq. 10), 50.5 ms

7.957

(f) Our unbiased MIS (Eq. 9), 55.5 ms

Fig. 12. The Disney cloud, directly lit by two point lights inside the cloud.
All images use 16 spp, but for MIS that amounts to 32 distance samples. The
timings are frame times for 16 spp. Additionally, we report the symmetric
mean absolute percentage error (SMAPE) with 𝜀 := 0.01 added to the mean
linear RGB value in the denominator. Transmittance estimation for the ray
to the chosen point light uses our jackknife transmittance estimator with
𝑁 = 10 in all cases. The improvement of the MIS of Miller et al. [2019]
over free-flight sampling is moderate. All other variants of MIS successfully
combine the strengths of both strategies with minor differences.
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(a) Naive biased MIS (b) Our biased MIS (c) Our unbiased MIS

Fig. 13. We render the purple inset from Fig. 12 at 2
18 spp using three

variants of MIS. The images show the rendering itself and the bias in the
luminance. The bias with our jackknife MIS weight estimation is not visible,
whereas the result with the naive estimate is visibly too bright.

A.1 Naive Transmittance Estimation
The ground-truth transmittance is𝑇 = exp(−𝜏). According to Eq. 13,
the first two moments of the transmittance estimate 𝐿 := exp(−𝑋 )
for a normal-distributed optical depth estimate 𝑋 are

E(𝐿) = E(exp((−1)𝑋 )) = exp

(
−𝜏 + 𝜎2

2

)
= exp

(
𝜎2

2

)
𝑇 ,

E(𝐿2) = E(exp((−2)𝑋 )) = exp(−2𝜏 + 2𝜎2) = exp(2𝜎2)𝑇 2
.
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Fig. 14. An analysis of the source of the problems for a pixel in the middle of
the blue inset of the explosion (Fig. 10a). Since the ray traverses several non-
empty super-voxels without encountering parts of the volume, 86% of all
samples contribute nothing to the estimate of optical depth. Note that this
figure does not use stochastic trilinear interpolation or BC4 compression
and that BC4 compression aggravates the problem further.

Thus, we get the

bias: E(𝐿) −𝑇 =

(
exp

(
𝜎2

2

)
− 1

)
𝑇 ,

variance: E(𝐿2) − (E(𝐿))2 = (exp(2𝜎2) − exp(𝜎2))𝑇 2
,

RMSE: E((𝐿 −𝑇 )2) = E(𝐿2 − 2𝐿𝑇 +𝑇 2)

=

(
exp(2𝜎2) − 2 exp

(
𝜎2

2

)
+ 1

)
𝑇 2

.

In Sec. 3.3, we use the mean 𝑋 of𝑚 = 2 estimates instead of a single

sample 𝑋 . That halves the variance 𝜎2
.

A.2 Jackknife Transmittance Estimation
Since the sign of 𝑆 is irrelevant for the value of cos(𝑆), we use

𝑆 :=
𝑋0−𝑋1

2
for the following derivation. Since the matrix

1√
2

( 1 −1

1 1
)

is orthogonal, the random variables 𝑆 and 𝑋 are independent and

normal-distributed [Knight 1999, p. 84]. Furthermore, 𝑋 has mean 𝜏

and variance
𝜎2

2
and 𝑆 has mean 0 and variance

𝜎2

2
. First, we prove

unbiasedness using cos(𝑆) =ℜ exp(𝑖𝑆) and Eq. 13:

E(𝐾) =ℜE(exp(𝑖𝑆))E(exp(−𝑋 ))

=ℜ exp

(
𝑖2𝜎2

4

)
exp

(
−𝜏 + 𝜎2

4

)
= exp(−𝜏) =𝑇 .

We already knew that this estimate is unbiased [Gray et al. 1973]

(for normal-distributed optical depth estimates), but now we have a

concise proof. Computing the second moment works similarly, but

exploits cos
2 (𝑆) = 1/2(1 + cos(2𝑆)):

E(𝐾2) = E(cos
2 (𝑆))E(exp(−2𝑋 ))

= 1/2E(1 +ℜ exp(2𝑖𝑆)) exp(−2𝜏 + 𝜎2)
= 1/2(1 +ℜ exp(−𝜎2)) exp(𝜎2)𝑇 2

= 1/2(exp(𝜎2) + 1)𝑇 2
.

The variance is

V(𝐾) = E(𝐾2) −𝑇 2 = 1/2(exp(𝜎2) − 1)𝑇 2
.

Since the estimate is unbiased, the RMSE matches the standard

deviation.

B Applying the Central Limit Theorem
The Lyapunov CLT is essential to our reasoning, since it explains

why our estimates of optical depth with stratified jittered sampling

are approximately normal-distributed. We will show that as a ray

travels through a volume with enough variation, the sum in the

ray marching estimate approaches a normal distribution. Arguably,

it would be preferable to show that the optical depth estimate for

a fixed ray segment approaches a normal distribution as the sam-

ple count 𝑁 increases. That is however not viable, since each new

sample count gives us a new set of strata with new distributions of

extinction values. By considering the sum along a ray with a fixed

step size, we avoid this issue. Our precise statement is as follows:

Proposition 3. Consider an extinction profile 0 ≤ 𝜇 (𝑡) ≤ 𝜇 with
ray parameter 𝑡 ≥ 0. Let 𝜉0, 𝜉1, . . . ∈ [0, 1) be uniform and i.i.d.. Let
𝑡Δ > 0 be the used ray marching step size such that sample 𝑗 ∈ N0

is taken at 𝑡 𝑗 := ( 𝑗 + 𝜉 𝑗 )𝑡Δ. Let 𝑌𝑗 := 𝜇 (𝑡 𝑗 ) denote the corresponding
extinction values. The stratified jittered sampling estimate of 𝜏 (𝑛𝑡Δ)
is 𝑡Δ

∑𝑛−1

𝑗=0
𝑌𝑗 . Assume that

lim

𝑛→∞
𝑛

2

3∑𝑛−1

𝑗=0
V(𝑌𝑗 )

= 0, (14)

i.e. the sum of variances grows faster than 𝑛
2

3 . Then for 𝑛 → ∞, the
following normalized version of the optical depth estimate converges
in distribution to a standard normal distribution:

(𝑡Δ
∑𝑛−1

𝑗=0
𝑌𝑗 ) −

∫ 𝑛𝑡Δ

0
𝜇 (𝑡) d𝑡

𝑡Δ

√︃∑𝑛−1

𝑗=0
V(𝑌𝑗 )

. (15)

Proof. We consider a scaled zero-mean version of 𝑌𝑗 , along with

its variance and the third moment of its absolute value:

𝑍 𝑗 := 𝑡Δ𝑌𝑗 − E(𝑡Δ𝑌𝑗 ) = 𝑡Δ𝑌𝑗 −
∫ ( 𝑗+1)𝑡Δ

𝑗𝑡Δ

𝜇 (𝑡) d𝑡 ,

𝜎2

𝑗 := V(𝑍 𝑗 ) = 𝑡2

ΔV(𝑌𝑗 ),
𝛾 𝑗 := E( |𝑍 𝑗 |3) ≤ E((𝑡Δ𝜇)3) = (𝑡Δ𝜇)3

.

Raising Eq. 14 to the
3

2
-th power and multiplying by (𝑡Δ𝜇)3

gives

lim

𝑛→∞

∑𝑛−1

𝑗=0
(𝑡Δ𝜇)3(∑𝑛−1

𝑗=0
V(𝑌𝑗 )

) 3

2

= 0 ⇒ lim

𝑛→∞

∑𝑛−1

𝑗=0
𝛾 𝑗(∑𝑛−1

𝑗=0
𝜎2

𝑗

) 3

2

= 0.

This is exactly the prerequisite to be able to apply the Lyapunov CLT

[Knight 1999, p. 145], which then tells us that the following random

variable converges in distribution to a standard normal distribution:∑𝑛−1

𝑗=0
𝑍 𝑗√︃∑𝑛−1

𝑗=0
𝜎2

𝑗

=
(𝑡Δ

∑𝑛−1

𝑗=0
𝑌𝑗 ) −

∫ 𝑛𝑡Δ

0
𝜇 (𝑡) d𝑡

𝑡Δ

√︃∑𝑛−1

𝑗=0
V(𝑌𝑗 )

.

□

Taken literally, this proof requires an infinite volume with never-

ending variation. More pragmatically, it tells us that the ray march-

ing estimate approaches a normal distribution with each new sample

that has non-zero variance. Fig. 4 underpins this finite interpreta-

tion empirically and Sec. 4.2 ensures that most samples will have

non-zero variance.
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C Jackknife Function Estimation for Two Samples
Our goal is to prove that for𝑚 = 2

Γ
(
𝑚−1

2

)
Γ
(
𝑚−1

2
+ 𝑗

) (−1) 𝑗𝑔 (2𝑗 ) (𝑋 )
𝑗 !

(
𝑆2

4

) 𝑗
=

(−1) 𝑗𝑔 (2𝑗 ) (𝑋 )
(2 𝑗)! 𝑆2𝑗

.

For all 𝑗 ∈ N, the gamma function satisfies [Akhmedova and Akhme-

dov 2019, pp. 7, 3]

2
2𝑗−1Γ( 𝑗)Γ

(
1

2

+ 𝑗

)
=
√
𝜋Γ(2 𝑗), Γ( 𝑗) = ( 𝑗 − 1)!.

Thus,

Γ
(

1

2

)
Γ
(

1

2
+ 𝑗

) =
2

2𝑗−1Γ( 𝑗)Γ
(

1

2

)
2

2𝑗−1Γ( 𝑗)Γ
(

1

2
+ 𝑗

)
=

2
2𝑗−1 ( 𝑗 − 1)!

√
𝜋

√
𝜋Γ(2 𝑗)

=
4
𝑗 ( 𝑗 − 1)!

2(2 𝑗 − 1)! .

Now

Γ
(
𝑚−1

2

)
Γ
(
𝑚−1

2
+ 𝑗

) (−1) 𝑗𝑔 (2𝑗 ) (𝑋 )
𝑗 !

(
𝑆2

4

) 𝑗
=

1

2(2 𝑗 − 1)!
(−1) 𝑗𝑔 (2𝑗 ) (𝑋 )

𝑗
𝑆2𝑗 =

(−1) 𝑗𝑔 (2𝑗 ) (𝑋 )
(2 𝑗)! 𝑆2𝑗

.

D Unbiasedness of MIS
As explained in Sec. 2.3, MIS is unbiased for any choice of MIS

weights as long as𝑤0 (𝑡) +𝑤1 (𝑡) = 1 [Veach and Guibas 1995]. How-

ever, this result pertains to deterministic MIS weights, whereas our

MIS weights are random variables. Additionally, we have canceled

𝑝1 (𝑡1) with 𝑇 (𝑡1)𝜇 (𝑡1) in Eq. 9. We now prove that our variants of

MIS based on Eq. 9 are unbiased nonetheless. We are interested in

conditional expectations of random variables w.r.t. 𝑡 𝑗 = 𝑡 ∈ R where

𝑗 ∈ {0, 1}. We denote the random variable for the estimate of theMIS

weight𝑤 𝑗 (𝑡) by 𝑤̃ 𝑗 (𝑡). Similarly, we denote the unbiased estimates

of transmittance and inscattered radiance at 𝑡 by 𝑇 (𝑡) and 𝐿̃𝑠 (𝑡),
respectively. The estimates 𝑤̃ 𝑗 (𝑡),𝑇 (𝑡), 𝐿̃𝑠 (𝑡) all consume differ-

ent, independent random numbers. Therefore, E(𝑤̃ 𝑗 (𝑡)𝑇 (𝑡)𝐿̃𝑠 (𝑡)) =
E(𝑤̃ 𝑗 (𝑡))𝑇 (𝑡)E(𝐿̃𝑠 (𝑡)). The values of 𝜇 (𝑡), 𝑝0 (𝑡), 𝑝1 (𝑡) are determin-

istic. Then the expected value of Eq. 9 is:

E(𝐿𝑖,MIS) = E

(
𝑤̃0 (𝑡0)

𝑇 (𝑡0)𝜇 (𝑡0)𝐿̃𝑠 (𝑡0)
𝑝0 (𝑡0)

+ 𝑤̃1 (𝑡1)𝐿̃𝑠 (𝑡1)
)

=

∫ ∞

0

E

(
𝑤̃0 (𝑡)

𝑇 (𝑡)𝜇 (𝑡)𝐿̃𝑠 (𝑡)
𝑝0 (𝑡)

)
𝑝0 (𝑡) + E(𝑤̃1 (𝑡)𝐿̃𝑠 (𝑡))𝑝1 (𝑡) d𝑡

=

∫ ∞

0

E(𝑤̃0 (𝑡))𝑇 (𝑡)𝜇 (𝑡)E(𝐿̃𝑠 (𝑡)) + E(𝑤̃1 (𝑡))E(𝐿̃𝑠 (𝑡))𝑇 (𝑡)𝜇 (𝑡) d𝑡

=

∫ ∞

0

(E(𝑤̃0 (𝑡)) + E(𝑤̃1 (𝑡))) E(𝐿̃𝑠 (𝑡))𝑇 (𝑡)𝜇 (𝑡) d𝑡

Therefore, this radiance estimate will be unbiased if E(𝑤̃0 (𝑡)) +
E(𝑤̃1 (𝑡)) = 1 for all 𝑡 ≥ 0. A trivial way to satisfy this requirement

is to define 𝑤̃0 (𝑡) := 1 − 𝑤̃1 (𝑡) as suggested by Eq. 8 (using different

random numbers for evaluation). Though, applying our jackknife

estimate for 𝑤̃0 (𝑡), 𝑤̃1 (𝑡) more directly also works:

E(𝑤̃1 (𝑡)) = E

(
ℜ 𝜇 (𝑡) exp(−(𝑋 + 𝑖𝑆))
𝑝0 (𝑡) + 𝜇 (𝑡) exp(−(𝑋 + 𝑖𝑆))

)
= E

(
ℜ𝑝0 (𝑡) + 𝜇 (𝑡) exp(−(𝑋 + 𝑖𝑆)) − 𝑝0 (𝑡)

𝑝0 (𝑡) + 𝜇 (𝑡) exp(−(𝑋 + 𝑖𝑆))

)
= 1 − E

(
ℜ 𝑝0 (𝑡)
𝑝0 (𝑡) + 𝜇 (𝑡) exp(−(𝑋 + 𝑖𝑆))

)
= 1 − E(𝑤̃0 (𝑡))

Replacing𝑋 by𝑋0 and 𝑆 by 0 in this derivation shows that the naive

MIS weight estimate also satisfies this requirement for unbiasedness.

Of course, the MIS weight estimates also contribute to the variance

but our results in Sec. 6.2 validate our approach in this regard.

E Poles and Convergence Radius

The function 𝑔(𝜏) = 𝑢0 exp(−𝜏 )+𝑢1

𝑣0 exp(−𝜏 )+𝑣1

is not well-defined for all 𝜏 ∈ C.
Since we know 𝑣0, 𝑣1 ≥ 0, the denominator 𝑣0 exp(−𝜏) + 𝑣1 cannot

vanish for real 𝜏 . However, there are poles in the complex plane:

𝑣0 exp(−𝜏) + 𝑣1 = 0

⇔ exp(−ℜ𝜏) exp(−𝑖ℑ𝜏) = exp(−𝜏) = −𝑣1

𝑣0

⇔ exp(−ℜ𝜏) = 𝑣1

𝑣0

∧ exp(−𝑖ℑ𝜏) = −1

⇔ ℜ𝜏 = − ln

𝑣1

𝑣0

= ln

𝑣0

𝑣1

∧ ∃𝑘 ∈ Z : ℑ𝜏 = 𝜋 + 2𝜋𝑘 .

The convergence radius of the power-series representation 𝑔(𝜏) =∑∞
𝑗=0
𝑎 𝑗𝜏

𝑗
will end exactly at one of these poles, i.e. it is

���ln 𝑣0

𝑣1

+ 𝑖𝜋
���.

F Evaluating MIS Weights
Without using complex arithmetic explicitly, our goal is to evaluate

ℜ𝑈

𝑉
=

ℜ𝑈ℜ𝑉 + ℑ𝑈ℑ𝑉
(ℜ𝑉 )2 + (ℑ𝑉 )2

, where

𝑈 := 𝑢0 exp(−(𝑋 + 𝑖𝑆)) + 𝑢1,

𝑉 := 𝑣0 exp(−(𝑋 + 𝑖𝑆)) + 𝑣1,

for real 𝑢0, 𝑢1, 𝑣0, 𝑣1, 𝑋, 𝑆 . We note

ℜ exp(−(𝑋 + 𝑖𝑆)) =ℜ exp(−𝑖𝑆) exp(−𝑋 ) = cos(𝑆) exp(−𝑋 ),
ℑ exp(−(𝑋 + 𝑖𝑆)) = ℑ exp(−𝑖𝑆) exp(−𝑋 ) = sin(−𝑆) exp(−𝑋 ).

Thus,

ℜ𝑈 = 𝑢0 cos(𝑆) exp(−𝑋 ) + 𝑢1, ℑ𝑈 = 𝑢0 sin(−𝑆) exp(−𝑋 ),
ℜ𝑉 = 𝑣0 cos(𝑆) exp(−𝑋 ) + 𝑣1, ℑ𝑉 = 𝑣0 sin(−𝑆) exp(−𝑋 ).
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