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Figure 1: The exploratory VE in use.

ABSTRACT
This paper presents an approach to help speed up and unify
the exploration and analysis of time-dependent, volumetric
data sets by easily incorporating new qualitative and quan-
titative information into an exploratory virtual environment
(VE). The new information is incorporated through one or
more expedited offline “reprocessing” steps, which compute
properties of objects extracted from the data. These ob-
jects and their properties are displayed in the exploratory
VE. A case study involving atmospheric data is presented
to demonstrate the utility of the method.

Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Virtual Reality; I.3.8 [Computer Graphics]: Ap-
plications

General Terms: Design, Experimentation

Keywords: Virtual Reality, Data Visualization

1. INTRODUCTION
Many researchers make use of simulations to analyze var-

ious phenomena. These simulations often produce time-
dependent data sets, which are growing larger, and the time
required to extract meaningful results from the data is also
increasing. Virtual reality (VR) can help scientists make
sense out of such data sets, but most VR visualization soft-
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Figure 2: The analysis cycle as described by Upson
et al. in [12]. Simulation data is filtered, mapped,
rendered, and studied yielding insight, which can be
used to initiate a new round of filtering.

ware is designed for specific problems and often lacks inte-
gration into the larger data analysis process.

This paper proposes an approach to help speed up and
unify the analysis and exploration of large, time-dependent
data sets. This is accomplished through the combination of
an exploratory virtual environment (VE) and a data pro-
cessing tool. The VE provides standard manipulation and
data probing tools for exploring the 3D, multivariate data,
and it incorporates quantitative and qualitative information
generated by the data processing tool (Figure 1). The data
processing tool generates this information by using a simple
expression parsing grammar to perform a variety of compu-
tations on the data. Furthermore, the same data processing
tool can be reused during an arbitrary number of “repro-
cessing” steps to generate new output data for inclusion in
the VE. Currently this takes place offline after examining
the data in the VE, but we plan to incorporate it as an
interactive, real-time component of the VE in the future.

The remainder of this paper is organized as follows. We
discuss related work in the next secion. In Section 3, we give
an overview of our approach. In Section 4, we present our
software system and the salient points in its evolution from
our previously developed VE exploration tool for life-cycle
studies [5]. In Section 5, we describe how this work relates
to the atmospheric research in our cooperative project. In
Section 6, we conclude and discuss our plans for creating a
fully interactive system from the current one.

2. BACKGROUND AND RELATED WORK
Upson et al. [12] and Springmeyer et al. [11] characterize

the data analysis process. Upson et al. describe the process
as largely a filter, map, render loop (Figure 2), the insight
of which drives further iterations of the loop. Springmeyer
et al. further break the process down into four components,
which encompass a variety of research tasks: analyzing rep-
resentations of the data, performing calculations, maneu-
vering through and in the data, and expressing the ideas



gleaned from the process. They derive a set of five functional
requirements for data analysis software from these require-
ments: allow interactive, quantitative exploration; assist in
maintaining records of sessions; link materials from differ-
ent stages of a study; simplify navigation requirements; and
provide support for culling large data sets. We try to incor-
porate the salient points from these models in our software.

A variety of exploratory data visualization environments
exist. One Popular is AVS [12]. Much VR visualization
work has also been done. See [2, 13] for several exam-
ples. However, there are still open problems in visualiza-
tion. Some listed by Johnson [8] are: effective visualization
of time-varying, multivariate data; effective interaction tools
for 3D data exploration; and application integration within
the overall problem solving environment. With our method,
we attempt to address these challenges by more closely cou-
pling the data processing and the exploratory VE.

In a process of “selective visualization”, van Walsum [14]
selects important parts of the data based on the results of
derived data computed by parsing expressions. Henze [6]
extended this idea to include exploration of the derived data
in user-defined 2D coordinate spaces linked to the original
data. In our approach, a similar expression parsing facility
is used to calculate new data, but in our case the new data
are imported in the VE, so the full range of visualization
and exploration techniques is available to the user.

Our “reprocessing” bears some similarities to computa-
tional steering. See [9] for some early examples. A critical
difference, though, is that computational steering affects the
result of the simulation, whereas our approach works with
the results of a completed simulation run.

3. METHOD OVERVIEW
Our previous Cloud Explorer application [5] supported a

process shown in the top of Figure 3. This linear approach
culls the data set by having scientists identify the portions
of the data containing interesting objects, but the narrow
focus of the preprocessing and VE make it difficult for the
scientists to gain further insight into the data.

Our newly proposed pipeline incorporates five steps:
Step 1: Simulation
Step 2: Data (re)processing
Step 3: Data visualization
Step 4: Repeat Steps 2 and 3 as needed
Step 5: Generate quantitative results.
This approach is shown in the bottom of Figure 3. Besides
generalizing away from clouds, the most important change
is the data “reprocessing” cycle with the optional jump from
Step 4 to Step 2. With this, the new pipeline closely parallels
the Upson et al. [12] analysis cycle (Figure 2).

The initial data processing phase identifies important ob-
jects in the data. The lifespans and bounding boxes of these
objects are determined and saved to disk. Optionally, new
copies of the raw data are created containing only the data
set contained in object bounding boxes. This can greatly
speed up later processing of the data as scientists are most
interested in objects and their immediate surroundings.

The data reprocessing step is the key new step in the
method. The data processing tool can be used to generate
quantitative data based on user supplied expressions. The
initial processing step lets the reprocessing proceed quite
quickly. The new information can then be directly loaded
into the VE. This allows researchers to spend more time in
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Figure 3: Top: This pipeline was supported by our
original Cloud Explorer application [5]. Bottom:
This represents our newly proposed pipeline, which
incorporates a “reprocessing” cycle.

<input path=“/data/simulation001”>

<variable name=“ql” file=“ql.001” />

<time steps=“2000” />

<grid x=“256” y=“256” z=“160” />

</input>

Figure 4: This example snippet of the input section
from a processing specification file describes the grid
size, the number of time steps, and the name and
location on disk of one simulation variable.

the VE, while also making that time more productive.
The last step is the creation of communicable results, in

the form of plots, numbers, or other representations. Pre-
sentation quality results often require precision, flexibility,
and functionality beyond that which is sufficient for data
exploration. This is currently left as a post-processing step
for more specialized tools. In the future, however, we plan
to include more of this functionality in the VE.

4. SOFTWARE SYSTEM
Our new software can be seen as an extension and gener-

alization of our Cloud Explorer application [5].

4.1 Preprocessing Generalization
Cloud Explorer was designed for our atmospheric research

project. While successful, it was not broadly applicable be-
cause of restrictions placed on the data format and nature.

In the new system, most of these restrictions have been
eased or eliminated. The data can now be periodic in any
direction, or it can be completely aperiodic. The objects
in the data are now identified by a user specified threshold,
and they no longer need to have manifold surfaces. Also,
more allowances are now made for varying file formats.

The data processing program loads a processing specifica-
tion file, which is in extensible markup language (XML) [1]
format. This file is broken into three sections, which de-
scribe the input data (the simulation data), the desired out-
put data, and mappings from the input data to the output
data. Figure 4 illustrates an example input section.

4.2 Preprocessing Extension
The first extensions to the data processing are the cre-

ation of subvolumes and downsampled volumes. The down-
sampled volumes are for slicing tools. The subvolumes are



1 1

0 10

0

0 1 0

0 1

0 10

0

0 1 0

1 1

0 10

0

1 0 1

1 1

0 10

0

0 0 0

3

4

2

3

x

y

z

Figure 5: An illustration of a vector value. Here,
each value in the vector represents the sum of all
values in the corresponding x-y voxel plane.

used for per object data calculations, and they each contain
an object and the volume around it in a particular time step.

For data calculations, we have implemented a small ex-
pression grammar. It supports simple mathematical expres-
sions involving functions and scalar, vector, and multidimen-
sional matrix values. A set of functions has been defined to
support various operations. These include summing and av-
eraging data; basic image processing functions; detecting
maxima, minima and extents; and subvolume extraction.
Gradient operations are planned for future versions.

In the processing specification file, the user supplies the
input variables, some extra information, and a set of ex-
pressions describing the mapping from input data to output
data. In addition, the user lists the output data to save.

The data processing program generates two types of data.
The first is a per object per time step scalar value, which
allows 2D plots over time. The second is a per object per
time step vector value. The vectors are filled with one scalar
value for each voxel plane in a subvolume along a coordinate
axis (Figure 5). Taking the example of the z axis, an image
can be generated where the pixel coordinates represent time
and vertical height in the subvolume and the pixel color or
intensity represents the value for that voxel plane at that
point in time. Figure 8 illustrates such z vector images.

Consider the following set of expressions:
bin grid = bin(grid)
volume = sum(bin grid)
ql vec = sumdim(sumdim(grid, 0), 0) /

sumdim(sumdim(bin grid, 0), 0)
Here, grid is the input subvolume, which has had all non-

object voxels set to 0. The bin function converts all non-zero
voxels to a 1, and the sum function sums the values of all
voxels in bin grid. Thus, volume is the object volume in vox-
els. sumdim sums along the specified dimension, reducing
the dimensionality by one. In this case, the effect is to set
ql vec equal to the average liquid water value at each height
in the subvolume. See Figure 8 for an example of the result.

The final extension was the “reprocessing”. For reprocess-
ing, the processing description file is updated and the data
processing program run again. The newly generated data is
added to the existing data for inclusion in the VE.

4.3 Cloud Explorer Expansion
To complete the generalization and expansion process, we

updated the Cloud Explorer interface with new widgets,
added new data probing tools, added various windows, and
included a slicing plane. We now use the IntenSelect in-
teraction metaphor in the environment to make selection
and manipulation tasks easier, especially with small widgets.
See [4] for a description of the widgets and the IntenSelect
technique. Figure 6 compares the old and new interfaces.

One addition of note is the new graph window. For each

Figure 6: Top: Old Cloud Explorer interface. Bot-
tom: New application interface, featuring windows,
a slicing plane, and the new graph window.
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Figure 7: An illustration of the graph window.

selected object, up to five, a graph window is displayed with
information about the object. Figure 7 illustrates the win-
dow and Figures 6 and 8 show examples of the actual win-
dows. The window is divided into one or more plot display
areas, which each display one or more overlayed user se-
lected plots. The window can be resized, and plot display
areas can be added or removed in each graph window. The
current time step, and the playback timespan are also high-
lighted on the plots. Using these graph windows, scientists
can make correlations between object behaviors over time.

5. CASE STUDY
In our research, we use a Large-Eddy Simulation (LES) of

the Atmospheric Boundary Layer (ABL) containing shallow
cumulus clouds. LES is a simulation method where the rul-
ing Navier-Stokes equations are solved up to a certain scale,
while the influence of smaller scale (turbulent) motion is
approximated via a statistical model. The simulations gen-
erate a 256×256×160 output grid every third time step for
several variables: temperature, amount of liquid and gaseous
water, buoyancy, and air velocity. For more details about
LES see [3] and [10], and for more details about our experi-
ments and previous work, see [5] and [7].

In our analysis, we first identified interesting clouds for
further study, which was the focus of our previous work [5,
7]. In short, cloud isosurfaces, bounding boxes, and volume



Figure 8: Left: Horizontally integrated liquid water
vs. height and time. This plot was generated via a
special tool. Darker areas indicate a higher concen-
tration of liquid water. Each point represents the
average amount of liquid water at a given height
in the cloud at a particular time step. Right: An
equivalent plot generated by our new software and
displayed within the VE.

information were interactively visualized in the Cloud Ex-
plorer application, which enabled the visual identification of
40 interesting clouds for further study.

Next, we studied the interesting clouds. This proceeded
iteratively, with each analysis inspiring the next. We started
with simple properties (e.g. how the cloud base and top
moved vertically over time) indicative of interesting behav-
ior. This led to an examination of liquid water amounts at
various heights in the clouds due to its influential role in
cloud dynamics. Surprisingly, the liquid water seemed to be
concentrated in pulses that rose with time (Figure 8). We
confirmed this by performing the same analysis with buoy-
ancy, which led us to discover a correlation between the
amount of water beneath the clouds and pulse onset. The
consistency of these observations across the clouds we stud-
ied let us say that this was a generic phenomenon rather
than specific to a particular cloud.

This iterative advancement of ideas is at the core of our
proposed system. The initial object identification remains
largely unchanged, but the analytical data generated during
the later steps is something that our new software supports.
The height of the cloud base and cloud top are scalar val-
ues, represented by the maximum and minimum extent of
the object in a given time step, which can be calculated
by the data processing. The horizontal integration of liq-
uid water and buoyancy can be calculated with the vector
calculations supported by the data processing. Figure 8, il-
lustrates the original liquid water integration plots and the
equivalent plots generated by the data processing as seen
from within the VE. The slicing plane can be used to exam-
ine the amount of water beneath the clouds. Looking at the
integration plot of liquid water while using the slicing plane
shows the build up of liquid water preceding the appearance
of the pulses in the clouds.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an approach geared to-

wards helping scientists working with large, time-dependent
data sets reach results more swiftly. The approach uses the
idea of “reprocessing” the data and incorporating new quan-
titative information into a scientific visualization virtual en-
vironment. This allows researchers to spend more time in
the VE, while also making that time more productive.

We described the expansion and extension of our previ-
ous software to meet the objectives of the proposed method.
We restructured the data processing to handle a variety of

data sets, and we incorporated a small expression grammar
to generate quantitative data from the data sets. Lastly, we
updated the VE to incorporate this new quantitative data,
among other improvements. We presented a case study re-
lating how our research into cloud life-cycles progressed, and
we described how our new software supports each step of the
exploration process we went through.

In the future, we would like to move toward a VE capable
of supporting virtual experiments, which would allow sci-
entists to develop and new hyphotheses within the VE. To
do this, plan to do three things. First, we plan to refine
and polish our software through practical application. Sec-
ondly, we plan to integrate the “reprocessing” in real-time in
the VE. Finally, we would like to introduce further enhance-
ments such as particle tracing, object surface properties, and
intelligent large data handling capabilities.
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