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Abstract

The natural vibration modes of deformable objects are a fundamental physical
phenomenon. In this paper, we introduce compressed vibration modes, which, in
contrast to the natural vibration modes, are localized (“sparse”) deformations.
The localization is achieved by augmenting the objective which has the vibration
modes as minima by a L1 term. As a result, the compressed modes form a com-
promise between localization and optimal energy efficiency of the deformations.
We introduce a scheme for computing bases of compressed modes by solving
sequences of convex optimization problems. Our experiments demonstrate that
the resulting bases are well-suited for reduced-order shape deformation and for
guiding the segmentation of objects into functional parts.

1. Introduction

Vibration modes and their frequencies are fundamental for analyzing and
simulating the dynamics of physical objects. In this work, we introduce an ap-
proach for the compression and localization of vibration modes of elastic bodies.
The compressed vibration modes have a localized support while preserving prop-
erties of the natural vibration modes, e.g., they form an orthonormal system
in the space of configurations of an elastic body and the low-frequency modes
correspond to low-energy deformations. The degree of localization can be con-
trolled by a continuous parameter µ.

For applications, e.g., for reduced-order simulations, the localization pro-
vides benefits. The vectors describing the compressed vibration modes of a
discrete object are sparse, which results in less memory requirements for stor-
ing a basis and fewer arithmetic operations for adding or scaling the vectors.
In our experiments, we used the compressed vibration modes for reduced-order
simulation and deformation-based shape modeling. A second aspect is that the
localization of the vibration modes adds a novel aspect to the modal analysis
of deformable objects. Our experiments illustrate that the compressed modes
localize in a structured way. We see potential in exploring this structure for
modal and shape analysis and using it for applications. As a first step in this
direction, we use the compressed modes for shape segmentation into functional
parts.
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Figure 1: The first sixteen compressed vibration modes of an X-shaped mesh (µ = 10). We
grouped the same modes (up to symmetry) for each of the four ’legs’.

To define the compressed vibration modes, we first characterize the natural
vibration modes as the minimizers of an optimization problem, then we add a
L1 regularizing term to the objective to enforce compression. The idea of us-
ing L1 regularization to localize modes of variational problems was introduced
in [1] and applied to Schrödinger’s equation. The compressed vibration modes,
we introduce, specialize this idea to the localization of modes of vibration of
elastic bodies. There are significant differences in how we define and compute
the compressed modes compared to [1] and other work on the compression of
modes like [2, 3, 4]. Whereas they compute all compressed modes in one opti-
mization, we devise a reformulation of the L1 regularized eigenproblem, which
allows for computing the modes sequentially. This results in computation tim-
ings that scale linearly in the number of modes, whereas previous methods scale
superlinearly. Moreover, to compute the modes, we devise an algorithm for
solving the L1 regularized optimization problem, which involves a convexifica-
tion of a constraint as well as a linearization of the L1 term. The algorithm
allows to stably compute a large number of modes, as the runtime for each ad-
ditional mode remains (almost) constant. The shown experiments demonstrate
the benefits of this computational method over the ADMM method for the com-
putation of compressed modes. An additional point is that our reformulation of
the compressed eigenproblem allows for solving the L1 constrained version of the
problem. This formulation has the benefit over the L1 regularized problem that
the L1 norm remains constant for all modes. This aspect has not been treated
in prior work and seems difficult to achieve with prior problem formulations.

2. Related Work

Vibration modes. Vibration modes are fundamental for describing, analyzing
and simulating the dynamics of objects. The low-frequency vibration modes cor-
respond to low-energy deformations of an object, which makes spaces spanned
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by low-frequency vibration modes attractive for reducing the computational cost
of simulations and optimizations. In recent work in graphics, vibration modes
are used for reduced-order models for deformation-based editing [5], deformable
object simulation [6, 7, 8, 9], sound synthesis [10, 11], and spacetime control of
animations [12, 13, 14, 15]. Besides the dimensional reduction of simulations
and optimizations, vibration modes are used for the analysis of objects [16, 17]
and the segmentation of objects into functional parts [18]. One drawback of us-
ing vibration modes for dimensional reduction is that the resulting basis vectors
are dense, which can be problematic when a large basis is used or applications,
like games, impose strict limits on the memory available for the reduced simu-
lation. This problem has been addressed in [19] by applying a data compression
scheme for storing the basis vectors. We present, for the first time, a localization
of vibration modes, which allows for creating bases of low-energy deformations
that are sparse. One resulting benefit for reduced-order methods is a reduced
memory requirement.

L1 regularization for eigenvalue problems. Compressed modes for variation prob-
lems were introduced by Ozoliņs̆ et al. [1] and used for computing localized
bases for Schrödinger’s equation. For the numerical computation of the com-
pressed modes, they used a splitting orthogonality constraint (SOC) scheme.
The approach was extended to the computation of compactly supported mul-
tiresolution bases for the Laplace operator on planar domains by Ozoliņs̆ et
al. [20] and the sparse approximation of differential operators in the Fourier do-
main by Mackey et al. [21]. Compressed eigenfunctions of the Laplace–Beltrami
operator of curved surfaces, called compressed manifold modes, were considered
by Neumann et al. [2] and used for mesh segmentation and functional corre-
spondences. For computing the compressed manifolds modes, they proposed
a scheme based on the alternating direction method of multipliers (ADMM,
[22]) and demonstrated that it outperforms the SOC scheme. Boscaini et al. [3]
used the compressed manifold modes for building class-specific descriptors for
non-rigid shapes. Houston [23] proposed a natural ordering for the compressed
manifold modes along with an adaptation of the algorithm that is reported
to significantly reduce the number of ADMM iterations required in the opti-
mization. Since the definition of compressed modes includes a unit L2 norm
constraint, the feasible set for the optimization is not a linear space, but a
curved manifold. A generic algorithm for L1 regularized minimization problems
over manifolds called the manifold alternating direction method of multipliers
(MADMM) was introduced by Kovnatsky et al. [4] and used for the computation
of compressed manifold modes. Concurrent to our work, Bronstein et al. [24]
proposed a discretization of the L1 norm for linear Lagrange finite elements
on meshes and an iteratively reweighted least-squares scheme for computing
compressed manifold modes. In this paper, we opt for a different approach for
computing the compressed vibration modes using convexification of the con-
straints and linearization of the L1 term by duplication of the variables.
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`0 regularized eigenvalue problems. Sparsity in finite dimensional eigenvalue
problems can be enforced by regularization with a `0 “norm”, which counts
the number of non-zero entries in a vector. A recent scheme for solving the
resulting sparse eigenvalue problems is the truncated power method introduced
by Yuan et al. [25]. In order to compute sparse eigenvectors of a symmetric
matrix with less than k non-zero entries, the matrix is iteratively applied to
some initial vector, and subsequently all but the k largest absolute values are
set to 0. Unfortunately such a simple approach is not suited in our scenario
since we are interested in finding approximations of continuous functions with
localized support, and the `0 “norm” of a vector representing such a function
in some discretization scheme does not measure the size of the support since
the mapping between the function and the vector depends on the underlying
mesh. If weights, which consider the area associated to each vertex, are used
to account for the underlying mesh, the complexity of the problem rises and
methods like the truncated power method are no longer applicable.

L1 regularization for empirical eigenvalue problems. Related to the construction
of subspaces using compressed modes is the problem of constructing localized
bases that span a given space of deformations. Meyer et al. [26] considered
spaces specified by an animator’s rig and compute localized, not necessarily
orthogonal bases of the rig space via Varimax rotations. It is demonstrated
that the resulting basis vectors localize in a structured way. Neumann et al. [27]
introduced a scheme for compting localized bases in a spaces of captured facial
deformations using a L1 regularized principal component analysis. In contrast
to the approach proposed here, a large sequence of input shapes is required and
no elastic energies are taken into account. As a result, this method reduces
and localizes a set of input deformations, as opposed to producing a new set of
previously unknown deformations based on an analysis of the elastic energy of
an object.

Sparsity in geometry processing. Sparsity enforcing regularization has also been
used in the context of shape deformation. Gao et al. [28] introduced localization
encouraging deformation energies. Specifically, they modify the As-Rigid-As-
Possible energy by replacing terms measuring least-squares deviations from the
rest configuration by terms involving p-norms, which, for small p, tends to
localize the deformations when using the modified energy in modeling tasks
(i.e. minimizing it under soft or hard constraints). More examples, where `1
or `0 regularization has been employed for geometry processing tasks, surface
smoothing [29] and optimal spline approximation [30, 31]. For a recent survey
on compressed sensing for geometry processing, we refer to [32].

3. Background: Deformation Energies and Vibration Modes

In this section, we introduce basic concepts concerning deformation energies
and vibration modes. Due to space restrictions, we consider only the discrete
setting and the concepts needed to define the compressed vibration modes in the

4



next section. For more background on elasticity and finite element discretiza-
tion, we refer to the textbook [33].

In the following, we will deal with triangle surface meshes and tetrahedral
volume meshes with fixed connectivity M = (V, E ,F , T ) (vertices, edges, faces
and, in case of tetrahedral meshes, tetrahedrons) and initial vertex positions
given by a vector x ∈ R3|V|. We refer to the mesh with these vertex positions
as the rest configuration. We express a deformation of the mesh via a vector
u ∈ R3|V|, which stacks the displacements of each vertex in world coordinates.

A discrete deformation energy EM,x : R3|V| → R is a measure for the effort
it takes to deform an object from its rest configuration into a deformed state
given by some displacement vector u, i.e. the new vertex positions are given by
x + u, while assuming that the object consists of a hyperelastic material. The
energy E depends on the connectivity of the mesh, its rest configuration and
material properties. For our experiments, we used a finite element discretization
of St. Venant–Kirchhoff materials [33] for simulating elastic solids and Discrete
Shells [34] for elastic shells.

In order to define a L2 scalar product and L1 and L2 norms on the space of
displacements of a mesh, we associate a mass mi to every vertex. We assume
that the material of the elastic bodies has a constant density ρ, and, for thin
shells, we assume a constant thickness ε. Then, for elastic solids, the mass mi

equals ρ times a fourth of the combined volume of all tets containing vertex
vi, and, for thin shells mi equals ρ ε times a third of the combined area of the
triangles containing vi. The mass matrix M is the 3|V| × 3|V| diagonal matrix
that stacks the masses on the diagonal (in the same order as the displacements
are stacked). The L2 scalar product is

〈u,v〉 := uTMv, (1)

with corresponding L2 norm ‖u‖2 = 〈u,u〉
1
2 , and the L1 norm is

‖u‖1 :=

3|V|∑
i=0

Mii |ui|, (2)

where Mii is the ith entry on the diagonal of M and ui the ith entry of u.
In [2] the `1-norm was used for computing compressed manifold modes, i.e.
the masses associated to the vertices were not considered when computing the
sparsity regularizer. We illustrate the effect of the different 1-norms on the
compressed vibration modes in Figure 4, where we demonstrate that our method
is robust against remeshing of the object.

Natural vibration modes. We consider the modes of vibration of an elastic ob-
ject at its rest configuration. The Hessian H of E at x is the matrix of sec-
ond derivatives of E with respect to displacements of the object, i.e., Hij =

∂2

∂ui∂uj
EM,x(0). At the rest configuration, the Hessian is a symmetric and pos-

itive semi-definite matrix. The vibration modes are the eigenvectors and the
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(a) Eight of the first fifty compressed
vibration modes on the dinosaur model
(tetrahedral mesh, St.-V.-K. energy, µ =
20).

(b) Eight of the first fifty compressed
vibration modes on the Victoria mesh
(surface mesh, thin shells energy, µ =
0.0001).

Figure 2: Two sets of compressed vibration modes for different geometry types and elastic
energies.

frequencies are the square roots of the eigenvalues of the generalized eigenvalue
problem

Hui = λiMui. (3)

The problem can be re-written as the following sequence of optimization prob-
lems:

ui :=

{
arg minu uTHu

subject to uTMu = 1 and ∀j < i : uTMuj = 0

We will use this definition as the starting point for defining the compressed
vibration modes.

4. Compressed Vibration Modes

Vibration modes are in general global and thus a displacement in direction of
any mode deforms the whole object. Since reduced order methods need to store
the whole subspace basis, this is a drawback for applications imposing strict
bounds on the memory requirements, e.g., when the GPU memory is shared
for different computational tasks (Games or VR) or larger bases or bases for
multiple objects are needed (real-time simulation). Moreover, we found that
localized deformations are interesting and natural quantities of the mesh: they
localize in a structured way and thus give a useful tool for analyzing the mesh
and exploring the space of deformations. Thus, we aim at finding a sparse, i.e.
localized basis for deformations of a mesh, which represent a trade-off between
optimality w.r.t. the deformation energy EM,x and sparsity, i.e. few non-zero
entries per vector.

To this end, we define the compressed modes as solutions ui of the following
sequence of optimization problems:

ui :=

{
arg minu uTHu + µ‖u‖1
subject to uTMu = 1 and ∀j < i : uTMuj = 0

(4)
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(a) From left to right µ = 0, 64, 128, 256,
512, 2048, 8192. For all but µ = 0,
the shown mode was one of the first
four modes.

(b) The first eight sparse eigenmodes with
constant µ = 256.

Figure 3: Compressed vibration modes of a tetrahedral bar mesh.

Note that this is a direct extension of the iterative definition for natural vibra-
tion modes as given above, with the addition of a sparsity regularizer: the term
µ‖u‖1 represents a trade-off between minimizing the elastic energy introduced
by the mode, and its sparsity. Higher µ results in more localized deformations,
see Figure 3a. By iteratively adding orthogonality constraints, the resulting
modes cover a broad range of deformations, see Figure 3b. The compressed
vibration modes strongly depend on the structure of the underlying object and
thus analyzing their support reveals some of the structure of the object in re-
turn (this will be demonstrated in Section 7, where we use compressed vibration
modes for object segmentation). It is not obvious how to choose the parameter
µ such that a certain localization is achieved. We show several examples for
sets of sparse vibration modes and discuss the effects of different sparsity pa-
rameters µ in Section 8. Additionally, we introduce an alternative definition for
compressed vibration modes, where the L1 norm is being constrained instead of
regularized, below.

Figure 4: Comparison of the first four modes when using the mass-weighted discrete L1 norm
(left) when optimizing for compressed vibration modes of a irregular bar mesh (middle) and
the (unweighted) L1 norm (right) (which was used in [2]).

The definition (4) for compressed vibration modes has several differences
to the previous definitions of compressed modes as given in [1, 2, 3, 4] (aside
from us looking at localized vibrations of elastic bodies for the first time). They
look for a full set of vectors in a single optimization problem, constraining the
whole set to be orthonormal, whereas we define them as solutions of a sequence
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of smaller optimization problems, while adding an orthogonality constraint in
each iteration. This has the advantage that each of the minimization problems
has a comparatively low number of variables. When trying to compute a large
number of modes for high resolution meshes, solving for all modes at once
becomes prohibitive. Note that for µ = 0 both formulations yield the solutions
to the generalized eigenvalue problem. Another advantage is that the choice of
the sparsity parameter µ becomes consistent: the sparsity of the modes does
not depend on the number of modes K but only on µ, whereas in [2], the same
choice of µ would lead to different sparsity for bases of different sizes. Another
difference in our definition is that we use a proper discretization of the L1 norm
of piecewise linear displacements, as opposed to the unweighted vector `1 norm
used in [2].

5. Computation of Compressed Vibration Modes

The optimization problem (4) is non-convex due to the constraint on the
L2 norm of u and the L1 term is non-differentiable. For solving this type
of problem, a Splitting Orthogonality Constraint and an Alternating Direction
Method of Multipliers scheme have been proposed in [1] and [2]. A comparison of
the two approaches in [2] indicates that the ADMM scheme is more effective. In
our experiments, see Section 8, ADMM did not produce satisfying results for the
computation of compressed vibration modes, neither in terms of computation
times, nor in terms of convergence to an acceptable minimum. Therefore, we opt
for a novel optimization scheme, which we refer to as iterated convexification for
compressed modes (ICCM). It combines a convexification of the problem with
the classical approach of turning the L1 term into a linear term and linear
inequality constraints by duplicating the variables. We will describe both steps
in detail below. ICCM is parameter free and its implementation is straight-
forward, given a quadratic programming library.

Convexification. We replace the constraint uTMu = 1, by a hyperplane con-
straint uTMc0 = 1, where c0 is initialized as a random, normalized vector.
Essentially this replaces the constraint that the deformation should be on the
unit sphere, with the constraint that the deformation should be on a plane that
is tangential to the unit sphere. After we find a solution u with this constraint,
we set c1 = u/‖u‖ L2 and solve the optimization problem again, this time with

the hyperplane constraint uTMc1 = 1. This is being repeated until some con-
vergence criterion is met. In our experiments we used a lower bound on the
deltas between the energy values of the last and current solution as the stop-
ping criterion. After finding a mode, we initialize the next optimization problem
by again using a random hyperplane constraint c0, which additionally has the
property that the problem admits a feasible solution, i.e. ∀j < i : cT0 Muj = 0.
While this convexification might lead to finding a local instead of a global mini-
mum, it provides a fast and suitably stable way to solve a large scale, non-convex
and non-differentiable optimization problem. The performance and consistence
of this convexification is being further analyzed in Section 8.
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Linearization of the L1 term. After convexifying the L2 constraint, each mode
is computed via solving a sequence of convex optimization problems. In order
to turn these into quadratic programs, we get rid of the non-differentiable part
introduced by the L1 regularizer by using non-negative variables, that is,

u = u+ − u− u+,u− ≥ 0, (5)

where the inequality is meant component wise. This is a widely used approach,
first proposed in Tibshirani et al. [35]. With this change of variables the L1 term
can be bounded by a linear term

‖u‖1 ≤ 1TMu+ + 1TMu−. (6)

After expressing the energy functional and all constraints in terms of u+ and
u−, as well as adding the non-negativity constraints (5) and employing the
convexification above, the optimization problem (4) turns into an inner and
outer sequence of quadratic programs. In each inner iteration we adapt the
convex hyperplane constraints until a convergence criteria is met:

ui,k :=



arg minu=u+−u−

(
u+

u−

)T (
H −H

−H H

)(
u+

u−

)
+µ

(
1TMu+ + 1TMu−

)
subject to

(
u+

u−

)T (
M 0

0 M

)(
ck

−ck

)
= 1

and ∀j < i :

(
u+

u−

)T (
M 0

0 M

)(
uj

−uj

)
= 0

and u+,u− ≥ 0

(7)

ck+1 = ui,k/‖ui,k‖2.

After that we add the last mode from this sequence to the set of computed
sparse vibration modes, i.e.

ui := ui,k/‖ui,k‖2

and then start the inner iteration above again, with the additional orthogonality
constraint induced by the new mode. Note that the linear term that bounds the
L1 norm from above, (6), is actually equal to the L1 norm for solutions of (7),
since otherwise one could trivially construct a feasible lower energy solution (see
the appendix where we show this for the L1 constrained formulation). Thus,
(6) is a valid, linear, replacement for the non-differentiable term ‖u‖1.

Each inner iteration of ICCM amounts to solving a quadratic program which
can be done using highly efficient specialized solvers (in our implementation we
used Mosek). Typical iteration times and full times for computing a set of
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modes can be taken from Figure 14 and Table 4. Table 3 shows a comparison
to the computation times resulting from ADMM as implemented in [2]. We
will analyze the resulting compressed vibration modes and discuss stability and
computation times of the algorithm in more detail in Section 8.

6. L1 constrained vibration modes

In addition to using L1 regularization to enforce compression of the modes,
we can consider a L1 constrained formulation: we remove the term µ‖u‖1 from
the objective functional and instead add the constraint ‖u‖1 = s for some
s ∈ R>0. The resulting optimization problem is only well-posed, if there are
solutions with unit L2 norm and L1 norm lower or equal to s. Whether feasible
solutions exist for a given value of s can be checked by a numerical optimiza-
tion software such as MOSEK. Also note that the correctness of the linearized
L1 term used in our optimization has to be shown for the constrained version,
the proof can be found in the appendix. For the L1 constrained problem, the
inner iterations of ICCM remain quadratic programs and the algorithm results
in comparable computation times.

The attractiveness of the L1 constrained version becomes apparent when an-
alyzing the behavior of the elastic term uTHu. For many meshes, the vibration
modes have energy levels with vastly different magnitudes. Thus, the L1 reg-
ularizer has a different effect on the sparsity of the support of the compressed
vibration modes: While the first modes have the desired sparsity pattern, later
modes might have a dense support when using the same value of µ. This can
be seen in Figure 5 where, in the L1 regularized case (µ = 255), the support of
the first eight modes covers roughly one third of the mesh, but higher frequency
modes have a support that covers roughly 90% of the mesh. They are essentially
dense modes, which shows that the L1 term does not have significant influence
on the optimization. If we fix the value of the sparsity term of the first mode
in the L1 regularized case and use it as the value s in the L1 constrained case
(here s = 11.5), we are able to compute a set of modes with consistent sparsity
pattern. The plots in Figure 3b show the respective values of the L1 and elas-
ticity terms. From this it can be seen that a regularization is not suited since
the elastic terms explode for higher frequencies. This prevents us from having
to search for a suited value of µ when computing each mode, which would be
infeasible given the computation times of the modes.

We want to remark that while ICCM can be used for computing a constrained
version of the compressed modes, it is not clear how to employ previously pro-
posed minimization schemes to solve the constrained version. To the best of
our knowledge, this is the first time a L1 constrained version for compressed
modes has been considered. In [36], Rustamov et al. propose an L1 constrained
optimization problem to obtain smooth functions on meshes, Multiscale Bihar-
monic Kernels. Their motivation to use an L1 constraint is similar to ours: the
parameter that controls the magnitude of the L1-term controls the localization
of the solutions directly. For this problem, no non-convex constraint is present,
such that the minimization can be directly formulated as a quadratic program
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with linear (in)equality constraints.
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Figure 5: Left: The first, second, 19th and 20th L1 regularized compressed vibration modes
for µ = 255. Right: The first, second, 19th and 20th L1 constrained compressed vibration
modes for s = 11.5, which is the value of the L1 norm of the first L1 regularized vibration
mode for µ = 255. The plots show the values of the elastic and sparsity terms in both cases.

Note, that the previous definitions of compressed modes takes all K modes
into account in a single optimization problem, and thus applies the L1 regu-
larization to the whole matrix containing the modes. The problem of finding
a suitable parameter µ remains similar: when computing a set of K and a set
of K̃ modes, it is not clear how to choose the values of µ, such that a similar
sparsity pattern is achieved. Also note that the problem of varying degrees of
localization for a fixed value of µ but a larger number of modes K is not specific
to our setting of compressed vibration modes and we think that other methods
using compressed eigenmodes will benefit from the constrained formulation.

Lastly, we want to clarify that both (the regularized and the constrained)
formulations are valid and there are situations in which either might be prefer-
able. When using the L1 constrained formulation, we specify an approximate
volume (or area) that is covered by the support of the vibration mode, which
might not be desirable: in Figures 2a and 2b we see modes whose supports
cover vastly different amounts of area or volume respectively, but we intuitively
convey these parts as functional units of the mesh.

7. Applications

Before we cover the analysis of our optimization scheme, compare to previous
methods and show examples for sets of compressed vibration modes, we will
cover two applications that benefit from the localized deformations that have
been introduced in this paper.

Compressed deformation bases, elastic simulation and deformation. A general
advantage of compressed vibration modes is that they can be stored efficiently
by storing a list of the n non-zero indices along with the non-zero entries in-
stead of storing all N � n entries. This results in a significant reduction of the
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space required to store the deformation basis, which becomes essential in appli-
cations that impose strict memory requirements, e.g. when the GPU memory
needs to be shared by different processes (games or VR) or when large or multi-
ple reduced bases have to be stored at the same time (interactive simulations).
Moreover, mapping from the subspace given by a sparse basis to the full space
is cheaper (given a certain sparsity) than mapping from a dense basis to the full
space since sparse matrix vector products can be computed more efficiently. In
Table 4, we list the relative memory size of the sparse basis compared to the
dense basis. We store the sparse deformations as a list of integers representing
the indices of the non-zero vectors along with the three Doubles that represent
the displacement vector. The dense deformations are simply stored as N · 3
Double values representing all displacement vectors.

(a) Reduced deformation of an X-mesh,
constrained vertices shown pink in inset.

(b) Reduced deformation of the dinosaur
mesh, constrained vertices shown in pink.
The rest shape is shown transparently be-
hind the deformed shape.

Figure 6: Reduced deformation using a basis of sparse and dense vibration modes respectively,
for more details see Section 7.

This raises the question of whether in a reduced-order simulation a basis
of compressed vibration modes can compete with a dense basis of the same
dimension. To test this, first we used the compressed vibration modes in an
elastic simulation setup. In the following it is convenient to use the change of
coordinates

û := M1/2u, (8)

under which the mass matrix becomes identity. Likewise, let Ĥ = M−1/2HM−1/2,
i.e. the elasticity Hessian expressed in these coordinates.

We consider the linearized equations of motion induced by the elasticity
Hessian,

¨̂u + βĤ ˙̂u + Ĥû = 0, (9)

where β ∈ [0, 1] is a damping parameter. We reduce (9) using the basis of

compressed vibration modes Û = (û1, ..., ûK), that is, Û is the 3|V| ×K ma-
trix which contains the compressed vibration modes, expressed in terms of the
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changed coordinates, as columns. Let H̃ = ÛT ĤÛ and let Φ = (φ1, ..., φK) be
the matrix containing the eigenvectors of H̃ as its columns and Λ = diag (λi)
be the diagonal matrix containing the eigenvalues of H̃. We then consider the
reduced, decoupled system

ẍ + βΛẋ + Λx = 0. (10)

These systems can be solved, given appropriate initial conditions, by using
the closed form solutions for each dimension individually. As a post-processing
step, we apply rotation-strain warping, see [37], to the results of the linearized
simulation. For our experiments, we implemented a tool for interactive simu-
lation, where initial velocities can be injected into the system by clicking on
vertices of the mesh. Two examples of resulting simulations are included to
the supplementary video. When comparing results obtained in subspaces of the
same dimension constructed from compressed and natural vibration modes, we
obtain results of comparable quality, while the compressed basis takes about
20% of the memory of the dense basis.
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Figure 7: Convergence of sparse vibration modes to nat-
ural vibration modes as µ goes to 0.

By design the compressed
modes u induce low-energy
deformations, i.e., uTHu is
small. Due to the localiza-
tion, the compressed modes
are less efficient than the nat-
ural vibration modes. How-
ever, we expect that the en-
ergy of the compressed modes
converges to that of the nat-
ural modes when µ converges
to zero. We provide experi-
mental evidence in Figure 7,
where we show that the en-
ergy uTHu of the lowest com-
pressed vibration mode (blue)
(which is constrained to be
orthogonal to the linearized
rigid motions) converges to
the eigenvalue of the first natural vibration (again orthogonal to the rigid mo-
tions) (orange) when µ goes to zero. A visual evaluation of this convergence
can be seen in Figure 3a.

As a second application of the compressed basis, we use compressed vibration
modes in a reduced deformation-based shape editing setup. In Figure 6, we
compare the results of such modeling sessions, using a basis of compressed and
dense vibration modes of various sizes (10, 20 and 30 modes for the X-mesh;
20, 40 and 60 modes for the dinosaur).

More precisely, we minimize a weighted sum of the St.-Venant-Kirchhoff en-
ergy and a least squares term that drags a subset of the vertices to user specified
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Mesh # vertices K Energy using Energy using
compressed modes dense modes

X 1098 10 2137.93 424.82
20 287.33 292.27
30 109.01 192.17

Dinosaur 27664 20 53.76 372.20
40 20.47 152.46
60 12.12 43.93

Table 1: Energy values of optimized static state solutions for the deformations shown in
Figure 6.

positions. Instead of minimizing this energy over the full space, we optimize over
the subspaces spanned by the compressed and dense vibration modes respec-
tively. The compressed basis requires about 35%/20% of the storage space of
the dense basis for the X-mesh and dinosaur mesh, respectively. The energy
levels of the optimized solutions are listed in Table 1. It is remarkable that in
almost all cases a lower energy deformation was found in the subspace spanned
by compressed vibration modes.

In our supplementary video, we show a modeling session using a sparse
basis to demonstrate the flexibility of deformations that can be acquired using
a basis of compressed vibration modes. We found that it is often more intuitive
to achieve a modeling goal using the sparse vibration modes as a reduced basis.

Elastic segmentation. The compressed vibration modes provide us with infor-
mation about the dynamics of an object: the supports of the modes mark areas
which are well suited as segments of the object that undergo deformations while
the rest of the shape remains still. The size of these areas, i.e. the semantic level
that should be covered by the modes, can be controlled via the parameter of the
L1 regularizer, as can be seen, for example, in Figures 3a and 12. This makes
the compressed vibration modes well-suited to aid in segmentation tasks, where
elastic behavior of the mesh should be considered. We implemented a simple
segmentation algorithm, where we segment the mesh according to the supports
of the modes by only considering a mode if there is not already another mode
that covers it by more than 90%. We decide whether a tetrahedron belongs
to the segment defined by a mode, if the deformation vector for this mode is
larger than that of other modes that cover a nearby segment. Results of this
segmentation scheme can be seen in Figure 8, where we show its performance on
a volumetric and a surface mesh, using the modes from the experiments shown
above. In both cases, K = 50 compressed modes were produced and the steps
above lead to the depicted segmentations. The number of segments depends on
the parameter µ and the elastic properties of the shape itself. For the dinosaur
we end up with 10 segments, while for the centaur we get 18. In both cases,
we can see some triangles and tetrahedrons that do not belong to any partition,
or segments with rough boarders. This could easily be fixed by extending the
steps above, but we wanted to highlight the simplicity of this algorithm which
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already yields a useful segmentation that is based on elastic properties of the
object.

Figure 8: A simple segmentation scheme using our compressed vibration modes applied to
the dinosaur (volumetric) and the centaur (surface) mesh. See Section 7 for details.

Segmentation using elasticity has previously been proposed by Huang et al.
[18], where the natural vibration modes of an elastic object were weighted and
used in a variant of k-means clustering to partition the mesh. The goal of
the segmentation is to be able reproduce the ’likely, or typical’ deformations
of the vibration modes by using rigid transformations on each of the resulting
segments. In contrast, we directly produce a set of likely, or typical sparse
deformations whose support we use as the segments.

8. Experiments

Consistency of ICCM. A property of ICCM is that it will always converge to
some local minimum, up to a desired precision: the sequence of functional values
of the ûi,k in (7) is monotonically decreasing for each fixed i and increasing k.
Indeed, when minimizing the functional to find ûi,k, the previous solution ûi,k−1
is within the hyperplane to which the search space is restricted in that iteration,
by construction. If a mode with lower energy value is found within the hyper-
plane, the functional value of the normalized solution will be strictly smaller
since the functional is strictly convex. Moreover, each of the sub-problems can
be solved robustly and up to a desired precision since the interior point meth-
ods provided by solvers like MOSEK offer various optimality guarantees for
quadratic programs with inequality constraints. For ADMM, such convergence
guarantees are not available, and indeed, as stated above, the density, size and
structure of the matrices, as given in our setting of compressed vibration modes,
prevented ADMM from converging to a meaningful solution for simple models,
which brought up the necessity to develop an alternative optimization scheme.

For µ = 0, the compressed vibration modes coincide with the natural vibra-
tion modes that are solutions of the generalized eigenvalue problem Hu = λMu.
In this case, our algorithm can be seen as a scheme that uses convexification to
solve an eigenvalue problem and it is important to verify that the solutions of
our approach coincide with the ground truth (which can be obtained using reli-
able eigen-solvers). Indeed, for all meshes used in our experiments, we were able

15



Figure 9: Comparison between the compressed manifold modes produced by our scheme (left)
and Neumann et al. [2] (right). Both methods yield the same results up to the ordering and
sign changes, while the computation times of our method are significantly lower.

to find the first 20 vibration modes among the first 25 modes produced using our
minimization scheme. The reason that we do not get a one-to-one correspon-
dence to the ground truth is that we use a convexification that approximates the
constraint ‖u‖2 = 1. This may lead to finding a local minimum, instead of the
global minimum. In our experiments, we were still able to find consistent sets
of compressed vibration modes, by computing slightly more modes and cutting
off the highest frequency modes.

Figure 10: Compressed vi-
bration modes produced by
using ADMM for µ =
10, 20, 30, 50, 75. See Fig-
ure 1 for the output of our
method.

In case µ > 0, we first compare to the compressed
manifold modes shown in Neumann et al. [2]: in Fig-
ure 9 we show the output of their adapted ADMM
optimization scheme and our proposed ICCM scheme.
We were able to reproduce the same modes, up to
changes in the order in which they were found. This,
in combination with the enhanced computation tim-
ings shown below, shows ICCM is a valid alterna-
tive to ADMM for the problem of finding compressed
modes. Moreover, ADMM did not converge after
20000 iterations to any suitable solution when solving
for compressed vibration modes: we used the elastic-
ity Hessian and the corresponding mass matrix in the ADMM implementation
of Neumann et al. [2] and received the modes shown in Figure 10, which aren’t
meaningful solutions to the optimization problem. See Figure 1 for a comparison
to the output of our method.

Note that for K > 1, ICCM and ADMM try to solve two slightly different
optimization problems (computing a sequence of modes or computing all modes
at once), so the following quantitative comparison of the two algorithms was
performed for K = 1. Additionally, for this comparison only, ICCM used the
unweighted L1 norm, such that the objective values will be comparable. We
performed the comparison on various meshes and different triangulations. The
values of µ were chosen such that the resulting modes had a support of about
20% of the mesh area. We used a randomized mode for both methods as an
initialization (in ICCM we need an initial hyperplane constraint, ADMM needs
an initial value to start an iterative procedure) and ran both algorithms 100
times with different random initializations. In Table 2 we list both the average
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as well as the best objective values found. From those values we conclude that in
setups where ADMM does converge (which is not always the case, see above),
both algorithms perform equally well. Thus, we met our goal of creating an
algorithm that is able to compute vibration modes consistently and whose com-
putation times scale linearly in the number of modes that should be produced.

Mesh # vertices µ Obj. value of Obj. value of
optimum for ICCM optimum for ADMM [2]

(average,best) (average,best)

Hand 868 0.0001 4.1755E-4, 5.5042E-4 4.2055E-4, 6.0002E-4
Hand 4054 0.0001 9.4314E-4, 1.4113E-3 9.4731E-4, 1.1586E-3

Fertility 4994 0.0002 2.1663E-2, 2.5329E-2 2.1683E-2, 2.6280E-2
Fertility 9994 0.00005 1.2519E-2, 1.3222E-2 1.2531E-2, 1.3815E-2
Bunny 34834 0.0001 5.1078E-2, 6.4719E-2 5.1078E-2, 7.0158E-2

Table 2: Comparison of objective values of the optima computed using our algorithm (ICCM)
and using ADMM as proposed and implemented in Neumann et al. [2].

Lastly, note that ADMM requires the choice of a penalty parameter, for
which Neumann et al. use an automatic adjustment strategy. It is unclear
whether different strategies might lead to meaningful results the examples where
ADMM did not converge. Our proposed algorithm is parameter free and con-
verged in all examples for all choices of sparsity regularization and number of
modes.

Compressed vibration modes and compressed manifold modes are unstable
in their order: usually there is a large set of compressed vibration modes with
almost the same objective value, so small changes of the mesh, even isometric
deformations, lead to a different order of the sparse eigenmodes. Therefore,
none of our applications rely on a precise ordering of the modes. Note, how-
ever, that the modes can always be ordered after a certain number has been
computed. [23] provides a natural ordering for compressed manifold modes that
can be extended to compressed vibration modes as well. In our experiments,
we always computed about 10%-25% more modes than required, ordered them
and cut off the superfluous modes. This way we were able to get a consistent
set of the K lowest compressed vibration modes.

In Figure 1, we show the first sixteen modes of an X-shaped volume mesh.
The modes were computed in the order that is shown there, and putting them
into groups of four shows how the symmetry of the mesh is properly reflected
in the modes: each mode appears four times, once for each leg of the X.

Sparsity control. Examples for compressed vibration modes, where the sparsity
term was used as a regularizer are shown in Figures 1, 3a, 3b, 12, 2a and 2b. In
Figure 3a, we show how the bar can be segmented into parts of arbitrary size
(limited by the mesh resolution) by tuning the sparsity parameter µ. For each
of those parts, we get multiple vibrations that span a space of deformations for
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that part of the mesh. In case of the dinosaur mesh shown in Figure 2a it is
remarkable how the support of the modes is concentrated around parts of the
skeleton that we would intuitively categorize as segments.

While for the rest of the experiments we used tetrahedral volume meshes
with the St.-Venant-Kirchhoff energy, in Figures 12 and 2b we show that our
method is not limited to this setup: there, compressed vibration modes for tri-
angle surface meshes are shown, where the discrete shells energy was used as
the underlying deformation energy. Figure 12 also demonstrates how we can
localize the modes in different levels of scaling: for µ = 0.01 we get deforma-
tions of single fingers as compressed vibration modes and for µ = 10−4 we get
deformations of the legs and arms.

Figure 11: Sparsity constrained vibration modes of a hand mesh.

In Figure 11, we show compressed vibration modes where we constrained the
L1 norm such that the first mode approximately covers one of the fingers. Shown
are the first ten modes. Higher modes exhibit more complicated vibrations of
the fingers and other parts of the hands are only covered by very high modes.
This shows the tendency of compressed vibration modes to concentrate on parts
that are easier to deform in isolation (i.e. the energy of these deformations is
lower than that of comparably sized other parts).

Figure 12: A surface mesh of a centaur with compressed vibration modes of the discrete shells
energy. From left to right we show the first modes three for µ = 0.01 and then the first three
modes for µ = 10−4

In Figure 13, we show an advantage of both the correct approximation of the
L1 norm as well as the sparsity constrained formulation: we show that modes
computed on a model with 28k vertices are similar to those computed on a
simplification of that model with 5k vertices when using the same parameter
to constrain the L1 norm. The L1 norm is only a meaningful measure when
taking into account the volume associated to each vertex sample (i.e. using the
entries of M when computing the L1 norm). Also, there is no guarantee that the
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Figure 13: The first five sparsity constrained vibration modes on a high resolution and low
resolution version of the dinosaur mesh (same value of s for both meshes).

elastic energies of both models behave the same, and thus a L1 regularization
can not be expected to have a similar effect on the localization of the modes. A
L1 constraint, however, still leads to a similar support of the modes on the two
versions of the mesh, independently of the energy levels induced by the elastic
energies on them.
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Figure 14: Times for the computation of each individual
mode of the dinosaur model shown in Figure 13, lower
row, when using ICCM.

Timings. We first show that
the computation times of the
proposed ICCM scheme scale
better when the number of
modes, K, increases. There-
fore, we compare the timings
of our iterative optimization
scheme as opposed to using
ADMM to find a full set of
modes at once. For the lat-
ter we use the implementa-
tion provided by the authors
of [2]. Since ADMM did not
converge to satisfying solu-
tions when applied for sparse
vibration modes (see previous
paragraph), we compare the
timings of ICCM and ADMM
for the computation of com-
pressed manifold modes (i.e.
sparse eigenmodes of the surface Laplacian). We used the same custom laptop
to measure computation times for both algorithms and use the convergence cri-
teria proposed in [2] for ADMM. When computing the modes using ICCM, we
stopped the inner iterations to find a mode, when the changes in the objective
functional were below 10−8 times the current value of the objective functional.
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As shown before, in Figure 9, for the right values of µ in each algorithm the
produced modes are visually indistinguishable (after sign flips and reordering).
The resulting timings are listed in Table 3. We provide visual comparisons of
the computed modes in Figure 9 and as inset images in Table 3.

For some models and values of K, ADMM did not converge after 20k iter-
ations using the convergence criteria given in the implementation by Neumann
et al. [2], we marked these timings in the Table. We get faster computation
times in general for smaller models and have a better scaling in computation
times when computing a larger number of modes. For large meshes and low
values of K, ADMM benefits from the fact that the iterations can be performed
at comparably low costs, but as the size of the problem grows, each iteration
becomes more costly, and more iterations are required for the method to con-
verge. Thus, ICCM eventually outperforms ADMM as the number of desired
modes grows. With our scheme, for each additional mode, we have to solve
another sequence of quadratic programs with an additional equality constraint
(orthogonality to the last mode). Whenever an additional equality constraint
is added to the system, a change of variables can be performed, such that the
variables automatically fulfill the constraints. As a result, the computation time
per mode remains approximately constant, even for higher modes. In contrast,
when using ADMM, as proposed in [2], the number of modes K that have to
be computed has to be fixed before starting the computation and the number
of variables is N · K, where N is the number of vertices of the mesh. During
minimization several steps are being performed that scale superlinear in the
number of modes. Additionally, in our tests, ADMM requires more iterations
in order to converge when the number of modes is high.

An overview of the computation times for several examples of compressed
vibration modes can be found in Table 4. The computation times strongly
depend on the size of the model and the number of modes, but also on the shape
itself and the resulting elasticity Hessian. However, as pointed out before, the
time to compute each mode is roughly the same, which means that computing

Mesh # vertices times for K = 10 times for K = 40 times for K = 80
(us / ADMM [2]) (us / ADMM [2]) (us / ADMM [2])

Hand 868 2.26s / 4.17s 12.47s / 144.64s* 23.25s / 435s*
See Figure 9
Fertility 4994 32s / 30s 123s / 422s 254s / 899s

Bunny 34834 1007s / 312s 4072s / 3459.82s 8110s / 17205s*

Table 3: Comparison of computation times for compressed manifold modes when using ICCM
(our scheme) versus the modified ADMM algorithm, as proposed in [2]. The inset pictures
show the first three modes of each method, first ours, then ADMM.
*: ADMM did not converge after 20k iterations under the convergence criteria given in the
implementation by Neumann et al.

20



Mesh # vertices constrained? parameter average time avgerage # of rel. size of sparse
per mode iterations per mode versus dense basis

Bar (Fig. 3) 418 no µ = 512 1.97s 12.06 38%
Bar (Fig. 5) 418 yes s = 11.5 2.1s 11.02 38%
Centaur (Fig. 12) 2645 no µ = 0.01 16.13s 8 2%
Hand (Fig. 11) 2584 yes s = 6.46 14.72s 17.51 17%
Dinosaur lo-res. (Fig. 13, lower row) 4713 no µ = 20 25.17s 10.22 16%
Dinosaur hi-res. (Fig. 13, upper row) 27664 yes s = 6.5 518.5s 13.4 16%

Table 4: Computation times for different sets of compressed vibration modes when using our
proposed algorithm.

a large number of modes is entirely possible. This is shown in Figure 14 where
we show the computation times for each individual mode of the dinosaur mesh.

Computation of the Hessian. Before (compressed) vibration modes can be com-
puted the matrix H has to be set up. In the following, we list several options
on how to compute the Hessian. For a general discrete elastic energy, once the
evaluation of the energy with respect to a fixed rest-shape x and a variable
displacement vector u is implemented as a function that takes an array of 3|V|
values and returns a single value denoting the energy associated to this displace-
ment, one can use automatic differentiation (e.g. ADOL-C, see [38]) in order
to obtain the Hessian matrix. Often, however, the Hessian can be evaluated
faster by using explicit formulas. For energies that use discrete bending forces,
Tamstorf et al. [39] documented closed form expressions for the Hessian of the
bend angle, which allows explicit formulas for the energy Hessians of a large
class of elastic energies. The Hessian of the discretized St. Venant–Kirchhoff
energy for tetrahedral meshes is available as part of the Vega FEM library [40].
Also note, that for our purposes, we only require the evaluation of the energy
Hessian at the rest configuration. A simple formula for the Hessian at the rest
configuration for a certain class of deformation energies is detailed in [16].

9. Conclusion

We introduce compressed vibration modes of elastic bodies, which are or-
thonormal systems of displacements of objects that induce local and low-energy
deformations. For the computation of the modes, we devise a novel minimization
scheme which proves to be stable and the resulting computation time scales lin-
early in the number of modes, as opposed to previous methods. The compressed
vibration modes are shown to be intuitively controllable via either tuning the
sparsity regularizer or imposing a sparsity constraint (the latter of which has
not been done before for comparable modes). The modes are shown to be sta-
ble under refinement and a correction of the L1 term leads to invariance of the
triangulation.

We show how the modes can extend applications such as reduced elastic sim-
ulation and deformation or mesh segmentation. Their compressible structure is
attractive for cases in which memory limitations are present (e.g. games and
VR, where GPU memory has to be handled efficiently). Moreover they tend
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to exhibit a semantic structure, in the sense that the support of the modes is
often located on intuitive parts of objects, such as hands, arms, legs or fingers,
depending on the choice of µ.

Challenges and limitations. We are convinced that compressed vibration modes
can be a useful tool in various areas of geometry processing and we can see
direct benefits for simulation, shape space exploration and mesh analysis. While
computation times scale linearly, the timings per mode for detailed meshes is
quite high, and does not allow for interactive re-computation of the modes,
under different parameters or different rest configurations. Thus, it might be
worthwhile to further investigate alternative L1 optimization schemes, or to
provide a multi-resolution scheme for the proposed ICCM optimization.

Another direction of future work might be to exchange the L1 regularization
by a regularization that penalizes the volume of the support of the modes.
This would lead to a mass weighted `0 problem. Solving such problem poses a
challenging problem.
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Appendix A. Analysis of the ICCM scheme for the L1 constrained
optimization

As part of ICCM, we bound the weighted L1 norm of a mode u = u+ − u−

with u+,u− > 0 from above, via the linear term `(u+,u−) = 1TMu+ +
1TMu−. When computing sparse vibration modes via ICCM, in case the
L1 term is used as a regularizer, the minima found in each iteration have an
L1 norm that is equal to `(u+,u−). In the following, we prove that this also
holds for the L1 constrained problem. Note that ‖u+ − u−‖ = `(u+,u−) if for
each i it is either u+

i = 0 or u−j = 0, i.e. we need to show that for no coordinate
both the positive and the negative part of the variables are greater than 0.
In the constrained optimization, after having computed the first i−1 modes, the
inner loop of ICCM has the following form (where c is the current hyperplane,
used to convexify the L2 constraint):
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(
u+

u−

)T (
H −H

−H H

)(
u+

u−

)

subject to

(
u+

u−

)T (
M 0

0 M

)(
c

−c

)
= 1

and ∀j < i :

(
u+

u−

)T (
M 0

0 M

)(
uj

−uj

)
= 0

and u+,u− ≥ 0

and `(u+,u−) = s

(A.1)

In the following we make the assumptions that there is indeed a feasible

solution (in particular s is large enough to allow

(
u+

u−

)T

M

(
c
−c

)
= 1) and

that we choose s smaller than the L1 norm of the solution of the same problem
without the constraint `(u+,u−) = s. We will now show the following: either
we have that `(u+,u−) = ‖u+ − u−‖1 or there is a mode ũ with L1 norm
smaller than s but with the same value for the quadratic term. Indeed, suppose
that there is j, such that u+

j > u−j > 0 (the case u−j > u+
j > 0 can be handled

equivalently). Let ũ = ũ+ − ũ−, where ũ+
i = u+

i and ũ−i = u−i for i 6= j and
ũ+
j = u+

j − u−j and ũ−j = 0. Note that `(ũ+
j , ũ

−
j ) = ‖ũ+ − ũ−‖1 and that

ũ still satisfies all constraints from (A.1) and that it has the same value for
the quadratic term (this is clear by construction of the energy functional and
constraints after splitting the variables into positive and negative parts).

This however would imply, that in the optimization problem (A.1), when
we replace the constraint `(u+,u−) = s by the constraint ‖u+,u−‖1 = s, this
constraint would not be active, which contradicts our assumption, that s was
chosen smaller than the L1 norm of the solution of (A.1) without the constraint
`(u+,u−) = s.
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