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INTRODUCTION: High angular resolution diffusion imaging (HARDI) is able to capture the water diffusion pattern in areas of complex intravoxel fiber 
configurations. However, compared to diffusion tensor imaging (DTI), HARDI adds extra complexity (e.g., high post-processing time and memory costs, nonintuitive 
visualization). Separating the data into Gaussian and non-Gaussian areas can allow using complex HARDI models just when it is necessary. We study HARDI 
anisotropy measures as classification criteria applied to different HARDI models. The chosen measures are fast to calculate and provide interactive data classification.  
METHODS: We implemented several anisotropy measures from the literature, generalized anisotropy (GA)[1], generalized fractional anisotropy (GFA)[2], and the 
cumulative residual entropy (CRE)[3]. These measures were applied on the 
ADC profiles, analytical q-ball[4] and the DOT[1] all referred as spherical 
probability functions (SPFs). DOT has been adapted to be represented by real 
Spherical Harmonics, such that all the anisotropy measures can be applied 
equally. To avoid the R0 selection problem in DOT and inspired by definitions 
of the Orientation Distribution Function (ODF) from Q-ball imaging [2] and the 
marginal ODF (mODF) from diffusion spectrum imaging (DSI)[5], we propose 
the similar ODFs computed from the DOT as: ψDOT-ODF(θ,φ)=∫0

R0max P(r,θ,φ)dr, 
ψDOT-mODF(θ,φ)=∫0

R0max P(r,θ,φ)r2dr, where P(r,θ,φ) is the probability density 
function (PDF) computed from DOT and R0max is set to a conservatively high 
value (see table on Figure 1 right). Furthermore, as a discrete binary measure for 
classification we propose to use the number of maxima (NM).  
DATA: Ex-vivo phantom: We use two real physical ex-vivo phantoms with 
fibre bundles crossing at 45° and 90°[6]. We analyze the data acquired at two b-
values of b=2000 and b=8000s/mm2, along 200 uniform directions. Human: 
Diffusion acquisitions were performed using a twice focused spin-echo echo-
planar imaging sequence on a Siemens Allegra 3T scanner, with FOV 208X208 
mm, isotropic voxels of 2mm. Uniform gradient direction schemes with 49 and 
121 directions were used and the diffusion-weighted volumes were interleaved 
with b0, volumes every 12th scanned gradient direction. Datasets were acquired at b-values of 1000, 1500, 2000, 3000, 4000 s/mm2 and in the same session, two 
anatomical data sets (192 slices, isotropic 1mm voxels) were acquired using the ADNI protocol for registration. Finally, before ADC, q-balls and DOT reconstructions, 
we applied a denoising step available online (http://www.irisa.fr/visages/benchmarks/), to correct for the Rician noise bias in the datasets. 

RESULTS: Phantom: DOT has the potential of recovering small angles regardless of the b-
value, which we demonstrate in the table of Fig. 1. In the table we report the success at 
recovering two maxima in the crossing voxels by all of the examined SPFs. We observe that the 
derivations of the DOT (DOT-ODF and DOT-mODF) manifest similar behavior as the DOT 
itself, which shows a better angular resolution than q-ball and suggests a better choice of 
reconstruction algorithm for fiber tracking purpose. For the rest of the anisotropy measures, we 
can quantitatively describe the classification power of the 45° and 90° phantoms by using a 
binary classification statistical test. We report the specificity and sensitivity of the classified 
crossing and linear voxels respectively. Two thresholds are needed to separate the interval of 
anisotropy values into three distinct compartments: Isotropic/noise, Gaussian and non-Gaussian. 
We thus iterate over the whole range of values of each anisotropy measure and find the interval 
where all the crossings are detected while the number of false positives stays minimal. For the 
purpose of data simplification, the presence of false negatives is dangerous (i.e. crossings 
detected as linear), because relevant information can be lost. Therefore to ensure absence of false 
negatives, we set the sensitivity of crossing classification criteria to 1. In Fig. 1, bottom, we 
present the specificity of the crossing classification for each measure and the sensitivity of the 
linear detected voxels for the 45° and 90° phantoms respectively. Any measure with high 
specificity is a good candidate for classifying the crossing regions. Human: The centrum 
semiovale was used to illustrate the qualitative analysis of the classification results (Fig. 2). We 
applied the same classification measures as for the phantom study on the original and denoised 
data from our datasets. Denoising improves the glyph profiles and the coherence of the non-
Gaussian regions, as seen in Fig. 2. We also observe a decrease in the irregularities in the 
crossing profiles. Going to very high b-values (i.e. >2000s/mm2) and modeling the data with 
high SH order (>4) results in polluted glyphs regardless with or without a denoising phase. 
Comparing the results of the classification from different measures, we observe that increasing 

the b-value sharpens the HARDI profiles and benefits only for maxima extraction purposes.  However, there is no significant gain in classification of non-Gaussian 
profiles, as observed in the phantom study. 
CONCLUSION: From our ex-vivo phantom study, we can conclude that CRE, GA and GFA can be applied as a reliable classification between Gaussian and non-
Gaussian profiles with in general less than 8% false positive classification results in any configuration. GA and GFA have advantage over CRE since they can be 
calculated only on the SH coefficients and therefore are significantly faster. An SH order of 4 is sufficient to classify the non-Gaussian profiles. However, if one is 
interested in the number of maxima, it is then useful to use higher SH order to discriminate low angle crossings, such as 45°. Denoising as a pre-processing step 
improves the coherence of the classification areas and enhances the HARDI profiles. ADC and q-ball demonstrate strong classification information, even though 
sometimes lack sufficient angular resolution for small crossing angle discrimination. Increasing the acquisition parameters (b-value >2000s/mm2 and NG>80) as well as 
model order, does not significantly improve the classification power. We presented a method that can simplify the data into linear, crossing and isotropic/noise voxels. 
This means that more sophisticated hybrid methods, which are more time consuming can be applied only in the non-Gaussian areas, whereas linear and isotropic areas 
can be modeled with a simple diffusion tensor. This classification can reduce the post-processing time and considerably accelerate the visualization of the data. 
Therefore, this has a potential benefit in clinical settings.  
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Figure 2. The effect of denoising demonstrated on original versus 
denoised data in different acquisition schemes  

 

Figure 1. Classification results from the phantom data 


