Semantic and multiple-view feature modelling:
towar ds mor e meaningful product modelling

Willem F. Bronsvoort, Rafael Bidarraand Alex Noort

Computer Graphics and CAD/CAM Group
Faculty of Information Technology and Systems
Delft University of Technology

The Netherlands

W.F.Bronsvoort/R.Bidarra/A.Noort@its.tudel ft.nl

Key words. Feature modelling, semantics, validity maintenance, multiple feature views

Abstract: Current feature modelling systems suffer from a number of shortcomings. One
isthat the meaning of featuresis often not adequately maintained during
modelling, which implies that modelling is in essence only geometric
modelling. Another isthat it is not possible to support product models with
multiple feature views for al product devel opment phases.

This paper discusses solutions for these shortcomings. Semantic feature
modelling is an approach to specify and maintain the meaning, or semantics, of
each feature in amodel. Enhanced multiple-view feature modelling is an
approach to support more product devel opment phases. In the views, feature
models can be used that contain high-level information. These approaches
result in more meaningful product modelling, both in the sense of the models
that are created, and in the sense of how these are created.

1. INTRODUCTION

The most important way of product modelling is now feature modelling.
Although the functionality of feature modelling systems has been
considerably improved during the last decade, there are till shortcomings.
This paper will discuss solutions for two of these shortcomings.

1

2 Willem F. Bronsvoort, Rafael Bidarra and Alex Noort

The first shortcoming is that the meaning of features is often not
adequately maintained during modelling. In many current feature modelling
systems, “features’ only occur at the user interface level, whereas in the
product model only the resulting geometry is stored. Such systems are in
essence only geometric modelling systems. In other systems, see for
example (Parametric 2000), information about features is stored in the
product model, but it is not consistently checked that the meaning of all
features is maintained during the whole modelling process. For example, a
through hole can be turned into a blind hole by blocking one of the openings
of the hole with a stiffener, without the system even notifying this change,
see Figure 1. Although geometrically this is correct, it is incorrect in the
sense that the meaning, or semantics, of the feature is changed from a
through hole to a blind hole.

In the semantic feature modelling approach, the meaning, or semantics,
of each featurein amodel is adequately maintained (Bidarra and Bronsvoort
2000). In Section 2, it will be described how the semantics of all featuresis
specified in their respective classes, using severa types of congraints. In
Section 3, it will be discussed how this semantics is maintained during all
modelling operations.

Figure 1. Changing a through holeinto ablind hole

The second shortcoming is that product models with multiple feature
views for al product development phases are not yet possible. Current
multiple-view feature modelling systems only support form feature views,
which can, for example, be used for part detail design and part
manufacturing planning. Views for conceptua design and assembly design
are not yet supported.

In the enhanced multiple-view feature modelling approach presented
here, views for all four product development phases mentioned above are
possible. In the views, feature models can be used with high-level
information. In Section 4, an overview will be given of current multiple-
view form feature modelling systems. In Section 5, enhanced multiple-view
feature modelling will be described, in particular the views that are possible
and how these are related.

In Section 6, some conclusions and further developments will be
discussed.

Semantic and multiple-view feature modelling 3

2. SPECIFICATION OF FEATURE CLASSES

Feature class specification involves specification of its shape, its
positioning and orientation scheme, its validity conditions, and its interface,
according to the genera structure depicted in Figure 2. For all aspects,
constraints are used. These feature constraints are members of the feature
class, and are therefore instantiated automatically with each new feature
instance.

N
Position and
Orientation T
. E User-
Attach constraints Supplied
| R Data
Geometric constraints | 4—
| F
A
Validity
[+
E
Algebraic constraints

Boundary constraints
[
‘ Interaction constraints |

Figure 2. Feature class structure

The basis of a feature class is a parameterised shape. For a smple
feature, this is a basic shape, e.g. a cylinder for a hole. A basic shape
encapsulates a set of geometric constraints that relate its parameters to the
corresponding shape faces. For a compound feature, the shape is a
combination of several, possibly overlapping, basic shapes, e.g. two
cylinders for a stepped hole. The faces of a feature shape are labelled with
generic names, and these names can be used in all modelling operations. For
example, a cylinder shape has a top, a bottom and a side face.

Associated to each feature is the notion of nature, indicating whether its
shape represent material added to or removed from the model (respectively
additive and subtractive natures).

4 Willem F. Bronsvoort, Rafael Bidarra and Alex Noort

The specification of validity conditions in a feature class can be classified
into two categories. geometric and topologic.

One way of constraining the geometry of a feature, is by specifying the
set of values allowed for a shape parameter. We use dimension constraints
applied on shape parameters. For instance, the radius parameter of a through
hole class could be limited to values between 1 and 10 mm. Another way of
constraining the geometry of a feature is by means of explicit relations
among its parameters. These relations can be simple equalities between two
parameters (e.g. between width and length of a square passage feature) or, in
general, agebraic expressions involving two or more parameters and
constants. For this, we use algebraic constraints.

The set of shape faces of a feature provides full coverage of the feature
boundary. However, for most features, not al faces are meant to effectively
contribute to the boundary of the modelled product. Some faces, instead,
have a closure role, delimiting the feature volume without contributing to the
boundary. The specification of such properties is called topologic validity
specification.

For this, we use two sorts of constraints. boundary constraints and
interaction constraints. A boundary congtraint states the extent to which a
feature face should be on the model boundary. Boundary constraints are of
two types: onBoundary, which means the shape face should be present on
the model boundary, and notOnBoundary, which means the shape face
should not be present on the model boundary. Furthermore, both types of
boundary constraints are parameterised, stating whether the presence or
absence on the model boundary is completely or only partly required. An
example of this is a blind hole class for which the entrance face has a
notOnBoundary(completely) constraint, the side face has an onBoundary
(partly) constraint, and the bottom face has an onBoundary(completely)
constraint.

Boundary constraints are unable to fully describe several other functional
aspects that can be inherent to a feature class as well. These are better
described in terms of the feature volume or feature boundary as a whole,
instead of shape parameters or faces. An example of this is the requirement
that every feature instance of some class should somehow contribute to the
shape of the part model.

Such functional requirements can be violated by feature interactions
caused during incremental editing of the model. Feature interactions are
modifications of shape aspects of afeature that affect its functional meaning.
An example of thisis the transmutation interaction of the through holeinto a
blind hole in Figure 1. We propose the specification of interaction
constraints in a feature class in order to indicate that a particular interaction
typeis not alowed for its instances (Bidarra et al. 1997).

Semantic and multiple-view feature modelling 5

Shape parameters and constraint variables of a feature may require user-
supplied data to be provided at feature instantiation stage, as depicted in
Figure 2. These parameters congtitute the feature class interface. The
specification of the feature class interface determines how feature instances
will be presented to the user of the modelling system and, thus, how the user
will be able to interact with them. Essential in the feature class interface is
the positioning and orientation scheme, which is specified by means of
attach and geometric constraints.

An attach constraint of a feature couples one of its faces to a user-
supplied face of some feature already present in the model. For example, the
top and bottom faces of a through hole may be used to attach it to, say, the
top and bottom faces of a block, respectively.

Geometric congtraints position and orient a feature relative to (faces of)
other features in the model, by fixing its remaining degrees of freedom. For
this, a geometric constraint relates one of the feature faces to a user-supplied
feature face in the model, possibly with some additional numeric
parameter(s). For instance, to position a through slot, a distanceFaceFace
constraint might be used, which requires an external feature face and a
distance value.

Some shape parameters may be implicitly determined from the feature
attachments, e.g. the depth of a through hole. Other parameters may be
explicitly specified via agebraic constraints. The remaining parameters need
a user-supplied value at feature instantiation stage, and are therefore
included in the feature class interface.

3. MODEL VALIDITY MAINTENANCE

Embedding validity criteria in each feature class, as described in the
previous section, enhances the modelling process, as it guarantees that at the
creation of a feature instance its semantics effectively matches the
requirements of its class. In fact, one of the basic ideas of feature modelling
is that functional information can be associated to shape information in a
feature model. However, this association becomes useless when the shape
imprint of a feature, once added to the model with a specific intent, is
significantly modified later by a modelling operation. Stated differently,
modifying the semantics of a feature should be disdlowed if one wants to
make feature modelling really more powerful than geometric modelling.

Feature modd validity maintenance is the process of monitoring each
modelling operation in order to ensure that all feature instances conform to
the validity criteria specified for them. Maintaining feature model validity
throughout the modelling process guarantees that all aspects of the design
intent once captured in the model are permanently maintained.

6 Willem F. Bronsvoort, Rafael Bidarra and Alex Noort

Vadidity maintenance can be split into two types of tasks: (i) validity
checking, performed at key stages of each modelling operation; and (ii)
validity recovery, performed when a validity checking task detected a
violation of some validity criterion.

Vdidity maintenance as described in this paper effectively raises the
level of assistance provided by the feature modelling system. Together with
the declarative feature class specification scheme presented in Section 2, it
forms the core of the semantic feature modelling approach.

The approach has been fully implemented in the SPIFF system, a
prototype multiple-view feature modelling system developed at Delft
University of Technology (Bronsvoort et al. 1997).

The system maintains the Feature Dependency Graph, a high-level
representation of the structure of the product. It contains all feature instances
in the model, each of them with its own set of entities (shape, parameters and
constraints), and al model constraint instances (i.e. constraints that are
separately defined by the user, possibly between different features in the
model, with the goal of further specifying design intent). The Feature
Dependency Graph is a directed graph, defined by the set of all model
entities (features and model congraints), and by the set of dependency
relations among these entities. A feature f; is said to be dependent on a
feature f, whenever f; is attached, positioned, or in some other way
constrained relatively to f, (i.e. some feature constraint of f; has a reference
to some entity of featuref,).

The SPIFF system maintains also a geometric model of the product in the
so-called Cdlular Model, and takes care of updating it as required by each
modelling operation (Bidarra et al. 1998). The Cellular Model is an
evaluated representation of the feature model geometry, integrating the
contributions from all features in the Feature Dependency Graph. The
evaluated geometry of each feature, designated the feature's shape extent,
accounts for the bounded region of space comprised by its volumetric shape.
The Cellular Modd represents a feature model as a connected set of
volumetric quasi-digoint cells, in such a way that each one lies either
entirely inside a shape extent or entirely outside it. The cells in the Cellular
Model represent the point sets of the shape extents of al features in the
model. Each shape extent is, thus, represented in the Cellular Model by a
connected subset of cells. The cellular decomposition is interaction-driven,
i.e. for any two overlapping shape extents, some of their cells lie in both
shape extents, whereas the remaining ones lie in either of them. In order to
be able to search and analyse features, each cell has an attribute - called
owner list - indicating which shape extents it belongs to, see Figure 3.
Analogously, each cell face has aso an owner list, indicating which shape
facesit belongsto.

Semantic and multiple-view feature modelling 7

(a) part (b) Cellular Model (c) cell owner lists

- <block>

- <block, step>

- <block, blind slot 1>

- <block, blind slot 2>

- <block, through slot>

- <block, through slot, rib>
- <block, through slot>

- <rib>

O~NOO A WNBRE

Figure 3. Cell owner listsin the Cellular Model

The basic idea of model validity maintenance is that a modelling
operation, to be considered valid, should entirely preserve the design intent
specified so far, with each feature as well as with all model constraints. In
other words, after a valid modelling operation, the feature model conforms to
all its constraints.

Modelling operations can be grouped into two major categories. feature
operations and model constraint operations (or ssmply constraint operations).
Feature operations include adding a new feature instance to the model, and
editing or removing an existing feature in/from the model. Model constraint
operations include adding, modifying and removing a model constraint.

The generic scheme of a modelling operation is presented in Figure 4,
showing its main steps. Also shown in the diagram are the various points at
which the operation can run invalid. When this is the case, the operation
branches into the reaction loop instead of following the normal flow, and the
model enters an invalid state. The main goal here is to enter the reaction
loop, if required, with sufficient knowledge of the current status of the
model, so that it can be appropriately handled, reported to the user and,
ultimately, overcome. We now shortly describe the stepsin the diagram:

1. Dependency analysis This step is only required for the removal of a
feature from the model, which is not allowed if it has dependent entities
(features or model constraints) in the Feature Dependency Graph.

2. Interaction scope determination The feature interaction scope (FIS)
of afeature operation is the set of all feature instances in the model that
may potentialy be affected by the operation. It is used to avoid checking
for feature interactions in vain later in the interaction detection (last step
in Figure 4).

3. Geometric and algebraic solving process This step is required for al
modelling operations, except feature removal. Its goal is to determine or
update the dimensions, position and orientation of al features in the

8 Willem F. Bronsvoort, Rafael Bidarra and Alex Noort

model. The system deploys a dedicated congtraint solver for each
constraint type: a geometric constraint solver, based on extended 3D
degrees of freedom analysis (Kramer 1992), and a SkyBlue algebraic
constraint solver (Sanella 1992). At this stage, modelling operations are
considered invalid if an overconstrained or underconstrained situation is

detected.

Dzﬂg?y%?gcy feature with dependencies '\{
iy "
- E
Interaction scope
determination A
1§ ¢
; . T
Geometric/algebraic - ——
solving process under- or overconstrained situation I
Dimension constraints N
checking parameter value out of range
L .
Cellular Model o
evaluation
o
iy :
Igteraction feature interaction
etection {

¢

Figure 4. Generic scheme of a modelling operation

4. Dimension constraints checking When the solving process is
successfully concluded, all feature shape dimensions have their values
assigned, and checking of all dimension constraints takes place.

5. Cédlular Model re-evaluation When this step is reached, each feature
in the Feature Dependency Graph has al its parameters successfully
updated. In particular, al feature shape extents have their dimensions,
position and orientation fully determined. The Cellular Model can now
be updated.

6. Interaction detection Once the Cellular Model has been updated,
checking of topologic validity takes place. At this stage, a modelling
operation is considered invalid if any boundary or interaction constraint
is violated. See (Bidarra et al. 1997) for details on the interaction
detection agorithms.

Semantic and multiple-view feature modelling 9

When a modelling operation is invalid, a valid model should be achieved
again. Thisis straightforward if the modelling operation is cancelled: al that
is needed is to backtrack to the valid model state just before executing it, by
“reversing” theinvalid operation.

However, to always have to recover from an invalid operation by
undoing it istoo rigid. It is often much more effective to constructively assist
the user in overcoming the constraint violations, after an invalid modelling
operation, in order to recover model validity again. In most cases, if the user
receives appropriate feedback on the causes of an invalid situation, it is
likely that other corrective actions might preferably be chosen. We call this
process validity recovery, and it includes reporting to the user constraint
violations, documenting their scope and causes, and, whenever possible,
providing context-sensitive corrective hints.

To achieve this, a corrective mechanism was devised —the reaction loop,
represented in Figure 4— which is activated whenever an operation turns out
to be invalid. The user can then specify several modelling operations in a
batch and execute them, in order to overcome the invalid model situation.
Execution of these reaction operations foll ows the same scheme of Figure 4,
which means that their outcome is checked for validity. The reaction loop is
only exited when, as a result of the specified reactions, the model is valid
again. At any stage when the model is invalid, the user may give up
attempting to fix it and backtrack to the last valid stage.

The specification of reaction operations is supported by automatically
generated hints, which document each constraint violation detected, and
suggest solutions. These vary with the operation stage at which the reaction
loop is entered, and with the type of constraint involved. Referring to the
scheme of Figure 4, we have:

1. Dependency analysis At this point, the user is presented a list of all
entities that depend on the feature f to be removed, in order to decide how
to handle each of them. For example, the user might choose to remove
with f some of its dependent entities, and to make others dependent on
another feature.

2. Geometric and algebraic solving process For both over- and
underconstrained situations, the reaction loop provides the user with a
graphical notification of where the conflict was found, so that appropriate
corrections can be made.

3. Dimension constraints checking The user is notified about the
particular feature and parameter where the conflict was found, as well as
about the admissible range for that parameter.

4. Interaction detection For each interaction detected, the user is
graphically notified of its causes (mostly the features creating the
interaction), and of its concrete effects (e.g. the feature face or parameter

10 Willem F. Bronsvoort, Rafael Bidarra and Alex Noort

affected). According to the particular interaction type, specific reaction
choices may also be given (for example, after the modelling operation of
Figure 1, the user is suggested to replace the through hole by a blind hole
feature instance).

In all cases above, the scope of the reaction choices made available is
restricted to those features and model constraints that are somehow involved
in the invalid situation. This further assists the user in concentrating validity
recovery efforts on effective and meaningful reactions.

4. MULTIPLE-VIEW FORM FEATURE MODELLING

Multiple-view form feature modelling is a product development approach
that combines concurrent engineering and feature modelling. Concurrent
engineering aims at designing better products in less time, by using Design
for X (DFX—where X stands for any product life cycle phase) (Ulrich and
Eppinger 2000) and by enabling simultaneous activities in several product
development phases (Bullinger and Warschat 1995).

Multiple-view form feature modelling supports applications from various
phases of product development, by providing interpretations of, or views on,
the product model for each of these applications. Each view contains a form
feature model specific for the application. Since the feature models of all
views represent the same product, they have to be kept consistent. Quite alot
of research has been done on multiple-view form feature modelling during
the last years. Some typical examples of thiswill be shortly discussed here.

De Martino et al. (1998) present a system architecture for form feature
based modelling based on the integration of design by features and form
feature conversion. The architecture allows creating and updating a design
feature model, and deriving the context-oriented feature models for other
applications from this design feature model. It uses one-way feature
conversion: it only supports propagation of changes from the design feature
model to the context-oriented feature models.

Hoffmann and Joan-Arinyo (2000) present an architecture for a product
master model that connects a CAD system with applications from down-
stream product development phases. The architecture alows the CAD
system and the down-stream applications to deposit a representation of their
internal model that is relevant for other applications in a centra master
model, and aso alows these applications to associate information to
elements of this central model. It uses what might be called partial multiple-
way feature conversion: it supports propagation of al changes in the CAD
model to the other applications, and propagation of minor changes from the
applications back to the CAD system.

Semantic and multiple-view feature modelling 11

In the SPIFF modelling system (see Section 3), applications from several
product development phases are integrated by providing views with a
constraint-based form feature model for each of them (Dohmen et al. 1996),
and combining these feature models into one product model. It uses
multiple-way form feature conversion (de Kraker et al. 1997) to alow
changes in the feature model of any view to be propagated to the feature
models of the other views.

The approaches to multiple features views described above, which dl use
form features, share a number of shortcomings.

First, al approaches focus on the later product development phases, in
which the geometry of the product has been fully specified. However, the
early product development phases, such as conceptual design, are also very
important, because the choices made in those phases have an enormous
influence on the resulting product. In these phases, the geometry of the
product is not yet completely known, so the use of form features is limited
here, and more abstract features need to be introduced.

Second, al approaches deal with single parts. Real products, however,
rarely consist of only a single part. Dealing with products that consist of
multiple parts does not only involve dealing with the separate parts, but also
with the relations between the parts. In particular, maintaining the validity of
all parts and the relations between them can be very complex.

Third, all approaches discard the possibility that a feature model of a
product for a view cannot be created, because the product does not satisfy all
requirements from that view. In such situations, the model of the product
should be adjusted in a way that the product satisfies the requirements for
that view. To be able to adjust the model of the product automatically, the
model should capture the intent of the designer in more detail than in current
multiple-view feature modelling approaches.

5. ENHANCED MULTIPLE-VIEW FEATURE
MODELLING

Instead of form feature models, enhanced feature models are used in the
new multiple-view feature modelling approach discussed here, to support
applications from more product development phases. Such a model is built
from features, which are here defined as an aspect of the product that has
some functionality. The features can be form features, but are in general
features at a higher abstraction level. The prototype enhanced multiple-view
feature modelling system is based on the SPIFF modelling system, and
supports four product development phases; see Figure 5.

12 Willem F. Bronsvoort, Rafael Bidarra and Alex Noort

Figure5. A conceptual design view (a), an assembly design view (b), apart detail design
view (c), and a part manufacturing planning view (d), supported by the enhanced multiple-
view feature modelling approach

The first phase, in which the product architecture is determined by
specifying components and their interfaces, is conceptua design.
Components are built from concepts, such as depressions and protrusions,
and reference elements. Interfaces between components are specified by
means of degrees of freedom between the components. The complete
geometry of the components does not have to be specified in the conceptual
design view. For example, for some concept only certain properties, such as
its maximum volume, can be specified. An example of a conceptual design
view for abench vice, consisting of a base yaw, a moving yaw and a spindle,
isgivenin Figure5.a

The second phase, in which the physical connections between the parts
are determined, is assembly design. The connections are represented by
connection features, such as dove-tail and pen-hole connection features; see
also (van Holland and Bronsvoort 2000). An example of an assembly design
view of the bench vice of Figure 5.a, with the form features for the
connections between the components, isgiven in Figure 5.b.

The third phase, in which the details of the geometry of parts are
determined, is part detail design. Detail design features are form features,
examples are a through hole and a protrusion. An example of a part detail
design view for the base yaw part of the bench vice of Figure 5.aisgivenin
Figureb.c.

The fourth phase, in which the way each part is to be manufactured is
determined, is part manufacturing planning. Manufacturing planning features
are again form features, such as dlot and hole. An example of a
manufacturing planning view for the base yaw part of the bench vice of
Figure5.aisgivenin Figure5.d.

Semantic and multiple-view feature modelling 13

The new multiple-view feature modelling approach keeps the feature models
of al views consigtent, i.e. it ensures that al views represent the same
product, based on the relations between these views.

Before discussing these relations in some detail, it should be noticed that
they can be divided into a group that deals with the whole product, i.e. the
conceptual design view and the assembly design view, and a group that deals
with the individual parts, i.e. the part detail design views and the part
manufacturing planning views. A part in one of the latter views corresponds
to asingle component in thefirst views; see Figure 6.

view

pdaitusiail uesiyri
view

Ly i

view

-~
| |

N\ product [
——

Figure 6. Relations between the supported views: the conceptual design view and the
assembly design view deal with the whole product, whereas the part detail design views and
the manufacturing planning views deal with the individual parts

The assembly design view allows the designer to refine the interfaces
between the components in the conceptual design view. A connection feature
needs to be created in the assembly design view for each interface in the
conceptual design view, and linked to that interface. The interface and the
connection feature should reduce the same freedom. In order to
accommodate the connection feature, form features may be created on the
components in the assembly design view. If the feature model of the
assembly design view is changed, the feature models of the other views are
updated in order to check whether their requirements are still satisfied.

The part detail design views allow the designer to refine the parts that are
represented by the components in the conceptual design view, and which
may have been refined in the assembly design view to accommodate
connection features. Form features need to be created for each concept in the
conceptual design view, and linked to that concept. The form features should
satisfy the requirements specified for the concept, e.g. that the volume
should be less than 80 cm®. In addition, form features are automatically

14 Willem F. Bronsvoort, Rafael Bidarra and Alex Noort

created to represent the regions of a part that correspond to the form features
of the connection features on the related component. If the feature model of
a part detail design view is changed, the feature models of the other views
are updated in order to check whether their requirements are still satisfied.

The manufacturing planning views allow the designer to analyse the parts
for manufacturability and to create a manufacturing plan for them. The
feature model in a manufacturing planning view is linked to the feature
model in the corresponding part detail design view. Both views represent the
same part, and should therefore have the same geometry. If the feature
model of a manufacturing planning view is changed, the feature models of
the other views are updated in order to check whether their requirements are
still satisfied.

Feature conversion is used to keep the feature models of the views
consistent, and thus to maintain the relations between the views. It involves
linking features, mapping features and recognising features.

One of the ways in which incompletely specified geometry in a product
model is supported, is the possibility to have variant and invariant
parameters. Invariant parameters specify model characteristics that result
from product requirements, variant parameters specify other model
characteristics. Variant parameters can be changed without invalidating
product requirements, invariant parameters cannot. Information on variant
and invariant parameters can be used by the view conversion algorithm to
automatically adjust the model, if no interpretation of the product model, in
terms of features of that view, can be found such that al features are valid
(Noort and Bronsvoort 1999). As described in Sections 2 and 3, feature
validity is specified by constraints, and therefore, resolving a situation in
which no interpretation of a product model is possible for some view, is
essentially a constraint solving problem.

For the manufacturing planning view in Figure 7.b, no interpretation of
the model represented by the part detail design view in Figure 7.a can be
found, because two protrusions are too close together and a blind dot is too
narrow for the resulting slots to be manufactured. In order to be able to build
a consistent feature model for the manufacturing planning view with valid
dot features, the model needsto be adjusted.

To be able to adjust the model in such a way that all specified product
requirements remain satisfied, it first needs to be analysed. This analysis is
based on the constraints of the product model, and uses techniques similar to
techniques used to analyse under- and overconstrained models (Noort et al.
1998). This analysis takes into account that only constraints representing a
variant parameter may be adjusted.

Semantic and multiple-view feature modelling 15

T e, /o

distance increased

@
-
\

too close
O

(a)
to

{d)

width increased

Figure 7. If no interpretation for some application can be found, amodel is adjusted

After the analysis, the product model is adjusted, and additional features
can be added to the model of the view. In the example, the distance between
the two protrusions and the width of the blind ot are increased in the part
detail design view (Figure 7.c), and as aresult two valid dots can be created
in the manufacturing planning view (Figure 7.d).

6. CONCLUSIONS

In the semantic feature modelling approach, the meaning of features has
to be precisely defined in their respective classes, and this meaning is
maintained during the whole modelling process.

Compared to more traditional geometric and feature modelling, the
designer has less modelling freedom. On the other hand, it is guaranteed that
only meaningful feature models are created. The designer is supported in this
in a user-friendly way. This seems an important step forward to make feature
modelling really more powerful than geometric modelling.

In the enhanced multiple-view feature modelling approach, views for a
wider range of product development phases can be supported. It has been
indicated how these views can be kept consistent.

A feature modelling system with the views described here can effectively
support a mgjor part of product development. Product information can be
specified in meaningful ways, e.g. information on globa properties of the
product in the conceptual design view, and detailed information on relations
between parts in the assembly design view.

16 Willem F. Bronsvoort, Rafael Bidarra and Alex Noort

In conclusion, the new feature modelling approaches described here
result in more meaningful product modelling, both in the sense of the models
that are created, and in the sense of how these are created.

REFERENCES

Bidarra, R. and Bronsvoort, W.F. (2000) Semantic feature modelling. Computer-Aided
Design 32(3): 201-225

Bidarra, R., Dohmen, M. and Bronsvoort, W.F. (1997) Automatic detection of interactionsin
feature models. In: CD-ROM Proceedings of the 1997 ASME Design Engineering
Technical Conferences, 14-17 September, Sacramento, CA, USA, ASME, New Y ork

Bidarra, R., de Kraker, K.J. and Bronsvoort, W.F. (1998) Representation and management of
feature information in a cellular model. Computer-Aided Design 30(4): 301-313

Bronsvoort, W.F., Bidarra, R., Dohmen, M., van Holland, W. and de Kraker, K.J. (1997)
Multiple-view feature modelling and conversion. In: Geometric Modelling: Theory and
Practice - The Sate of the Art, Strasser, W., Klein, R. and Rau, R. (eds), Springer, Berlin,
pp 159-174

Bullinger, H.J. and Warschat, J. (1995) Concurrent simultaneous engineering systems.
Springer-Verlag, London

De Martino, T., Falcidieno, B. and Hassinger, S. (1998) Design and engineering process
integration through a multiple view intermediate modeller in a distributed object-oriented
system environment. Computer-Aided Design 30(6): 437-452

Dohmen, M., de Kraker, K.J. and Bronsvoort, W.F. (1996) Feature validation in amultiple-
view modeling system. In: CD-ROM Proceedings of the 1996 ASME Computersin
Engineering Conference, 19-22 August, Irvine, CA, USA, McCarthy, JM. (ed), ASME,
New York

Hoffmann, C.M. and Joan-Arinyo, R. (2000) Distributed maintenance of multiple product
views. Computer-Aided Design 32(7): 421431

van Holland, W. and Bronsvoort, W.F. (2000) Assembly featuresin modeling and planning.
Robotics and Computer Integrated Manufacturing 16(4): 277-294

de Kraker, K.J., Dohmen, M. and Bronsvoort, W. F. (1997) Maintaining multiple viewsin
feature modeling, In: Solid Modeling '97, Fourth Symposium on Solid Modeling and
Applications, 14-16 May, Atlanta, GA, USA, Hoffmann, C.M. and Bronsvoort, W.F.
(eds), ACM Press, New York, pp. 123-130

Kramer, G.A. (1992) Solving geometric constraint systems: a case study in kinematics. The
MIT Press, Cambridge, MA

Noort, A. and Bronsvoort, W.F. (1999) Automatic model adjustment in form feature
conversion. In: CD-ROM Proceedings of the 1999 ASME Design Engineering Technical
Conferences, 12—16 September, Las Vegas, NV, USA, ASME, New Y ork

Noort, A., Dohmen, M. and Bronsvoort, W.F. (1998), Solving over- and underconstrained
geometric models. In: Geometric Constraint Solving and Applications, Briderlin, B. and
Roller, D., Springer-Verlag, Berlin, pp. 107-127

Parametric (2000) Pro/ENGINEER, Version 2000i. Parametric Technology Corporation,
Waltham, MA

Sannella, M. (1992) The SkyBlue constraint solver. Technical Report 92-07-02, University of
Washington, DC

Ulrich, K.T. and Eppinger, S.D. (2000) Product design and development. McGraw-Hill, New
York

