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Figure 1: The retargeting process; an input image/video is adapted to different displaying devices.

Abstract

Retargeting is a process through which an image/a video is adapted from the display device for which it was meant
(target display) to another one (retarget display). The retarget display has different features from the target one such
as: dynamic range, discretization levels, color gamut, multi-view (3D), refresh rate, spatial resolution... This is a very
relevant and hot topic in graphics, given the increasing number of display devices, from large, high-contrast screens
to small cell phones with limited dynamic range; a lot of techniques are being published in different venues, and it’s
simply very hard to keep up.

For instance, one of the few cases for which retargeting can be potentially straightforward is when adapting images
from a larger display (in term of resolution) to a smaller one with the same aspect ratio: a low-pass filter followed by
downsampling can then achieve good quality results. However, for most cases retargeting can be an ill-posed problem,
such as when displaying Low Dynamic Range (LDR) or 8-bit content on High Dynamic Range (HDR) displays. Such
a problem requires the retargeting algorithm to generate new content which is missing in the input image/frame.

In this course, we will present the latest solutions and techniques for retargeting images along various dimensions such
as dynamic range, colors, temporal and spatial resolutions, and offer for the first time a much-needed holistic view of
the field. Moreover, we are going to show how to measure and analyze the changes applied to an image/video in terms
of quality using both (subjective) psychophysical experiments and (objective) computational metrics.

The course should be of interest to anyone involved in graphics in its broader sense, given the almost unavoidable
need to retarget results to different devices: from developer that are interested to implement retargeting techniques, to
users that just need an overall perspective, for researchers fully engaged in developing multi-dimensional retargeting
techniques, for whom this course will serve as a solid background for future algorithms.

*e-mail:frabante @ gmail.com



1 Course General Information

1.1 Course Organizer

Francesco Banterle

e-mail: frabante @ gmail.com or francesco.banterle @isti.cnr.it

Website: http//www.banterle.com/francesco

Address: Visual Computing Lab, ISTI-CNR, Via G. Moruzzin n.1, CAP 56124, Pisa, Italy
Telephone: +39 050 315 2921

Mobile phone: +39 338 1594 385

Fax: +39 050 315 2604

1.2 Lecturers

e Alessandro Artusi, CaSToRC Cyprus Institute, Cyprus

e Tunc¢ O. Aydin, Disney Research Zurich, Switzerland

e Francesco Banterle, Visual Computing Lab ISTI-CNR, Italy
e Piotr Didyk, MPI Informatik, Germany

e Elmar Eisemann, Télécom ParisTech / CNRS-LTCI, France
e Diego Gutierrez, Universidad de Zaragoza, Spain

e Rafal Mantiuk, University of Bangor, UK

e Karol Myszkowski, MPI Informatik, Germany

1.3 Course Syllabus

Dynamic Range and Color Retargeting (Tone Mapping) (80 minutes)

1. The ingredients of tone mapping: (15 minutes, presenter): Rafal Mantiuk

Intent of tone mapping

LDR and HDR pixel values

Display models

The logarithmic domain and sensitivity to light

Algebra of tone mapping
2. Major Approaches to Tone Mapping (30 minutes, presenter): Rafal Mantiuk
e [llumination and reflectance separation
e Forward visual model
e Forward and inverse visual model
e Constraint mapping problem
3. Visual Illusions for Tone-Mapping (10 minutes, presenter): Rafal Mantiuk
e Glare
e Cornsweet illusion / countershading
4. Color Issues in Tone Mapping (25 minutes, presenter): Alessandro Artusi
e Introduction to Color
e Color is an Issue
e Gamut Mapping
e Color Correction
Reverse/Inverse Tone Mapping (60 minutes), Lecturer: Francesco Banterle

1. Increasing the Dynamic Range Problem: the problem to adapt legacy LDR content to HDR and high contrast
displays (5 minutes)



2. Global Methods: dynamic range is increased applying a per pixel function (20 minutes)
e Linear Models
e Non-Linear Models

3. Local Methods: methods based on neighbors’ information for expanding the dynamic range (20 minutes)
e Frequency editing
e Expand Maps
e Selective methods

4. Evaluation and Conclusions (15 minutes)
e Subjective Studies
e Objective Studies

Image Spatial Resolution Retargeting (65 minutes) Lecturer: Diego Gutierrez

1. The Problem: definition of the context of main problem of image resizing (5 minutes)

2. Main Approaches:
e Discrete algorithms: working on a representation of an image as a set of pixels or a graph (15 minutes)
e Continuous algorithms: working on a representation of an image as a continuous signal (15 minutes)
e A note on video resizing: (5 minutes)

3. Comparison of existing techniques: analysis of 8 of the most popular and recent resizing algorithms:
e Subjective study: description and analysis of the results of a perceptual study (10 minutes)
e Objective study: description and analysis of the results using 6 different existing metrics (10 minutes)

4. Conclusions (5 minutes)

Temporal Image Retargeting (70 minutes) Lecturers: Karol Myszkowski and Elmar Eisemann
1. Motivation (5 minutes)

e Improvement of Perceived Quality: Reduction of Flickering, Hold-type Blur, and Judder Effect, as well as
Enhancement of Motion Continuity, Gamut, and Spatial Resolution

e Fixed Frame-rate Requirements
e High-refresh Rate Displays
2. Human Visual System (HVS) Background (15 minutes)
e Critical Flicker Frequency
e Spatio-temporal Contrast Sensitivity
e Temporal Integration in the Eye
e Eye Movement Characteristics
3. Hold-type Blur Reduction (15 minutes)

e Modern TV-sets: Backlight Flashing, Black Data Insertion, Blurred Frame Insertion, Frame Rate Doubling,
Motion Compensated Inverse Filtering, In-between Frame Derivation based on Optical Flow

e Rendering: Frame Warping and In-between Frame Insertion, Warping Artifacts Reduction, Interleaving
Sharpened and Blurred Frames (exploiting temporal integration)

e Discussion: Display Requirements (Temporal Response, Backlighting, Sync), Ghosting, Luminance Re-
duction, Flickering

4. Image Warping Techniques (15 minutes)
e Per-pixel Methods
e Mesh-based Methods
e Edge-preserving Methods
e Warping Artifact Reduction



5. Exploiting Temporal Integration for Image Enhancement (15 minutes)
e Gamut Extension (Frame Rate Control)
e Subimage Optimization
e Flickering Reduction
6. Conclusions (5 minutes)
Image and Video Quality Assessment (70 minutes) Lecturer: Tung O. Aydin
1. Introduction to quality assessment (10 minutes)
e Subjective quality assessment through psychophysical experimentation
e Objective quality assessment metrics
e Comparison of objective and subjective methods
2. Image and video quality assessment metrics
e Full-reference vs. no-reference quality assessment (5 minutes)
e Various approaches to defining quality (10 minutes)
— Visible Differences
— Structural Similarity
— Visual Equivalence
e Image quality assessment metrics (20 minutes)
— Grouping w.r.t. sophistication
— Grouping w.r.t. task performed.
e Video quality assessment metrics: what additional mechanisms are needed to handle video (10 minutes)
3. Calibration and validation experiments (10 minutes)
4. Conclusions (5 minutes)
Stereo Content Retargeting (60 minutes) Lecturers: Piotr Didyk
1. Motivation (5 minutes)
e Stereo and Realism
e 3D Display Devices
e Stereo Retargeting
2. Depth Perception Background (10 minutes)
e Depth Cues
e Stereopsis
e Visual Comfort
3. Stereo Content Adjustment (15 minutes)
e Scene Adjustment
e Disparity Mapping
e Misperception
4. Perception-based Stereo Retargeting (20 minutes)
e Disparity Model
e Global Disparity Operators
e Backward-compatible Stereo
e Personalized Stereo
5. Disparity Metric (5 minutes)

6. Conclusions (5 minutes)



1.4 Intended Audience

This course is aimed at an audience interested in using and developing image/video re-targeting techniques for modern
displays such as high dynamic range, high refresh rate, high resolution, mobile screens. Specifically display and mobile
developers are the main target of this course. Nevertheless, many of the topics, such as adapting media from phones
to tablets are becoming extremely important in many multimedia productions such as games, e-books, etc. Hence, we
expect to draw the attention of people from many fields and believe that graduate students and researchers are likely to
be interested in this course as well.

1.5 Prerequisites

For best results participants should have a basic understanding of the most commonly used video/image processing
techniques, such as filtering (e.g. spatial and temporal), basic video/image operations (e.g. histograms manipulation,
bilinear/nearest neighbors downsampling/upsampling), and very basic notions of high dynamic range imaging.

1.6 Level of Difficulty

Intermediate

2 Lecturers’ Biographies

Alessandro Artusi

CaSToRC Cyprus Institute, Cyprus

email: artusialessandro4 @googlemail.com

Dr. Alessandro Artusi is a Researcher at CaSToRC Cyprus Institute. He is working on High Dynamic Range Imaging,
Image Processing applied on Computer Graphics, Colour Science and Visual Perception. He received a MSc in
Computer Science from the University of Milan, Italy, in 1997 and a PhD in Computer Science (Computer Graphics)
with distinction, from the Vienna University of Technology (VUT), Austria, in 2004. Dr. Artusi has covered several
positions in several different academic institutions, and he also won an ERCIM European fellowship in the 2006.
Recently he won a Ramon Cajal fellowship. He is author and co-author of one granted patent and five patents
applications, and co-author of the book "Advanced High Dynamic Range Imaging Theory and Practice” edited by
AK Peters (CRC Press) 2011. In 2009 he co-founded goHDR Ltd a spin-off company of the University of Warwick. In
2010, Dr. Artusi received the 1st prize Award at the International Entrepreneurship Competition held in Cyprus for the
best business plan submitted on a research idea on High Dynamic Range Imaging. He is a member of the management
committee of the European COST Action IC1005 "HDRi: The digital capture, storage, transmission and display of
real-world lighting”. He has served as Program Chair at VAST 09.

Tung¢ O. Aydin

Disney Research Zurich, Switzerland

email: tunc@disneyresearch.com

Tung O. Aydin recently joined Disney Research Zurich as a Post-Doctoral Researcher. His main research interest lie
in modelling various aspects of the human visual system, and applying these models to computer graphics and vision
problems. He holds a PhD (summa cum laude) degree from the Computer Graphics Department of Max-Planck-Institut
fr Informatik (2010), an M.S. degree from the College of Computing of Georgia Institute of Technology (2005), and
a B.S degree from the Civil Engineering Department of Istanbul Technical University (2003). He also had a brief
industry experience as a C++ developer.

Francesco Banterle

Visual Computing Lab ISTI-CNR, Italy

email: francesco.banterle @isti.cnr.it

Francesco Banterle is a post-doc researcher at the Visual Computing Laboratory at ISTI-CNR Italy . He received a
Ph.D in Engineering from the International Digital Laboratory, WMG, University of Warwick in 2009. During his
PhD he developed a new branch of High Dynamic Range (HDR) Imaging called Inverse Tone Mapping which bridges
the gap between Low Dynamic Range Imaging and HDR Imaging. He holds a BSc (Magna cum Laude, 2004) and
a MSc (Magna cum Laude, 2006) in Computer Science about Rendering from Verona University, Italy. During his
doctorate he patented two patents as first author on the field of HDR Imaging. In 2009, he co-founded goHDR, a
start-up company, where he developed the core technology. Before joining the Visual Computing he worked as intern
at Arup Ltd , and for the University of Warwick where he developed new algorithms for HDR video cameras. He is
first co-author of the book ”Advanced High Dynamic Range” published by AK Peters in 2011 (CRC press). His main
research fields are High Dynamic Range Imaging, Image Processing, Rendering, and Parallel Processing (GPUs and
shared memory systems).

Piotr Didyk
MPI Informatik, Germany



email: pdidyk @mpi-inf.mpg.de

Piotr Didyk is a PhD student at MPI Informatik, Saarbriicken, Germany. Before joining the MPI, he received his M.Sc
degree in Computer Science from University of Wroctaw in Poland. In 2007, he was awarded with a fellowship award
from “Polish Talents” organization supported by the Polish Academy of Science. In 2011, he worked as a visiting
student at MIT. His work focuses on image quality enhancement as well as retargeting techniques in the context of
new display technologies. He has developed techniques, which by exploiting properties of the human visual system,
allow exceeding physical limitations of off-the-shelf displays. He has also contributed into the field of stereo-vision by
developing a perceptual model for disparity.

Elmar Eisemann

Télécom ParisTech / CNRS-LTCI, France

email: elmar.eisemann@telecom-paristech.fr

Before being an associate professor at Telecom ParisTech, Elmar Eisemann was a senior scientist in the Cluster of
Excellence (MMCI), Saarland University / MPI Informatik, Germany and head of the research group ECLEXIS until
December 2009. He studied Mathematics at the University of Cologne and Computer Science at the Ecole Normale
Superieure Paris (2001). He obtained Master (2004) and PhD. (2008) in Mathematics / Computer Science from
Grenoble Universities. He worked abroad at MIT (2003), UIUC (2006), Adobe / Seattle (2007), and Adobe / Boston
(2008). His interests include real-time rendering, shadow algorithms, global illumination, and GPU acceleration
techniques. Together with Karol Myszkowski, he was the local organizer of EGSR 2010.

Diego Gutierrez

Universidad de Zaragoza, Spain

email: diegog@unizar.es

Diego Gutierrez is an Associate Professor at the Universidad de Zaragoza, in Spain, where he received his PhD
in Computer Science. Hes published his research on physically based global illumination, perception and image
processing techniques in top journals and conferences (including SIGGRAPH and Eurographics). He’s currently
Papers Chair for Applied Perception in Graphics and Visualization (APGV 2011), and has held other relevant positions
such as Program Chair of SIGGRAPH Asia Sketches & Posters (2008), Papers Chair for ACM Graphite (2006), or
Conference Chair for APGV 2010. Hes served on many other Program Committees, including SIGGRAPH Asia (2009)
and Eurographics (2007, 2010, 2011). He’s also an Associate Editor of three journals (IEEE Computer Graphics &
Applications, ACM Transactions on Applied Perception and Computers & Graphics)

Rafallc Mantiuk

University of Bangor, UK

email: mantiuk@bangor.ac.uk

Rafal Mantiuk is a lecturer (assistant professor) at Bangor University (UK) and a member of a Reasearch Institute
of Visual Computing. Before comming to Bangor he received his PhD from the Max-Planck-Institute for Computer
Science (2006, Germany) and was a postdoctoral researcher at the University of British Columbia (Canada). Rafal
has published over 15 journal papers, including ACM SIGGRAPH/ACM Trans. on Graphics, Eurographics &
EGSR/Computer Graphics Forum and IEEE Trans. on Image Processing, applied for several patents and was recog-
nized by the Heinz Billing Award (2006). He is co-chair of the High Dynamic Range Area program at Eurographics
2011. Rafal Mantiuk investigates how the knowledge of the human visual system and perception can be incorporated
within computer graphics and imaging algorithms. His recent interests focus on designing imaging algorithms that
adapt to human visual performance and viewing conditions in order to deliver the best images given limited resources,
such as computation time or display contrast.

Karol Myszkowski

MPI Informatik, Germany

email: karol@mpi-inf.mpg.de

Karol Myszkowski is a tenured senior researcher at the MPI Informatik, Saarbrucken, Germany. From 1993 to 2000
he served as an Associate Professor in the Department of Computer Software at the University of Aizu, Japan. In the
period 19861992 he worked for Integra, Inc. a Japanbased company, developing rendering software for customers
such as Toshiba Lighting, Shiseido, Matsushita Electric, Kandenko, and others. He received his PhD. (1991) and
habilitation (2001) degrees in computer science from Warsaw University of Technology (Poland). His research
interests include perception issues in graphics, high-dynamic range imaging, global illumination and rendering. Karol
published and lectured on these topics widely including ACM Siggraph Courses in 2000, 2001, 2003, and 2006.
He also co-chaired the Eurographics Rendering Symposium in 2001, the ACM Symposium on Applied Perception in
Graphics and Visualization in 2008, and the Spring Conference on Computer Graphics 2008.
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I
Tone-mapping problem
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INg?

Tone Mappl

= HDR ?

= Or something

else ?
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Tone-mapping scenarios
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appearance
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Input and output
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Luminance

= Luminance — perceived brightness of light,
adjusted for the sensitivity of the visual system
to wavelengths

o0
Luminance L, = .[0 L(A)- V(A)dA
Light spectrum (radiance) Luminous efficiency function
(weighting)
x10"
350 400 4;0 5(;0 550 600 650 700 750 800 | 1 |
Wavelength [nm] 400 500 600 700




I
Do HDR Iimages contain luminance

values?

= Not exactly, because:

— a) the combination of camera red, green and blue
spectral sensitivity curves will not match the luminous
efficiency function

— b) the multi-exposure techniques do not capture
absolute luminance values, only relative (luminance
factor)

= But they contain a good-enough approximation
for most applications

— For multi-exposure camera capture the error in
luminance measurements is 10-15%




Sensitivity to luminance

= Weber-law — the just-noticeable
difference Is proportional to the
magnitude of a stimulus

The smallest

detectable Ernst Heinrich Weber
luminance g ! [From wikipedia]
difference . k

Background - |
(adap“ng) L Constant
luminance

L
Typical stimuli: AL .




Consequence of the Weber-law

= Smallest detectable difference in luminance

ﬁ [ L AL
i k 100 cd/m?2 1 cd/m?
L 1 cd/m? 0.01 cd/m?

= Adding or subtracting luminance will have

different visual impact depending on the
background luminance

= Unlike LDR luma values, HDR luminance values
are not perceptually uniform!
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e
How to make luminance (more)

perceptually uniform?

= Using Fechnerian integration

]
dR(L) =
T AL(L) .
Derivative of 4/\ 3
c
response Detection ?-)_
threshold @

Luminance L
0

1 o
transducer: R(L) — J AL_(Z) dl luminance - L
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e
Assuming the Weber law

AL
— =k
L

= and given the luminance transducer

R(L) = jOLALL(Z)dZ

= the response of the visual system to light is:

1 1
R(L) = | —dL= - In(L)+k
(L) ka kn()J”
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o
Fechner law

R(L) = aln(L)

= Practical insight from the Fechner
law:

— The easiest way to adopt image Gustav Fechner
. i i i [From Wikipedia]
processing algorithms to HDR images is
to convert luminance (radiance) values
to the logarithmic domain
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But...the Fechner law does not hold for

the full luminance range
= Because the Weber law does not hold either
= Threshold vs. intensity function:

W

AL

N

-
L

=

The Weber law
region

1
e
L

0

log, , detection threshold AL [cd/m?’]

L%

-2 0 2 4
Iogm background luminance [cd/m?]
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e
Weber-law revisited

= |f we allow detection threshold to vary with
luminance according to the t.v.i. function:

3

2
1}
0

1
7 g

log, , detection threshold AL [cd/m’]

_3 A
-4 2

- 0 2 4
log, , background luminance [cd/m?]

= Wwe can get more accurate estimate of the
‘response”: r 1

R(L) = ‘[OAL—(Z)C”
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I
Fechnerian integration and Steven's law

2000 , 1 , ,
Function de”\{ed : Hyphotetical luminance response | :
from the t.v.l. — — = Brightness function (L'
function : : : : ' '
1500
L
]
& 1000
o
7]
1]
o
500
=]
CT0AL
o

-5 -4 -3 -2 -1 0 1 2 3 4
Luminance [Iogm -::dfmz]
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e
Major approaches to tone-mapping

= [llumination & reflectance separation
= Forward visual model

= Forward & backward visual model

= Constraint mapping problem

17



e
Major approaches to tone-mapping

= |llumination & reflectance separation
= Forward visual model

= Forward & backward visual model

= Constraint mapping problem
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lllumination &
reflectance
separation

Input

= Different to intrinsic images in

CV where outgoing illumination MEREER R  WES,
is relevant. Reflectance

19



o
lllumination and reflectance

lllumination Reflectance
= Sun = 10° = White = 90%
= Lowest perceivable = Black = 3%
uminance = 10 = Dynamic range < 100:1
= Dynamic range can easily

exceed 3-4 log,, units in
a scene

= Visual system partially
discounts illumination

= Reflectance critical for
object & shape detection

20



Reflectance & lllumination TMO

= Distortions in reflectance are more apparent
than the distortions in illumination.

= Tone mapping could preserve reflectance but
compress lllumination

lllumination

Tone-mapped %Id — R T(D

iImage /L
Reflectance \ Tone-mapping

= for example: I, =R IV
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e
How to separate the two?

= (Incoming) illumination — slowly changing
— except very abrupt transitions on shadow boundaries

= Reflectance — low contrast and
high frequency variations
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.
Gaussian filter

= First order approximation

S g IS

= Blurs sharp boundaries
= Causes halos

Tone mapping £ &
result g
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Bilateral filter

= Still some blurring on the
edges

= Reflectance is not perfectly
separated from illumination
near edges

24



-
WLS filter

= Weighted-least-squares optimization

Make reconstructed image u Smooth out the image by making
possibly close to input g partial derivatives close to O

ZM2 + A (ﬁx:f?(g) (QZ)\T)((;TX)> -> min

Spatially varying smoothing — less
smoothing near the edges

= [Farbman et al., SIGGRAPH 2008]
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.
WLS filter

= Stronger smoothing and still distinct edges

e s ISR
e e ._*

8 = = S
£ S < e .

Tone mapping result

= Can produce stronger effects
with less artifacts
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e
Major approaches to tone-mapping

= [llumination & reflectance separation
= Forward visual model

= Forward & backward visual model

= Constraint mapping problem
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s
Forward visual model

= Mimic the processing in the human visual

SyStem Brightness,

Luminance, abstract response

radiance
Original . Displayed
S |:> Visual model |:> Ea—

= Assumption: what is displayed is brightness or
abstract response of the visual system
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e
Photoreceptor response

= Dynamic range reduction inspired by
photoreceptor physiology

— [Reinhard & Devlin ‘09]

Contrast parameter

‘;;" — I ) If T m = 0.093
i I - {’I{LJ. ) AT i} :’); \
' : 1 = 06 |
g[:.jrﬁ'_j = (f ‘T{J‘_\J 2 g ”j | m = 0.493
T o
an 0.3
* From gamma to 02 | e
sigmoidal response: " e

Input luminance
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Results: photoreceptor TMO

Our operator Bilateral filtering Trilateral filtering

Histogram adjustment Photographic tonemapping (local)

Logarithmic mapping ' Adaptive logarithmic mapping Ashikhmin’s operator




e
Photoreceptor models

= Naka-Rushton equation: R Y

1
0.9
0.8
0.7
0.6
05 °
0.4
0.3
0.2 -
0.1

Photoreceptor response R

R... Y'+o"

Experiment:

0 |
104 1073 0.01 0.1

| | | 1
1 10 100 1000 10* 105 106
Luminance Y [cd/m?]

time

= Response of the photoreceptor to a short flicker
of light - less applicable to viewing static images
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I
Sigmoidal tone-curves

= Very common in 2.0 Shoulder _ Dmax _
digital cameras _ 15 Straight-line
— Mimic the response E 1.0 R
of analog film - e
— Analog film has been " ..
engineered for many 25 -20 -15 -1.0 -05 00 05 1.0 15
years to produce log exposure (lux-seconds)

optimum tone-reproduction (given that he tone curve
must not change)

= Effectively the most commonly used tone-
mapping!
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I
Why sigmoidal tone-curves work

= Because they mimic photoreceptor response

— Unlikely, because photoreceptor response to steady
light is not sigmoidal
= Because they preserve contrast in mid-tones,
which usually contains skin color

— We are very sensitive to variation in skin color
= Because an image on average has Gaussian
distribution of log-luminance

— S-shape function is the result of histogram
equalization of an image with a Gaussian-shape
histogram
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Lightness perception

= Lightness perception in tone-reproduction for
high dynamic range images [Krawczyk et al. ‘05]

= Based on Gilchrist lightness perception theory

= Perceived lightness is anchored to several
frameworks

36



e
Gilchrist lightness perception theory

= Frameworks — areas of common
IHllumination

= Anchoring — the tendency of
— highest luminance
— largest area

to appear white
= Tone-mapping

— Rescale luminance in each
framework to its anchor
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Results — lightness perception TMO

L A L4 ) ¢ T L L4 T v L v L4 Al L T T
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Photographic Tone Reproduction Bilateral Filtering Presented Computational Model
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e
Major approaches to tone-mapping

= [llumination & reflectance separation
= Forward visual model

* Forward & backward visual model

= Constraint mapping problem
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s
Forward and inverse visual model

World viewing

conditions
Luminance, l abstract
radiance response
erglnal |:> Visual model %
image
| Editing
Luminance, (optional)
radiance
Displayed <:| Inverse visual ?
image model

T

Display viewing
conditions
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Multi-scale model

= Multi-scale model of
adaptation and spatial vision
and color appearance
— [Pattanaik et al. ‘98]

= Combines

— psychophysical threshold and
superthreshold visual models

— light & dark adaptation models
— Hunt’s color appearance model

= One of the most sophisticated
visual models

=t
=
)
o
=
ﬂ
=
=
oy
=

Display Mapping

|[2POW [ensIA 9SIBAU|
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Results — multiscale

a) daylight: 1000 cd/m”2

¢) moonlight: 0.04 cd/m”2

RU—-—

t=0s.. L=0.1 cd/m"2

‘ |
=75 s.. L=5623 ¢d/m”2

t=0s., L=1412 cd/m”"2

=0.1 cd/m”"2

=0.1 ¢cd/m"2

t=1 m40s., L=0.1 cd/m*2

t=3m 20s., L=0.1 cd/m"2




Forward and inverse visual model

= Advantages of F&l visual models
— Can render images for different viewing conditions
= Different state of chromatic or luminance adaptation

— Physically plausible
= output in the units of luminance or radiance

= Shortcomings F&l visual models

— Assume that a standard display can reproduce the
Impression of viewing much brighter or darker scenes

— Cannot ensure that the resulting image is within the
dynamic range of the display

= Not necessary meant to reduce the dynamic range
— Visual models are difficult to invert

43



e
Major approaches to tone-mapping

= [llumination & reflectance separation
= Forward visual model

= Forward & backward visual model

= Constraint mapping problem

44



Constraint mapping problem

= Goal: to restrict the range of values while
reducing inflicted damage

Input Qutput

45



Display adaptlve tone-mapping

~ Goal: Minimize the visual difference between
Ay the input and displayed images

input scene
l A 4
4 R f
: Visual
< argmnkE |—— .
metric
& J -
tone-mapping A
4 N\
| Display
model

46
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Apparent Contrast and Brightness
Enhancement

Karol Myszkowski
MPI Informatik




* Image display

* Limited dynamic range of existing display technology

* Cannot match to physical contrast and brightness of real world
scenes

* Physical match not really required for good reproduction of image
appearance

* Modern tone mapping operators good at optimizing
the physical contrast and luminance use

* Human preference
* Enhanced contrast and brightness improve image appearance ¢

* Can we still boost the contrast and brightness
impression?




* Spatial vision

* |mage appearance can be strongly affected by skillful
introduction of intensity gradients between neighboring
pixels

* Cornsweet illusion

* Apparent contrast boost

* Glare illusion _—
* Apparent brightness boost




restore missing
contrast

= i o A i ?:
¥ ek -
ot O Y -:ﬁ" L i

HDR image tone mapping result
(reference)

= Usual contrast enhancement techniques
— either enhance everything
— orrequire manual intervention
— change image appearance

= Tone mapping often gives numerically optimal solution
— no dynamic range left for enhancement

Krawczyk et al. EG2007




Measure
Lost Contrast
at Several
Feature Scales

\4

Enhance
Lost Contrast in

Reference HDR Image Tone Mapped Image Tone Mapped Image

communicate lost
Image contents

maintain image
appearance

Enhanced TM Image

)

Krawczyk et al. EG2007



Enhanced Image

= Create apparent contrast based on Cornsweet illusion
= Countershading

— gradual darkening / brightening towards a contrasting ed
— contrast appears with ‘economic’ use of dynamic range

Krawczyk et al. EG2007




ACTUAL SIGNAL WHAT YOU SEE

1. Contrast between areas caused by luminance profiles

2. Properties:

= shape of the profile matches the shape of the enhanced feature
= amplitude of the profile defines the perceived contrast
= noise (texture) does not cancel the illusion

= profiles should not be discernible
Krawczyk et al. EG2007




REFERENCE

SIGNAL oo Lo

(e.g. TM)

* low-pass filter

Profile from low-pass
filtered reference

= Size and amplitude
adjusted manually

= This is unsharp masking

N
%)
Krawczyk et al. EG2007 )

RESTORED REFERENCE



REFERENCE

SIGNAL (with texture)

(texture preserved)

‘Iow-pass filter

Well preserved signal is exaggerated by unsharp masking

Krawczyk et al. EG2007




= Profile constructed directly from the reference image contains high
frequency features which exaggerate texture

= Sub-band components allow to select features
— high frequency component present only at high contrast edge

Krawczyk et al. EG2007




Contrast ratios
at several scales

Measure
Lost Contrast
at Several
Feature Scales

o |Y —Y}nean‘

Ymean

Ci




1. Contrast ratio at each scale defines the sub-band amplitude (blue) s

2. Contrast for larger scales appears also on smaller scales '
= the full profile is always reconstructed (red)

3. Scale of contrast measure defines the profile size



N
ref ref
P=) (1-TR)x (log¥g; | —log¥ ;)

[=1  amplitude sub-band component
of profile of profile

Contrast ratio R, on scale | drives the amplitude of sub-band component gf
profile at size | -

Sum of N sub-band components gives the countershading profiles P tha
match the contrasts in the reference image o




s R T R

€

flnal contrast restoratlon progress of restoratlon

= QObjectionable visibility of countershading profiles



luminance level

= Luminance masking

— absolute luminance level L
defines minimum perceivable
luminance difference AL

— defined by t.v.i. functions

relative contrast sensitivity

0.2F
01F

0.6

04r

[Dooley and Greenfield, 1977]

& m e 6 @’ © O
m=0.70 )

0.045 0.1 0.3 1 3 5 10 22

cycles per degree of visual angle

contrast sensitivity sensitivity to Cornsweet profile

= Spatial contrast sensitivity

— reduced sensitivity to low
frequencies

— defined by CSF functions




= Contrast masking

— existing contrast masks new signals of similar orientation and
frequency

— defined by a power function of contrast present in an area
= Essential improvement

— previous models allow for rather small amplitudes of profiles




perceived contrast

0 0.1 0.2 0.3 0.4 0.5 -

edge contrast

= Measurements plot for the Cornsweet effect
— contrast at the profile edge (x) and the matching contrast at the step edge (y) ¢/

= Masking allows for stronger enhancement
= Maximum correction depends on profile size



without visual model with visual model



SRR

-

T IRl

-

_tone mapped image -

.countershading result.
(b) contrast equalization tone mapping

countershading profiles

countershading profiles
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' reference HDR image (clipped) countershading of tone mapping

- =

countershading profiles tone mapping
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i

reference HDR image (clipped) . countershading of tone mapping

countershading profiles




~adaptive countershading

| WNRE | opm
e

T TR
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Traditional countershading

— performed in the achromatic channel to
enhance perceived luminance contrast

Cross-modal approach

— Use depth signal to derive countershading
profile

— Countershading over chromatic channels
enhances the overall image contrast

Color2Grey:

— dimensionality reduction 3->1: may lead to
information loss

— countershading in the achromatic channel
used to reproduce lost chromatic contrast

'_"::T‘ —

Original CIEY G




Measure

Missing Contrast
—al 2 -

at Several
Feature Scales

\ 4

Enhance
Missing Contrast in

Reference Depth Map The Input Image Input Image

Rt}

Enhanced Image

Luft et al. SIG2008




depth information original image p

adaptive countershading




= “Strasbourg”: Gradient method tone mapping, strong global contrast
loss so strong restoration effect.

= Colourfulness contrast at border between sky and buildings
— promotes FG/BG separation
— creates impression of greater dynamic range

— increases impression of depth

Smith et al. EG2006




Smith et al. EG2006
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" |soluminant color pattern transformed to grey G
using Helmholz-Kohlraush effect, which takes into
account the contribution of chromatic component

into brightness

Original CIEY G

Smith et al. EG2008



CIELAB L*®
Fairchild L™
Mayatani VCC --------
Mayatani VAC
B0
75
70 ,
gl

Figure 1: Lightness values from various H-K effect predic-
tors applied to a spectrum of isoluminant colours, compared

to CIE L™,

Smith et al. EG2008
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= G’L* : The effect of adding multi-resolution countershading correction
h.(G, +) (upper-left) to the greyscale image G . (lower-left)

n—1
Gp. = Gre+ Y kikihi(Gr+)
=0

The correction is driven by
contrast in chroma channels

of the original image |
n— ~ (upper-left)

| , AE (hi(I))\?
t U hi(Gre)

Original | and G Basic Unsharp G

Smith et al. EG2008



Original Video Frame Gimp greyscale

N o - A . ' ;
Frame from our G Frame from our G' p=0.8 k={0.2,0.8,0,0

Smith et al. EG2008




@) s

Original GIMP greyscale

Gooch Color2Gray
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| 3D Comsweet Illusion
Purves-Lotto illusion: much stronger effect in 3D




S. Dali, Landscape with butterflies



G. Seurat, Bathers at Asnieres






>®—
4

: @ |

A
Lit 3D Smoothly Lit Contrast Enhanced
Surface 3D Surface Signal Image

™
U(S)=S +A(S-S.)

Ritschel et al. SIG2008




3D unsharp
masking

3D blurred
signal

Mesh

Original
image

Enhancement
signal



i ﬁ;:'% e
R
A D33 (4.0 JNDy

U(S)=S + A(S-S,)

Width O

A D69 (3.4 IND} A 71037 JND)

Y Wwbusas



Signal
Smoothing
Representation

Smoothness o
Strength A

2D

Image

(Gaussian) Image Blur
Pixels

Image distance
Factor

3D
Lit Surface
Laplacian Surface Blur
Lit vertices and pixels

Geodesic world distance
Factor




Culling

' d!
m’é} |
Occlusion @},

F

—c—

Ritschel et al. SIG2008




@) s

3D unsharp Original

masked rendering rendering
Ritschel et al. SIG2008




Original
image

3D unsharp
masking

3D blurred

signal

Enhancement

signal

Mesh

masking
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" Only geometric term
— Shadows ?
— Hightlights ?
— Reflectance ?

= Vertex resolution

= 3D unsharp masking:
Pixel resolution

Cignoni et al. '05, C & G Vol. 29




" Object enhancement Rusinkiewicz et al., SIGGRAPH‘06

— llluminate each vertex
at grazing angle

— Improves geometry
understanding

— Highlights?
— Shadows?

= Scene enhancement
— Change everything

= Both have applications







= Goals

— Find suitable settings

— See limitations

— Rank preference

" Method of adjustments
= Strength A: adjustable

* Fixed width 0: low, medium, high

= 4 scenes,15 participants

= Task: Find such A that:

1.Added enhancement is just noticeable

2.Added enhancement becomes objectionable

i N
3.Image appearance is preferred N

Ihrke et al. SPIE2009 7/
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T mad

just visible

Thigh

A(JND)

Taw Tned

— hbeast contrast

ohjectionable

N
Ihrke et al. SPIE2009 =/

L

b



- 2 JN D —®— (Chamfer Plane
—®— Dice
—&— Foet

— preferred

= 4 JND

— objectionable

—— Keys

A Just Noticable Difference (JND)

e T

Lower Threshold Best Contrast Upper Threshold

Ihrke et al. SPIE2009 2/



Better communicate image contents with a minimal

change to image appearance

= Application of Cornsweet illusion to image
enhancement
— Generalization of unsharp masking
— Automatic enhancement given the reference data:
= HDR image
= depth information
= shading in 3D scene

— Scene consistent 3D unsharp masking leads to even
stronger effects




* Glowing effect [Zavagno and Caputo 2001]
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“Alan Wake” © Remedy Entertainment
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e Simple approximation:
convolution with
Gaussian

* Already does a good
job in conveying
brightness
Yoshida et al. (2008)




e Kawase, Practical Implementation of High Dynamic
Range Rendering, Game Developer’s Conference 2004




Optics-based models for rendering glare illusion
— [Nakamae etal. 1990] —

— [Rokita 1993]

— [Ward Larson et al. 1997]

— [Kakimoto et al. 2004, 2005]

— [Van den Berg et al. 2005]

Photopic

pSF\>M _

() ==
(b} —

//

10 8 G 4 2 0 2
Visual Angle

|degrees

4 6 8 10
I

— [Spencer et al. ‘*-f'*‘:‘-'

Scotopic
PSF




Goal

— Measuring the brightness boosts caused by glare illusion

2 methods, 6 patterns for each

— G@Gaussian: blurring kernel
= Cheap approximation

— Spencer et al.: human eye's PSF (disability glare)
= QOptical correctness

10 subjects

— 20 minutes per person

Barco Coronis Color 3MP Diagnostic Luminance Display (ma

430 cd/m?) LB

Dimly illuminated room (60 lux)

N
Yoshida et al. APGV2008 =/




220 cd/m?

Method | (Gaussian) 150 cd/m?




Darker. Reference. Brighter.

Task: Adjust the target disk luminance as close as possible to that of the referén &
but slightly yet visibly darker/brighter.

Yoshida et al. APGV2008
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Matching Luminance [cdf’mE]

0 1000 2000 3000 4000 5000 6000
Luminance of Disks {Ld_ )

sk if)

'{%;v
Yoshida et al. APGV2008 7/



Matching Luminance [ﬂd!mE]

N M

400,

2 L
o N

N
N
¢ T T T

O

(@

M
T ¢ T

o
o

®

wlelalela] .

8000 10000 12000
Luminance of Disks (L

l:iisll::lI

LQ
Yoshida et al. APGV2008 =/



3 Increasing
il perceived
3 size!

Increase of Perceived Luminance [%]

1 Method | Method Il

—Method | (Gaussian) ] : Spencer et al
Method Il (Spencer et al.) || (Gau33|an) (Sp _ )

20:_ ....................
10:_ .......
| Causing
T l Mach-bands!
—10

= Measuring brightness boost of the glare illusion
— Increasing the perceived luminance by 20—-35 %
— Gaussian blurring is equally effective %

Stimuli

2

= Trade-offs for both Gaussian and human eye's PSF Y )

Yoshida et al. APGV2008 . ;



Realism
Colorful haloes around bright
lights by camera or eyes

Temporal glare
Changes over time (in eyes)

Motivation
Model of dynamic human eye
to simulate temporal glare

Study o
Can temporal glare boost7#g
even further boost '
brightness? S

Ritschel et al. EG2008 ,.J}"

[=
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Point
Spread
Function

Key to glare modeling
Describes, how
a pixel maps to
a pattern under
an aperture

g N

IIIl.
W

Ritschel et al. EG2008 .~/



Real world Simplification: Fresnel diffraction
A A

K 5
‘T
X

)

Aperture FFT
plane




2
K = 1/(Ad)?

w22
I79 (xp +Yp )

E(xp,yp) — ¢

Single-plane Multi-plane

Ritschel et al. EG2008 —/



2

K = 1/(Md)?

- 22
I79 (xp +Yp )

E(xp,yp) — ¢

Fraunhofer Fresnel

s
Ritschel et al. EG2008 -/



Lens nucleus

Vitreous Lens cortex
humor
Iris //, Q\\\
<, &
Agueous /4 & & \
humor ' | © Fibers
! @ i
Light ®::| &
' &
\e e ®
Cornea”™ ' ® /
\ @ _' Retina
Lens | @ ~/
Ciliary : '
muscles |

s
Ritschel et al. EG2008 -/






* Adaptation

* Can convert HDR image into pupil size

e Pupillary hippus:
Strong contrast between glare source and background

e Stronger for smaller pupils, i.e. bright conditions

Darker

Big pupil
—_—

-
|

Pupil radius (mm)

C——
o
(9]
|
=
3
(D
E‘
\J

Small pupil
—

Brighter

0.0
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Lens nucleus

Lens
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Vitreous
humor
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* Compute one wavelength - Get others for free!

* They are scaled copy of base wavelength, i.e. 575 nm
(approximation)

770 nm

S(Ai)F5750m (Xi)

A — 380nm+i770nm—380nm
;= _

n :

575n i
X; = X . 43
! ?\-i ' |




HDR image PSF Bright pixels

Billboard

: - il
COﬂVO|utI0n'fs_‘f.}_~5}\_.

Py
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Convolution Billboard




LeAe/

S e X Flinch

-~ “Vitreous’

.3\ IFFT Tone mapping

Fresnel
term




1. Two-alternative-forced-choice (bright, attractive, real)
10 subjects

2. Method of adjustment

4 subjects




Two-alternative-forced-choice (bright, attractive)
10 subjects

Method of adjustment: dynamic glare ~5% brighter

4 subjects

0% 100% 0% 100%

Bridge
Cave
Gem
Lucy

Berlin
Park
Street

Trees

Tunnel

Brightness Attractiveness







Glare illusion might boost apparent brightness up to 30%

Comprehensible model of light scattering in the eye
taking into account dynamic eye elements

Real-time rendering
Model might miss important parts

Model might contain unimportant parts
* No differential study

Other temporal low-level eye physics like
* Floaters
e Local adaptation (“After images”)

http://www.mpi-inf.mpg.de/resources/hdr/TemporalGlare/




* | would like to thank Grzegorz Krawczyk, Tobias
Ritschel, Kaleigh Smith, Akiko Yoshida, and Matthias

hrke for help in preparing slides.




Retargeting Color Content: Color
Issues In Tone Mapping

Alessandro Artusi
Cyprus Institute, CaSToRC, Cyprus
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Source Human Visual System
Light

Stimulus Object



I(A)  SPD of the light

X = [1(M)p(W)E(M)dN
P(k) Reflectance of the object 0

X, )7,2(7») CIE color matching functions Y =j'](}\)p(}\))7(}\)d}\
0
I yA) ’
1.5 T — Z(A)

400 500 600 700
A/nm
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Additive Subtractive

(b) E)



e Device dependent: the description of color information is related to

the characteristics of a particular device
B

e Set of primaries J
e Technology (0.0,1) Bl Cyan
Magen : te
. (0,1,0) Green
A R —— gy
),'GrayScala
(1,0,0) Red L
Yellow

R

e Device independent: the description of color information is
dependent from the characteristics of a particular device

e CIEXYZ, CIELab, CIELuv etc...



e MacAdam’s Ellipses

e contains all colors which are

indistinguishable to an human
observer from the color at the
center of the ellipse

the contour of the ellipse
represents the just noticeable
differences of chromaticity

X
x:
X+Y+7Z
_ Y
= X+Y+27Z

—520 nm
e 530 nm

CIE 1931 x, y chromaticity diagram

y - chromaticity coordinate

x - chromaticity coordinate




e Hue

- Perception e Saturation

b

006\6‘6 \ % _
| / e e Lightness
X ov
\ " . ?\&.\\ [ R \\/ s >
W

. e Hue The degree to which a stimulus can be described as
similar to or different from stimuli that are described as
red, green, blue, and yellow.

e Saturation is the colorfulness of an area judged in proportion to its brightne

e Lightness Human vision has a nonlinear perceptual response to

luminance: The perceptual response to luminance is called lightness.
1
% Y
% ¥ 9
L =116 —=z =16 0.008856 < — M
Y, ] Y 2

n G/



e Color Ratio (Schlick 1994) RGB, Color Input

RGRB RGB,, Color Output
RGRB o= in_ T t L,  Luminance Input
ou ou
L,-,,, L,. Luminance Output

A) Original B) Preserve color ratios

c=0.3 5=1

Mantiuk et al..“Color Correction for Tone Mapping”, Proceedings Eurographics 2009. /z}\



e Saturation Control (Thumblin and Turk 1999)

S .
[ RGRB. S Saturation Parameter
G ””\! L C Contrast Compression
\ Lin /

Under-saturated colors for S=C.

RGB =

out

A) Original

C) Per-channel tone curve

c=0.3s=0.3

s~
Mantiuk et al..“Color Correction for Tone Mapping”, Proceedings Eurographics 2009. /z}\
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Fd 150 Chroma
150 / 1157\ 30 ° :
a e 80 _ 360
45 .| »
,‘ 10 ', § 3
= - X
' 'l B T | 0 '5)40 3 s=1.6
. =
210 \, fs=1 / 330 050 e
Hue 240 ¥8=L8— 390 % 50 100 150
270 Chroma (C)
7
Mantiuk et al..“Color Correction for Tone Mapping”, Proceedings Eurographics 2009. = )




L* i Gamut’s Mismatch

Device

. Device
i Independent

Dependent




Device

C—>

X
Y
Z

%

f

-

oo BN AW

Minimisation
Process

r

-

X |[red , green,blue, |
Y ||red,green,blue,

Z ||red,green, blue,

L

3x3

Matrix

\

/

\

3x3 Primaries Matrix

Spectrophotometer

X
Y
Z

[[inR
linG

linB

redTRC™ [linR ]= [deviceR]
greenTRC™ [linG]= [deviceG]
blueTRC™' [linB ]= [deviceB
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Tone Mapping

HDR Image
Acquisition

. Device
i Independent

Device
Dependent

Displayingl




e Best Exposure Image

ICC Profile
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Goesele et al. “"Color Calibrated High Dynamic Range Imaging with ICC Profilgé%-



g’ ‘ﬂ
jjl‘

" Radiance HDR Radiance

Measurements
X & I R
Y <:| M3a)$ix <:| G
yA - J, B



e Device
e Set of colors reproducible by the device
e Image

e Set of colors that compose the image







Not HDR Content



e Gray axes alignment, mapping white to white and
black to black




e Gray axes alignment, mapping white to white and
black to black




e Unchanged the Hue shift, will keep the overall image
appearance




e Unchanged the Hue shift, will keep the overall image
appearance




e Limiting out of gamut colours

o Soft clipping can be afterwards adopted to eliminate these
extremes

e Increase Image saturation

e Destination gamut has reduced saturation

e Helps maintaining the original chroma differences of tt
iInput Image
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e Gamut Mapping that preserves metric hue angle

e No Hue shift after compression or clipping |

e CIELab is suffering of non linearity in blue regions, but also Z,((

in red regions
Braun and Fairchild. “Color Gamut Mapping in Hue-Linearized CIELab Color Spa’

14



e Clipping
It changes colours which are outside of the destination gamut,
mapping them on the boundaries of the destination gamut

e Horizontal (lines of constant lightness)

e Radial to a centre of Gravity

o Centre of lightness axis (Constant)

e Lightness corresponding to the Chroma Cusp (variable)
e Distance in CIELab

e To the colour boundary of the destination gamut that

has the smallest distance (HPMinAE Clipping)




© Radial to L*/2




| i Cusp Radial
Simultaneous G(MA
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Erase Local Image variation (Details)

Preserve Saturation




A\ A













e Compression
It makes changes to all the colors of the source gamut to be
accommodated into the destination gamut .
e Linear
e Sigmoid
e Knee-function
e Parametric
The behaviour change based on the shapes of the two gamut’s

(source and destination) at the hue angle, or it depends from u

parameters. (Clipping and Compression)




Hard Clipping

Knee-Function

I max O max



















e Optimization

Making use of Human Visual System Models minimize the perceived
differences between the input and output image.

e Multiscale
Re-inserts high-frequency information content in the gamut mapped
image (clipped).

e Clipping — loss of details

e General framework has been proposed that includes the
different cases




MutliScale

>
Bonnier et al. “Spatial and Color Adaptive “Gamut Mapping: A Mathem tical

Framework and Two New Algorithms.” ,//
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Automatic estimation of desaturation (s) factor in function of
contrast compression (c) (non-linear color correction).

14+ k)
. . S( C) - ( 7 l)i
C; 1+ kp ck2
Cout — L_ Lout k1=2.3892, k2=0.8552
in

s = f(c) determined based on results
of perceptual experiment

A) Original




luminance( C., ) = luminance( C, )

Cl k1=2.3892, k2=0.8552

Lin 1 S '+— 1 Lout

Cout —

B (1+k1) Ck2

Unchanged luminance value after color correction s(c) = 1+ ky cke
(luminance preserving solution)




e Works on high dynamic range imaging have mostly operated on
luminance (lightness) information

e some works start to appear proposing solution for color saturation,
acquisition of colorimetric correct high dynamic range color values, and
color appereance

e In Color Science a lot of works have been presented in the context
of colorimetric characterisation, color appearance and gamut
mapping on low dynamic range [0, 100]

e Some of these works have been extended or re-used for high dynamic
range applications

e Tone mapping can bee seen as an extension or a particular case of g
mapping (if we consider only the luminance information)

e Many gamut mapping works started to analyse the details preservati
color information

e
i

J}‘



e Works on high dynamic range imaging have mostly operated on
luminance (lightness) information

e some works start to appear proposing solution for color saturation,
acquisition of colorimetric correct high dynamic range color values, and
color appereance

e In Color Science a lot of works have been presented in the context
of colorimetric characterisation, color appearance and gamut
mapping on low dynamic range [0, 100]

e Some of these works have been extended or re-used for high dynamic
range applications

e Tone mapping can bee seen as an extension or a particular case of gaf
mapping (if we consider only the luminance information)

e Many gamut mapping works started to analyse the details preservati%ﬁﬁ)
color information /_? 1

76

Low Dynamic Range [0,100] j}},



Image IM2-Color (slide 2) Courtesy of Laszlo Neumann

Material from the paper “"Color Correction for Tone Mapping”

Courtesy of Rafal Mantiuk

Image Bottles (slides 12 and 15) Courtesy of Francesco

Banterle

Images (slides 30 and 41) Courtesy of Ela Slkudova
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Retargeting From LDR to HDR:
Reverse/lnverse Tone Mapping

Dr. Francesco Banterle
Visual Computing Lab, ISTI-CNR, Italy

francesco.banterle@isti.cnr.it
frabante@gmail.com




e An Overview on Reverse/Inverse Tone Mapping

e Expansion Methods:

e Global Methods
e Expand Map Methods
e Classification Methods
e User Based Methods
e Evaluation:
e Psychophysical Experiments
e Computational Metrics

e Conclusions
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e Why do we need RTM/ITM?

e We want to retarget LDR content into HDR monitors,
applications (i.e. Image Based Lighting), and editing!

e The general operator is typically defined as:

g(I): )):wxhXc% DthXC
1 O |

e Common steps of these operators:

e Linearization of the LDR image
e Noise and quantization reduction

e Luminance Expansion




e Why do we need RTM/ITM?

e We want to retarget LDR content into HDR monitors,
applications (i.e. Image Based Lighting), and editing!

e The general operator is typically defined as:
__ ImwXhXc wXhXc
g(l) o ))i — Do T
LDR

e Common steps of these operators:

e Linearization of the LDR image
e Noise and quantization reduction

e Luminance Expansion




e Why do we need RTM/ITM?

e We want to retarget LDR content into HDR monitors,
applications (i.e. Image Based Lighting), and editing!

e The general operator is typically defined as:
__ ImwXhXc wXhXc
g(l) o ))i — Do
LDR HDR

e Common steps of these operators:

e Linearization of the LDR image
e Noise and quantization reduction

e Luminance Expansion




e Landis [Landis02] proposed a simple function for generating HDR
images for VFX:

/ ( ) _ (1 — k)Ld( ) k W, max d(X) if Zd(X) > R:
wix) = x)+ kL [,
d< ) otherwise,

= ()

Original LDR EM Rendered with LDR EM Rendered ITMO EM

LDR Environment map is courtesy of H. Landis [Landis 02]
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Akyuz et al. [AFR*07] shown that “a simple linear scale can
provide an HDR experience” based on psychophysically
experiments:

Masia et al. [MAF*09] shown that for over-exposed images a non-
linear function (gamma) needs to be applied. This non-linearity
depends on exposedness of the image:

Lw(x) = La(x)”  ~=10.44k — 6.282

. lOg Ld, avg ~ log Ld, Min
lOg Ld) Max — log Ld, Min

k k> 0.65
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e Meylan et al. [MDDS06, MDS07] present a classification

approach:

e Expand highlights and specular surfaces (v>0)
e o is computed using robust thresholding

e Expansion using a two-scale model:

s1L4(x) if Lg(x) <w

Ly(x) = f(La(x)) =

( ) f( d( )) {81w+82(Ld(X)w) otherwise

81:£ S2 = L
w Ld, Max — W

e To avoid contouring low-pass filtering on expanded region
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e Didyk et al. [DMHS08] extended Meylan et al.'s method:

e Three classification areas: diffuse, reflections, and
lights

o Automatic Classifier (AC):

e SVM + Nearest Neighbor + Tracking = 3% error

e User interface for adjusting the AC errors

e Non-linear adaptive tone curve for expanding the range
based on the histogram of the region:

e Bilateral filtering layers separation (high and low
frequencies) for avoiding contouring
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e Masia et al. [MFSG10] proposed a novel approach based
on saliency:

e Range Expansion (RE): pice-wise linear expansion using
the zonal system by Adams (9 zones):

_ (exp(v sin(mzt)) — 1
exp(v) — 1)

33
) v=>525 z¢€l0,9]

e Labeling:

e salient objects and background discrimination using
different techniques:

e learning-based saliency detection (Liu et al.
[LSZ*07])

e saliency cuts (Fu et al.[FCLLOS8])
e Different Labels = Different RE functions
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e Banterle et al. [BLDC06,BLDBC07,BLDCO08,B09] presented
a general and real-time framework:

e Range Expansion: non-linear (inverting an TMO; other
functions)

o Expand Map: sampling+density estimation+cross bilateral
(avoiding contouring and compression artifacts)

Linear Interpolation

LDR Image Range Expansion Expand Map

Expansion Parameters
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o Rempel et al. [RTS*07] presented a similar work of

Banterle et al.:

e Range Expansion: linear

e Expand Map: thresholding+filtering+edge stopping

AT
-~ -~ ‘V‘-’»’a

——

Input LDR Image

Inverse Gamma-+
Noise Filtering

Smooth Brightness
Enhancement

» Combine

Output HDR Image

Edge Stopping
Function




e A variant of the algorithm was presented by Kovaleski and Oliveria
[KOO09] using the bilateral grid to improve the quality of the Expand
Map.



Wang et al. [WWZ*07] proposed the first user based
method with reconstruction of details:

e HDR frequencies using the bilateral filter: base
(low) and detail (high) layers

o Automatic Expansion (base layer): saturated
regions are fitted using 2D Gaussian lobes (elliptical)

e Reconstruction (detail layer):
e Automatic: texture synthesis

e User-based: Stamp tool (similar to the Healing too|,
of Photoshop 7)

e NOTE: other images can be used as source for the 4
missing details ) -



Input LDR Image

Bilateral Filtering

Luminance

Gaussian Lobes Fitting+
Brush Tools

Gradient Image

Automatic Texture
Synthesis+Brush Tools

Mexican Mug’s image is courtesy of Ahmet Oguz Akyuz
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e Need to evaluate different expansion methods
against a “ground truth”. Why?

e To understand weak features or drawbacks
e To understand important features

e rTMO/iTMO techniques do not generate exact
luminance values

e Evaluation:

e Perceptual Image Metrics: not exact comparison as in

the PSNR, RMSE, etc.

e Psychophysical Experiments




e HDR-VDP (current version 2.1) [MDMS04,MKRH11]:
determines the probability for each pixel of being

different:

e Banterle et al. [BLDCO06,BLDCB07,BLDCO08,B09] used it to
validate that their models were performing better than a
simple non-linear expansion, validate against other

methods, etc.

o DI-IQA [AMMSO08]: detects changes in details visibility,
gquantization artifacts. Validation of the quality in general:

e Masia et al. [MAF*09] and Kovaleski and Oliveria
[KO09] used it to prove that their methods introduc

less distortions during LDR expansion




IHDR-VDP| -

e

Lucy model is courtesy of the Stanford 3D Scanning Repository
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HDR-VDP

Lucy model is courtesy of the Stanford 3D Scanning Repository




Pairwise comparisons of HDR videos [DMHSO08]:

e validation of the method against LDR, and LDR2HDR

Pairwise comparisons of HDR images [BLD*09]:
comparisons for image visualization and IBL.:

e quantization artifacts need to be handle for better quality.
e IBL needs non-linear expansion.

Rating of HDR images and tone mapped expanded images
[MAF*09]:

e understanding preferences in very over-exposed area#
e understanding artifacts in expanded images.




e LDR Expansion for HDR applications:

e LDR expansion methods are needed to be used in HDR
applications (HDR visualization, Image Based Lighting, etc.)

e The size of over/under-exposed areas is a limitation when
recreating the content

e What's important?
e To have non-linearity or controllable expansion functions

e Avoid artifacts’ boosting: quantization and JPEG-like
compression

o Take care of over-exposed areas differently




Spatial Retargeting

Diego Gutierrez
Universidad de Zaragoza

(slides material also from Miki Rubinstein, Olga Sorkine,
Arik Shamir and Susana Castillo)







« Homogeneous sgueezing/stretching
e Cropping [DeCarlo and Santella 2002; Viola and Jones 2004...]
« Hybrid solution [modern TV sets]

original




Ariel Shamir Olga Sorkine

The Interdisciplinary Center, Herzliya New York Univeristy



[Avidar & Shamir 2007]




Scaling

[Avidar & Shamir 2007]




Scaling

[Avidar & Shamir 2007]



1. Define an energy function E(l) |:> 2. Use some operator(s)

(interest, importance, saliency...) to change the image |

[Avidar & Shamir 2007]



« Magnitude of gradients (simple)
« Saliency (e.qg. Itty’s method) - multires

[Shamir and Sorkine 2009]




*Histogram of Gradients
*Entropy

‘El

*Mean Shift & E;




*Histogram of Gradients
*Entropy

‘El

*Mean Shift & E;




*Histogram of Gradients

*Entropy
‘El
‘Mean Shift & E;

[Shamir and Sorkine 2009]



*Histogram of Gradients
*Entropy

‘El

*Mean Shift & E;




* Crop s.t. important (salient) parts remain

« Use domain-specific tools, such as face
detector, gaze estimation... [DeCarlo and

Santella 2002; Viola and Jones 2004]

AN
[Shamir and Sorkine ; ¢




« Cam combine with cropping techniques (done
on modern TV sets — center remains, peripheral
data Is scaled)

 Distorts content but Is perfectly temporally
coherent (video)

original
N7 ~

[Shamir and Sorkiﬁc{i (



Figure 2: A digital image as a 2D discrete grid of pixels. In this
case the cells contain 3 values of RGB color.

Figure 3: A digital image as a sampling of a continuous function.

[Shamir and Sorkiﬁc{,iS\' 9]
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* Given an image | of size (n x m), we want to produce an image
I* of size (n* x m*) which is a good representative of image |

 But what is a “good representative”? No definitions exist

* Goals of a retargeting algorithm:

— 1. The important content of | should be preserved in I*.
— 2. The important structure of |1 should be preserved in I*.
— 3. 1* should be artifact-free




Seam carving for content aware image resizing
SIGGRAPH 2007

S. Avidan and A. Shamir

Improved seam carving for video retargeting
SIGGRAPH 2008

M. Rubinstein, A. Shamir and S. Avidan

Seam carving for Media Retargeting

Trans. Of the ACM

S. Avidan and A. Shamir

Multi-Operator Media Retargeting
SIGGRAPH 2009

M. Rubinstein, A. Shamir and S. Avidan




Feature-aware textureing

EGSR 2006

R. Gal, O. Sorkine and D. Cohen-Or
Non-homogeneous content-drive video retargeting
ICCV 2007

L. Wolf, M Guttmann and D. Cohen-Or

Optimized scale-and-stretch for image resizing
SIGGRAPH ASIA 2008

Y. Wang, C. Tai, O. Sorkine and T. Lee

Shrinkability maps for content-aware video resizing
Pacific Graphics 2008

Y. Zhang, S. Hu and R. Martin










[Rubinstein, Avidan and Shamir 2007]



[Rubinstein, Avidan and Shamir 2007]



« Discrete and greedy — may break structures
» Can run out of good seams In one direction

e L g = (i o
direct SC indirect SC ﬁ 4 ,(‘
24N

[Rubinstein, Avidan and Shan;ivtf,:)
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* Allow important regions to uniformly scale
* Find optimal local scaling factors by global

optimization

« Result: preserve the shape of important regions,

distort non-important ones

importance map

s
[Wang, Tai, Sorkine and Lee':_; )



« Grid mesh, preserve the shape of the important
guads

L { ) I i T ‘_,i i +H

* Optimize the location of mesh vertices,
Interpolate image




« Grid mesh, preserve the shape of the important

auads
REENEL NP~ .
| [l | e
BEENFEeERE S
11 el [ quads with high importance:
ENEEaN w uniform scaling
| bl NAEPT] o
BEENEWILEE
BEEDE - AsEd

allowed non-uniform scaling

* Optimize the location of mesh vertices,
Interpolate image

[Wang, Tai, Sorkine and



* Naive... every frame by itself

AN

[Shamir and Sorkir;e

Ay '
=7/

L



« Camera movement
* Object movement
Seams should adapt and change through time!

=>» Global Solution (video cube)







& No clear evaluation methodology!
— Mostly visual comparison
— Small subset of previous techniques

Source
elation between the operator and the type of content?




 Benchmark and evaluation methodology for image retargeting

RetargetMe

http://people.csail. mit.edu/mrub/retargetme/

 Comprehensive perceptual study and analysis of image
retargeting




* What is the “correct” way to retarget this image?

[Rubinstein, Gutierrez, Sorkine and Sharﬁivrf:)\ 10]
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« The dataset and user study

« User response (subjective) analysis
— Is there consensus between viewers?
— When is one method better than another?
« Computational (objective) analysis
— Can an image distance measure predict retargeting quality?

b -
-
A

[Rubinstein, Gutierrez, Sorkine and Sharﬁir‘_’f_"f }\“310]



* Image Retargeting objectives:
1. Preserve the important content and structures
2. Limit artifacts

7.

[Rubinstein, Gutierrez, Sorkine and Sharﬁifj
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‘e Seam Carving [SC] Rubinstein et al. 2008] [ 5
+  Shift Map [SM] Pritch et al. 2009] 8
.* Multi-Operator [MULTIOP] Rubinstein et al. 2009] )[ ® |
o Warping [WARP] 'Wolf et al. 2007] 0| g 1
e Streaming Video [SV] Krahenbuhl et al. 2009] §
\* Scale-and-Stretch [SNS] [Wang et al. 2008] ) ﬁ <
e Cropping [CR] 'Manual] A ‘_;E.
e Scaling [SCL] Cubic interpolation] %
\ 4

K
[Rubinstein, Gutierrez, Sorkine and Shamir 2010]
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D % [+ http://people.csail.mit.edu/mrub/retargetme/userstudy/survey/comparison.htmi

mage Retargeting Survey

Hover the mouse over a thumbnail image to switch the retarget display to the corresponding result.
Cl]Ck on the result you l]ke best (Or the one you dir"'l/n lasct)  and click 'Navt +a cobhmit and continge,

Retarget

-




elp

7 C o % [} http://people.csail.mit.edu/mrub/retargetme/userstudy/survey/question.htmi - ™9~ retargetme

-} Image Retargeting Survey

This is the result you did not choose in the last comparison.
Please specify which of the following bothers you in this result. You may check multiple options.

= Lines or edges were

M Lins or eds®s were broken

. LINESS €dges welregnsiloried

. A ntant wiac o novad ar et off

M Pronsrlions in the image were changed

- 20N00U Illldgt‘ dl €add> Wi ucsu uyr:'u ol ren lUVed

M can't put my finger on it. The other result was simply more appealing
W other

broken

F100% & .

q

[

.. Proportions in the image were changed

—

brkine and Sham




« Each participant performs 12 comparisons over 5
Images

« 210 participants; 252 votes per image
— Halfamazonmechanical turk
— Half (25 cents per completed survey)

« Average time to complete: 20 minutes
“It was a very interesting survey. Very nice experience”

“i need your more survey so that i can help u a lot”

[Rubinstein, Gutierrez, Sorkine and Sharﬁi.r_f; }\“310]
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Similarity of votes = consensus on “good” retargeting

Coefficient of Agreement [Kendall 1940]

oot )

a; = # times method i chosen over method j

m = # participants

t = 8 (# retargeting operators)

1
u e [—5,1]

[Rubinstein, Gutierrez, Sorkine and Sharﬁi.r_f; }\“310]



lines/ | faces/ | Textur | foregroun | Geometri | Symmetr | Total
edges | people e d C y
objects Structure
S
u 0.073 | 0.166 | 0.070 0.146 0.084 0.132 0.095

 Low agreement in general

* Greater agreement on images containing faces/people,

evident foreground objects and symmetry.

[Rubinstein, Gutierrez, Sorkine and Shamlr
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lines/edges I

SV__MULTIOP CR);(SM__(SNS_scL) (WARP) SC)
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-

texture B [

SC)

MULTIOP (SV (CRI(SM) SNS) (WARP_ SCL

By —

foreground objects

Attribute CR (sV MULTIOFDISM (SNS (WARP NARP__SCL) SC)

geometric structures

symmetry

MULTIOP (SV) SCLl CR (SNS WARP SM

Aggregate

Total

SV_CR_MULTIOP)I(SM_[SNS) (SCL__ WARP sC)

1 2 3 I 4 5 6 7

Rank [Rubinstein, Gutierrez, Sorkine and Sha
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‘Sle

Attribute Reason
lines/edges Lines or edges were broken 40
lines/edges Lines or edges were distorted I
» faces/people People or faces were squeezed 35 Ota 1
faces/people People or faces were stretched
faces/people People or faces were deformed 30 1
texture Textures were distorted ]
foreground objects Foreground objects were squeezed 25 1
foreground objects Foreground objects were stretched
foreground objects Foreground objects were deformed 20 [ ] "
-oeomemc structures | Geometric structures were distorted |
symmetry Symmetry was violated i 15 1
Common Content was removed or cut-off 12
» Common Proportions in the image were changed 13 10 7
Common Smooth image areas were destroyed or removed 14
Common Can’t put my finger on it. 5 7
The other result was simply more appealing I
o = = 2 3 4 56 7 8 91011121314 15 16
70 g3 &0 —r—_——,—————————— 40 T
&0y CR 7 sob SM ] 35¢ SNS-
50F L 30r -
40
40k o 25F -
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ol ] 20l 15
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10F Hf I . 10r ) s} 4
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12 3 456 7 8 91011121314 15186 1 2 3 45 6 7 8 9 101112 13 14 15 16 123456?8910111213141516

Cropping Shift-maps Scale & Stretch. ,ﬁ}



(At least for our retargeted setup)

SUBJECTIVE:

Clear and consistent division in groups
CR, SV, MULTIOP: good!
SCL, SC, WARP: not so good

Greater agreement for faces/people and foreground objects:
Saliency at object level?




SUBSCRIBE
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* Similar setup, source image not shown

* New set of 210 participants
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1600
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1000 -
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1200
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. P
Carving Al

0 - g T d - 0 - : . .
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Streaming Cropping Multi- Shift- Scale & Scaling Nonhomo. Seam
Video operator maps  Stretch Warping
lines/ | faces/ | texture | foreground | geometric | symmetry | Aggregate || Rank
edges | people objects | structures product |-#/7
0.964 | 0.988 | 0.946 0.737 0.950 0.957 0.978 0.985 |







e Goal: can computational image distance measures predict
human retargeting preferences?

— Can be used to evaluate new operators

— Can be used to develop new operators — [Simakov et al. 2008],
[Rubinstein et al. 2009]




Retarget




« High level semantics:
— Bidirectional Similarity [BDS] - Simakov et al. 2008
— Bidirectional Warping [BDW] - Rubinstein et al. 2009
— SIFT Flow [SIFTflow] — Liu et al. 2008
— Earth Mover’s Distance [EMD] - Pele and Werman 2009

« Low level features
— Edge Histogram [EH] — Menjunath et al. 2001
— Color Layout [CL] — Kasutani and Yamada 2001

« See dataset website and supplemental material for
more detalils

[Rubinstein, Gutierrez, Sorkine and Sharﬁir:_f y‘\le]



« Define rate of agreement as the correlation between
rankings induced by the user responses, and the

60
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Metric lines/ faces/ texture Foreg.round geometric symmetry| total
edges people objects |structures

BDS 0.04 0.19 0.06 0.17 0.00 -0.01 0.08
BDW 0.03 0.05 -0.05 0.06 0.00 0.12 0.05
EH 0.04 -0.08 -0.06 -0.08 0.10 0.30 0.00
CL -0.02 -0.18 -0.07 -0.18 -0.01 0.21 -0.07
SIFTflow 0.10 0.25 0.12 0.22 0.08 0.07 0.14
EMD 0.22 0.26 0.11 0.23 0.24 0.50 0.25

* The results were spectacular(ly poor!)

« We tried something else:
— SIFT-flow [Liu et al. 2008]: SIFT
— Earth mover’s distance [Pele & Werman 2009]: EMD

e Somewhat better ©

[Rubinstein, Gutierrez, Sorkine and Sharnlivrf:

?9.10]



Metric Attribute Total
Lines/Edges Faces/People Texture Foreground Objects Geometric Structures Symmetry Mean std p-value
BDS (.04 0.190 0,060 0.167 -0,004 -0.012 (0.083 0.268 0.017
BDW (.031 0.048 -0.0438 0,060 0.004 0119 n.0d6 0.181 0,869
EH (0.043 -0.076 -0.060 -0.079 0.103 0.208 0.004 0.334 0.641
CL -0.023 -0. 181 -0.071 -0.183 -0,009 0.214 0068 | 0.301 0.384
RAND -0.046 -0.014 0.048 -0.032 0,040 0.143 -0.031 0.2584 0.693
SIFTflow 0.097 0.252 0119 0.21% 0085 0.071 (.145 0.262 0.031
EMD 0,220 0.262 0.107 0.226 0.237 0,500 0251 0.272 le-5
{a) Complete rank correlation (£ = oc)
Metric Attribute Total
Lines/Edges Faces/People Texture Foreground Objects Geometric Structures Symmetry Mean std p-value
BDS (0.062 0.280 0.134 0.249 -0.025 -0.247 0.108 0.532 0,005
BDW 0.213 0.141 0.123 0.115 0.212 0.439 0.200 0.395 0.002
EH -0.036 -0, 207 -0.331 -0.177 0.111 0.294 -0.071 0.593 0.013
CL -0.307 -0.336 -0.433 0519 -0.366 0.088 -0.320 | 0.543 le-6
SIFTflow (1.241 0.428 0.312 0.442 0.303 0.002 (.208 0.483 le-6
EMD 0.301 0416 0216 0.295 0.226 0.534 0.326 .49 le-6

(b) Rank correlation with respect to the three highest rank results (& = 3).

Table 6: Correlation of objective and subjective measures for the complete rank (top) and for the three highest ranked results (bottom). In
each column the mean T corrvelation coefficient is shown (—1 < 7 < 1), calculated over all images in the dataset with the corresponding

attribute. The last three columns show the mean score, standard deviation, and respective p-value over all image types. Highest score in each

column appears in bold.

[Rubinstein, Gutierrez, Sorkine and Sharﬁi.r_f_'
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SUBJECTIVE:
More recent algorithms do outperform their predecessors in
a (surprisingly) consistent way

Cropping is the simplest and one of the best:
loss of info OK
distortion NOT OK
bring it back!

Interestingly, scaling and seam carving do not do very well
on their own... but are two of the three in MULTIOP: '
combination of simple methods?







OBJECTIVE:
We are a long way from predicting human perception

Four similarity image metrics did not perform well at all

Two metrics not originally designed for that purpose did
somewhat better

Optimize retargeting wrt those?

Further research is (badly!) needed




We need video analysis and experiments!




ColSim(C°...C%) = wrSalSim(L*Y, L)+

ori? ori?

waSalSim(a’’., afs)) + wpSalSim(b*°, b))



Using Eye-Tracking to Assess
Different Image Retargeting Methods

BN L L W
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A
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[Castillo, Judd and Gutierrez 2011]



Saliency g®
Map 20%
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[Castillo, Judd and Gutierrez 2011]




~

 Seam Carving [SC] [Rubinstein et al. 2008]

* Shift Maps [SM] [Pritch et al. 2009]

\ 4
4 )
 Multi-Operator [MULTIOP] [Rubinstein et al. 2009]

* Streaming Video [SV] [Krahenbuhl et al. 2009]
\_ J

SV_|CR_|MULTIOPf (sM_|SNs) !(SCL_ WARP[| SC)

Aggreyate

2 3 I 51 6 7 8
| |
Rank [Rubinstein et al. SIGAsia 2010]

[Castillo, Judd and Gutierrez 2011] S




Screen resolution
1280x1024

Each image
shown for 5
seconds

R [bht;edit: Jason Dorfman CSAIL websité]
[Castillo, Judd and Gutierrez 2011]




Contextual guidance of eye movements and attention in real-world scenes: The role of
global features on object search [Torralba et al. 2006]

Fixations for 7 users
[Castillo, Judd and Gutierrez 2011]




Learning to predict where humans look [Judd et al. 2009]

Average fixation locations / continuous saliency map

[Castillo, Judd and Gutierrez 2011]




Learning to predict where humans look [Judd et al. 2009]

. _ -
Top 20% salient locations 7
[Castillo, Judd and Gutierrez 2011] %,



Body parts Cars Animals
[Judd et al. 2009]



Sallency Maps from eye- tracklng data

udd and Gutierrez 2011]







* Lots of methods in the past few years, in top-notch places
* Relatively small impact in industry

RetargetMe

http://people.csail. mit.edu/mrub/retargetme/
or Google: “retargetme”

* We need more (and better!) metrics
 Does video retargeting really work?




Eye-tracking data framework

The model of saliency from Judd et al. [2009] can be an useful tool in
a retargeting context when using an eye tracker is not feasible

Analysis of 4 retargeting operators with 6 image distance measures

— Using eye-tracking data can improve the predicting capabilities of these
measures

Alteration of the image semantics.

— Content removal alters Rols although the results can be aesthetically
pleasing

Attentional tension between Rols and artifacts

— Large artifacts can remain unnoticed when not in a Rol (At least for our 5
second task)

%‘(””
\x\
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Temporal Image Retargeting

Karol Myszkowski Elmar Eisemann

Max-Planck-Institut fir Informatik Telecom ParisTech / CNRS-LTCI ;-- |




Bigger & brighter

More resolution

Higher refresh rates




e Increased role of
peripheral vision

e Higher sensitivity
to flickering

e Lower acuity for
high eccentricity




e More pixels to render
e SHD = 2 x HD
e People move closer

e Higher angular and
pixel velocity

e More perceived blur
due to smooth pursuit
eye motion

e on
'lm"? M
)“4 4;) i ‘ -

Barco Coronis Fusion 6MP DL (I\/IDCC—6130)




e 120 Hz displays (3D stereo applications)
e LCD displays for gamers: Samsung, ... (~ $300)
e« DMD projectors: DepthQ , ... (> $2000)




Standard stereo Backward-compatible stereo



e More powerful, multi-core

e More than 50 fps not unusual

e For uncontrolled #fps judder effect
e Advanced per-pixel shaders costly

Super-resolution
[Yang et al. EGSR 2008]

Shader decomposition and caching
[Sitthi-Amorn et al.,Siggraph Asia 2008]




e More fps help in blur and flicker reduction

e Adding extra frames in time domain easy

e TV makers do this using relatively imprecise optical
flow computation (100Hz and 200Hz TV sets)

e In rendering motion flow simulation cheap and precise
e New opportunities in the design of sharpening filters

e Take into account perception, image content and
display characteristics for rendered frame
enhancement

e So far rendering & enhancement usually separate
steps

e Through super-resolution algorithms spatial resolution can
be extended

e Many people in graphics tried this



Normalized response

e Temporal integration of signal performed by HVS to improve

the signal to noise ratio

e Integration duration up to 120ms

e Temporal summation faster for low spatial frequencies

e Temporal frequency responses

e Band-pass: Fast visual channels

tuned to low spatial and high
temporal frequencies (transient
response) — motion detection

e Low-pass: Slow visual channels

1072 ' '
10° 10! 102
Temporal frequency [Hz]

Winkler, Video Quality Metrics, Wiley 2005

tuned to high spatial and low
temporal frequencies (sustained
response) — object identification




e Low sensitivity of HVS to temporal change of high spatial
frequencies and high sensitivity to low spatial frequencies

— high spatial frequencies can be sampled in temporal
domain more sparsely
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e Critical Flicker Frequency (CFF)

e Increases with display
brightness

e The Ferry-Porter law:
CFF =~ a-log(luminance) +b

e For bright adaptation conditions
and patterns of wide spatial
extent the highest flicker
sensitivity at the periphery

e Otherwise, the highest flicker
sensitivity at the fovea
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Fig. 11. Temporal Contrast Sensitivity Function (TSF) for various adapling

fields. Kelly's data from Hart Jr, W. M., The temporal responsivenass of

vision. In: Moses, A. A. and Hart, W. M. (ed} Adler’s Physiology of the eye,

Clinical Application. St. Louis: The C. V. Mcisby Company, 1987.
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Fusion frequency vs. temporal contrast & pattern spatial extent
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Enables to maintain the object of interest in the fovea
Blur due to object motion is eliminated
Eye tracking experiment [Laird et al. 2006]

e Almost perfect tracking for steady linear motion with
velocities of 0.625 - 7 deg/s

e Still possible up to 80 deg/s
SPEM initialization very fast

e Good tracking possible in 100ms after switching gaze
between objects moving in different directions

Other fixational eye movements during SPEM: tremors,
drifts, and microsaccades similar to static fixations

e Compensated by HVS contribute little to blur




Repeating the previous frame while the eye is smoothly
tracking moving object

Most noticeable for camera pans, scrolling text, and so on

8Hz difference between rendered and displayed frames the
most critical, i.e. 42 fps on 50 Hz display

3:2 pulldown judder: Converting 24Hz film material to 60Hz

@ Iﬁl 24 Hz Film frames




Sharp edges suffer blurring during motion
e Perceived blur increases with velocity
Blurred edges appear sharper [Westerink&Teunissen 1994 ]

e Apparent sharpening increases with velocity

Shortly shown blurred edge (7-40ms) appears sharper than
the same edge shown for a longer time

Higher contrast looks sharper

Adding noise to texture may increase apparent sharpness
[ Fairchild and Johnson 2000, 2005]




Sharpness ——»

Picture speed (pixelsfield) —m
10 15 20 25 30 35 40

i I | I I 1 1

4 pixels . ~
6 pixels
filter width

| | 1 | 1 —

10 15 20 25 30 35
Picture speed (deg/s) ——»

J. Westerink, K. Teunissen, Perceived sharpness in complex moving images, Displays 1994




Two main reasons:
e Slow-response of LC

e 16ms display responsible for only 30% of blur effect
e Now for 2ms displays mostly negligible

e Image is held while the eye is tracking moving object
(smooth pursuit eye motion SPEM), which causes blur in
the retina image

e Purely perceptual effect

e Can be modeled as a box function in temporal domain £




Combating slow response of LC

Normal Driving ,
Over-Drive Voltage
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Display and hold driving Impusive driving 3
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Black data insertion (BDI)
e Black frames interleaved with the original frames
e Mimics CRT behavior

Frame rate doubling (FRD)

e Additional frames are obtained by interpolating pairs of original
frames along their optical-flow trajectories

e Requires introducing latency of one keyframe, which is not a
problem in broadcasting applications, but is not suitable for gaming

e The final effect depends on optical flow accuracy
Blurred frame insertion (BFI)

e Cheap version of FRD

e Original frames are replicated and blurred

e Ghosting for dynamic objects due to lack of motion compensation




120Hz frame rate driving

Black data insertion driving
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Alternative:
Backlight flashing



Backlight flashing (BF)

Turning the backlight of an LCD panel on and off
LED response is very fast, so flashing 500 Hz and more is possible

Flashing on can be synchronized with steady states of LC (reduces
ghosting)

Motion compensated inverse filtering (MCIF)

Hybrid Methods

Filtering an input image, which aims at inverting hold-type blur

Effectively local 1D sharpening filtering, which is computed along the
optical flow trajectories

Cannot restore frequencies that are completely removed by hold-
type blur, but may magnify frequencies that are attenuated

Image saturation may cause problems

FRD + BF
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Frame warping up to 120Hz

40 Hz
rendering

— . ¥ 3\":-.
[Didyk et aIFﬁ}O]
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e Interleave blurred and sharp (with doubled high-pass
frequencies) frames

e Energy-wise (brightness) equivalent
e Blur filter size as a function of retinal velocity

e Hold effect reduced as high frequencies displayed
shorter and low frequencies do not matter for blur

® TR
V)
[Didyk et alr”ZﬁXO]



[Didyk et aI
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BDI BF BFI FRD MCIF Didyk et al.

LCD response required  High Moderate High High No High
Backlight response required  No High No No No No

Optical flow quality  No No No High Moderate High
Ghosting artifacts ~ Possible Possible Yes No No No
Flickering artifacts  Yes Yes No No No No
Luminance reduction ~ Yes Yes No No No No
Limitation of blur reduction  Flickering Flickering No No Freq. cut-off  No
Other possible artifacts  No No No Fast motion Oversaturation No
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Pair-wise comparison

" § different sequences
" True 40Hz, 120Hz, Our 120Hz
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5 scenes (mean quality score + SEM)
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Task:

Detect open Landolt shape
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32,1

Ours m60Hz m40 Hz

31,0

I

28,3

Score

15

W 120 Hz Ours W60Hz W40 Hz

14,9 14,1

I 10,4

Succeeded Landolt detections



Why limit to the full frames if the eye can integrate signal
@120Hz?

e Possible scenarios: update only 1 color channel, while the other
two motion compensated

e Does it pay off in terms of rendering costs?
e Local dimming behind fast moving and high contrast edges
e Reduces hold effect

e Flickering should not be a problem, but lost luminance
should be compensated

e For HDR displays we could also control individually
time/intensity of local LED backlight:

e Fast moving objects shorter, but brighter LED impulseg



e 3D rendering provides a lot of information, which is so
difficult to recover based on images only (TV)

e Precise motion flow, silhouette edges, textures,....

e This should enable more sophisticated enhancement
techniques integrated into rendering

e Perception + display device characteristics can be accounted
for at rendering stage

e Reducing hold effects




e We hope that the availability of 120 Hz displays can shift
accents in rendering

e More frames of much lower quality
e Relying on integration in the eye

e Interleaving such low quality frames at current
display frequencies cause flickering, which should
be much less visible at 120Hz

e Extra frames over 60 Hz not wasted anymore







e Speed up: distribute workload over several frames




e Incorporate calculations from previous frames

Increase in quality




e Today’s main cost is Shad i ng




e O(Observation: shading correlates with geometry

e World information behind pixel is for “free”

Depth (position)

Normals

Materials, Textures

Geometric motion flow




@ s

e Find correspondences and transfer shading!
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e Requires forward motion vectors

e Holes and gaps

e Difficult to implement with DX9/10

1
,33"\

cache (f .



e Reprojection operator (X, V', z") = n_,(p)

e Resolve occlusion: Test if z'= d._(X,Y")
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e Regular rendering loop (without using TC)

e Recompute every pixel with original pixel shader




e Reuse previous results using the RRC

e Reshade on demand

e Cache reuse path must be cheaper for acceleration

m

[Recompute




Numerical integral



Render a set of images with similar viewpoints

e Shade one

e Shade others via reprojection




3 time samples 6 time samples
60fps brute-force 30fps brute-force
60fps RRC 60fps RRC

30fps RRC 4/

< }
!
!



O Y.

circle of confusion
(COCQC)

pinhole lens model

depth of field
(DOF)




e View synthesis using image-based ray tracing




c SIGGR
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In this case: 24 Hz (1.7 M Tris)

"




4 aperture samples g9 aperture samples 20 aperture samples
45fps brute-force 20fps brute-force 8fps brute-force /7

45fps RRC 4,5fps RRC 20fps RRC 3



e Generate images from two nearby views

e Render the left eye normally

e Render right eye with reprojection

reproject

combine T




e So far: everything was static!

e Nothing moved... !

e How to deal with temporal changes?

e Can we exploit spatial coherence?
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e Exploit spatial coherence:

Smart filter




e O(Observation: shading correlates with geometry
e World information behind pixel is for “free”
e Depth (position) 3
e Normals
e Materials, Textures

e Geometric motion flow




Non-linear interpolation steered by geometry: Low-res. shading input

mage-space filter
(e.g. hat/ box)

]f(’&qj) * éi(Z%* 275 O-g)

w
o
o,
~
.
S

A i N .

Depth (2)




Reference:

Low-res. shading input




e Choose preferable method:

combine spatial upsampling
& temporal caching




t SIGGF

e The same low-res image gives

the same information...




e Cache different pixel positions to upsample over
time

- Refresh out-dated pixels (e.g. every k x k frames)

dn x 4n pixels

Regular sampling patter(: -:-'-'-'-:-'-:
n x n pixels H H .
H B H BTN
o N N
11 . . .
- = -
- .-.
B L
H ™
.... | #
. B |
- i l(]j t) . = . ........
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e temporal

Jittering -> more information for static over time

e Spatial

Bilateral Upsampling (low2high) -> responsiveness

Choose according to change 4x4 upsampled result
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e Beneficial to use
Spatial

& temporal upsampling

e Static frame convergence

e Robustness with respect

to changing lighting conditions




e OnlLive, OToy, Gaikai rely on video encoding

Naturally exploit coherence in video
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A Video
"| | Decoding

J J
J

-

CG applicatior} _Internet

\_ < )

( )

Full-frame Bandwidth:

[Rendering, 2-6Mbit per client

( )

Video
Encoding
\ J




CG applicatio

\_

%

( )
Full-frame
Rendering

\_ _J

( )

Video
Encoding
\_ _J

8L L

Cli

ents

Internet

Bandwidth:
2-6Mbit per client

\ 4

| | Video \‘

"| | Decoding —
Video . A
Decoding | @ X i




Server [Out of resources!] Clients

: Video
| | Decoding

; R Video o s
CG application _Internet " | Decoding | [
. , :
( )
ull-trame Bandwidth:
(2ehdenng) 2-6Mbit per client :
6 N . Video
Video | | Decoding
kEncodlngJ -

Design similar to
current commercial
solutions



e Rely on spatio-temporal upsampling strategies
e Less bandwidth

e Less server workload

e Specialized Encoding
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Server

[CG application]

Auxiliary Stream
Encoding

Video
Encoding

|

B0LL

Clients

\ 4

|

Video ]

Decoding

Auxiliary

Stream
Decoding

psamplin

Internet

Similar bandwidth:
2-6Mbit per client

!

Decoding

Video ]

Auxiliary

Stream
Decoding

psamplin

\ 4

|

Video
Decoding

|

Auxiliary

Stream

Decoding

psamplin

S




Pajak et al. solution + more

sl 2

.
A

-~

i e -




Very efficient

Easy to implement

Adapted to Graphics pipeline

Important for streaming architectures
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e Idea: Temporal coherence to enrich content

e Even beyond physical limits

e Examples:
e Color bit depth: Frame Rate Control
e Hold-type effect reduction: Temporal Upsampling

e Resolution: Apparent Resolution Enhancement




e Use eye latency to integrate color sequences

e Similar principle as DLP projectors

-> Flicker different colors and have eye average them

o




e Virtually augment the color palette

L

o'




e Fight mach banding artifacts

e Manually:

e Switch last color bit

o Useful for HDR imagery,

but very high refresh rates needed...




1990’s 2000's

Future

\ 4

High refresh rate No flickering

Brighter

more than 120Hz  Higher level of luminance Better contrast

Low brightness Low refresh rate - ~60Hz Low response time

Flicker for low rates Long response time High refresh rate

Exploit HVS to
Improve guality

Small response time

Higher refresh rate

Better colors, &%



Efficient
Perceptually-motivated
GPU interpolation

original frames
+ motion flow & depth
(40HZz)

Reduced blur
(120 Hz)




e High-frequency information

is spread across time at 120Hz

-> Idea: Increase high-frequency in first frame

hide artifacts in extrapolation via blur



Regular Grid Snapped Morphed

R
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CLFEEEEE o=

e Artifacts will be hidden by blur



e Adaptive Image-space Stereo View Synthesis [Didyk et al. VMV'10]

e More sophisticated (adaptive) warping
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e Temporal coherence of viewpoint

e Reuse nearby view from previous frame

e Only render one new view and rely on warping

Viewpoint at time t+1



o
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Very cheap alternative to complex methods

Maps very well to GPU

Executes in less than 4ms on a full-HD frame

e NVIDIA GT 460

Two applications, others exist

e Hold-type blur reduction and Stereo
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Many advantages:

Crispness

Quality
Task-performance

Low overall cost







e Upscaling, solved problem, ICs at all PC

e Does not add new frequencies
e Super-resolution goal: restore high frequencies

e De-interlacing: images show alias
e In graphics it is easy to get aliasing
e Typical sharpening algorithms used in TV sets
e Peaking
e Luminance Transient Improvement (LTI)

e Temporal domain can also be exploited




Peaking Luminance Transient
Improvement (LTI)

Luminance value Luminance value

Edgel centre

End value:

---= Original edge

- Original edge
Edge after peaking e’ =9

— FEdge after LTI

—————————— >
Position on screen

Fosition on screen

-‘-:-_-‘r‘----*
--‘-‘-r---‘-‘-*’




_ . LTI result is perfect on edges:
e Peaking similar to Original L1

unsharp masking

e In 3D rendering
enhancement of noise
signal is not a problem

e In 3D rendering we can
better detect object

silhouettes . | el

e LTI ~ velocity Peaking is perfect on texture:
Original Peaking
ABCDEFGHIJKL
UVWXYZ
stuvwxyz1234 -,w!‘ stuvwxyz1234

Ea¥EatEa¥Eat

M. Zhao, M. Bosma, G. de Haan, Making the best of legacy video on modern displays, 2006 Society for Informationpjgﬁ_'l’jay
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Photographs: > 10MPix

Panoramas: > 50MPix
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1px — > 9 receptors

~ 2-8 MPix
N

easily ~50 MPix







| === |owres
Increased apparent resolution



e Cone density in the fovea may reach 28" (arc seconds)

e Nyquist’s theorem: then 1D sine gratings of 60cycles/deg can
be resolved

e Low-pass filtering in the eye optics removes higher
frequencies causing aliasing

o Pixel size at a full-HD desktop display observed from 50cm
distance spans 1.5’ (arc minutes)

e In such observation conditions 1 pixel covers roughly 9 cones

e Estimation valid only for the central fovea region

e Visual hyperacuity enables to locate slightly shifted lines in
Vernier acuity task with precision higher than 5” (arc seconds),.#

e This more a localization task than a resolution task



e Target resolution threshold: the smallest angular size at which

subjects can discriminate

o Target localization threshold: the smallest difference in position
which subjects can discriminate (Vernier hyperacuity)

Angle of / Angle of /

displacement displacement

|

!

wl

&
@
!

?

http://webvision.med.utah.edu/book/part-viii-gabac-receptors/visual-acuity/




A-C fovea center - cones only

D rod-free region boundary,
the arrow shows rod

E cones-rods balanced

F rods outnumber cones




Pixel 1 Pixel 2

frame 1 frame 2 frame 3

Pixel 2




O — receptor




O — receptor

Pixel 1 Pixel 2

>
 ——

—

frame 1 frame 2 frame 3 temporal integration




@ — receptor

Receptor signal:

4 - segment

Z Wy I(p(?:)J ?,) p(t) - pixel in segment

— 0 I(z,1) - intensity of pixel x in segment’i

Wy - weights proportional to the length of the segment
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subimages N—
retina image
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compare each frame
to moving image
e downsample separately
hence, slightly different

information over time

preference

= App. Lanczos

100 %

50%I ll I |

Paint Cat Hair Car Text




= App. B Mitchell
100 % S

Res.
e Mitchell downsampling
50 %
e participants adjusted parameters
to match high resolution image
{J%._,_ e e ____}

Paiinft Cat Hair Car Text

preference




ABLCDEFGHIJELMNOPOARSTUWYEY'L

Size: 2 x 3 pixels

nim

ST UV

® Our W Lanczos downsampling
100 %
0,
> 80 % -
'S5 60%
@
S 40%
Q
20% -
0% - . -
ABCDEFGHI 'K LMNOTPQR
Applications:

scrolling text or maps on low resolution devices

stock tickers, news headlines

VWX Y Z




Apparent Resolution Enhancement for Animations

[Templin et al. SCCG 2011]
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Human perception is a crucial

component to high-quality imagery

Resolution & Colors

physical screen capabilities

Works for large range

of commonly used display devices




e Bigger,
better,
faster...

e More realism
e More details

e More effects

e Higher quality beyond physical limitations
e Only first steps in this direction

e More to come...
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Thank you very much
for your attention!

Karol Myszkowski Elmar Eisemann
karol@mpi-inf.mpg.de eisemann@telecom-paristech.fr
Acknowledgment:

Daniel Scherzer, Robert Herzog and Dawid Pajak



Image / Video Quality
Assessment

Tung O. Aydin

Disney Research, Zurich

<tunc@disneyresearch.com>




Rate
the

Quality
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Figures taken from [Ferwerda 2008]

Detection Discrimination Scaling

Refer to: [James Ferwerda, Psychophysics 101: How to Run
Perception Experiments in Computer Graphics, SIGGRAPH 2008].

+ Reliable - High cost




No Reference Reduced Reference

Refer to: [Wang & Bovik, Modern Image Quality Assessment, 2008].




Reference




* Mean Squared Error \;oe(y ) :iz(x_ VY.

(MSE) NE
2
* Peak Signal to Noise psNR(x,y)=10log L
Ratio (PSNR) ¥ MSE

e Structural Similarity Index Metric
(SSIM): More sophisticated, accounts for
luminance contrast and structural distortions

SSIM (%, y) = (4, ,)*¢(o,,0,) s(a,,0,)




Reference Random Noise Blur ~15% Decreased
Luminance |

Same MSE for all three
Images!




Low High

Difference Image
(Color coded)

Reference Compressed
(bmp, 616K) (Jpg, 48K)




Visible difference doesn’t always mean
lower quality!



e Experimental
Methods of Vision
Science

Right visual fielq

e Micro-electrode

| Temporal

e Radioactive
Marker

—— Nasal &

. Optic chiasm

e \ivisection

i
Pulvinar nucleus —

b
~,
o "
i
Lateral geniculate —
nucleus &
e

Superior colliculus =

e Psychophysical
Experimentation

Optic radiation —

Primary visual cortex



e Disability
Glare
(blooming)

Video Courtesy of Tobias Ritschel




0.9

0.8F

0.7

0.6F

0.5F

0.4

0.3F

0.2

0.1r

L, =0.001 cd/m?

L =0.1 cd/m?

a

L, =10 cd/m?

L, = 1000 cd/m?

10

15

20

25

30

e Model of Light
Scattering

e Point Spread
Function in spatial
domain

e Optical Transfer
Function in
Fourier Domain
[Deeley et al.
1991]




Adaptation Level: Adaptation Level:

104 cd/m?2 Time > 17 cd/m?2



Response [JND]

3000

2500

2000

1500 -

1000 -

500

0
0.0001

0.01 1 100 10000

Luminance [cd/m?]

1e+06

e Transfer function:
Maps Luminance to
Just Noticeable
Differences (JNDs)
in Luminance.
[Mantiuk et al. 2004,
Aydin et al. 2008]




Contrast

>
Spatial Frequency

CSF(spatial frequency, adaptation level, temporal freq.,
viewing dist, ...)




Sensitivity

e Steady-state CSF=:
Returns the Sensitivity
(1/Threshold
contrast), given the
adaptation luminance
and spatial frequency
[Daly 1993, Mantiuk
et al. 2011].




90°

60°

30°

-30°

-90°

-60°

cycles per pixel

0.25 0.5

Cortex Transform
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Loss of sensitivity to a signal in the presence of a )
“similar frequency” signal “nearby”. =)



[] Masked coefficient
[ Intra-channel neighborhood

[ Inter-channel neighborhood

e Example:
JPEG’s
pointwise
extended
masking:

sign(C")|C"

0.5

(1 + 2k [CE%2)

C’: Normalized Contrast




Visible Differences Predictor (VDP) [Daly 93, Mantiuk et al. 05, Mantiuk et al. 11],
Visual Discrimation Model (VDM) [Lubin 95]
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HDR Test

;ocal Gaussian Blgr

HDR Reference

LDR Test

LDR Reference |

s %}:\
,.)u



25% 50% 75% 95% 100%

Detection Probability

DRI-IQM

] Loss
B Amplification /7
B Reversal ’
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25% 50% 75% 95% 100%

Detection Probability




HDR-VDP DRI-IOM,
] Loss

25%  50%  75%  95%  100% B Amplification A

Detection Probability Bl Reversal




HDR-VDP

25% 50% 75% 95% 100% - Amp“fICatlon p 4, P

Detection Probability Bl Reversal




Reference Sharpening

75% 95% 100%



Reference Sharpening

[ Loss
Bl Amplification

Il Reversal






Loss of Visible Contrast

Reference i & Test (Clipping)




of Invisible
= Contrast




. of Visible Contrast

Reference " Local contrast
il reversal

A A




Tone Mapping Inverse Displa_y
Tone Mapping Analysis







e CSF: w,p,L,— S

e w: temporal
frequency,

e p: spatial frequency,
e [ _: adaptation level,
e S sensitivity.

—
i

Spatio-temporal CSF ?g/
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e CSF: w,p,L,— S

e w: temporal
frequency,

—
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e p: spatial frequency,

e [ _: adaptation level,

e S sensitivity.

Spatio-temporal CSF' ;%/
4



e CSF: w,p,L,— S

e w: temporal
frequency,

e p: spatial frequency,
e [_: adaptation level,
e S sensitivity.

Sensitivity




CSF(w,p,L,=L) CSF'(w,p,L, =100 cd/m?) f(o,L,)
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0.1¢p

Filter Response

025 05 1 25 5 10 25
Frequency [cy/sec]

Sustained and Transient
Temporal Channels [Winkler 2005]

_______________________

Spatial




0.1F

Filter Response

025 05 1 25 5 10 25
Frequency [cy/sec]

Sustained and Transient Signal Sustained Transien
Temporal Channels
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With temporal filtering No temporal filtering Predicted distortion
[Herzog et al. 2010] map
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25% 50% 75% 95%
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Medium Compression High Compression

I
25% 50% 75% 95%




e Modelfest
dataset at five
contrast levels
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Example [Aydin et al. 2010, Cadik et al. 2010]

Noise, HDR video compression, tone mapping
“2.5D videos”
LDR-LDR, HDR-HDR, HDR-LDR

September 14, 2011




Q SIGGRAI

(1) Show videos side-by-side (2) Subjects mark regions

on a HDR Display where they detect differences /?/

¥




( SIG(

Subj.
Response

DRI-VQM PDM HDRVDP DRI-IQM




e [Cadik et al. 2010] Data available at: http://www.mpi-
inf.mpg.de/resources/hdr/quality



e A number of established metrics are available as source
code or web service

e SSIM:

e HDRVDP :

e DRI-IQM and DRI-VQM:

e Researchers are starting using these metrics instead of
user studies.

e Future directions:

e Metrics for retargeted images [Liu et al. 2011]
e Better HVS models [Mantiuk et al. 2001]

e Smarter distortion measures.




Stereo content retargeting

Piotr Didyk

MPI Informatik




Images are no longer flat

* Improves realism
* Images are not longer flat
* Better layout separation

Reproduced view dependent effects

* Improves material perception



Anaglyph

S

Shutter glasses

Autostereoscopic

AVATAR




1838:
1890:
1900:
1915:
1922
1923:
1952:
90’s:
2003:

20009 -

different images for both eyes
patent on 3D movies

tripod for taking 3D pictures
exhibition of 3D images

3D movie

3D movie with stereo sound
3D movie in color

IMAX cinemas, TV series
feature film in 3D for IMAX

now: became very popular




# 3D productions

Short films
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Feature Films

Why didn’t it get popular?

1962 1970 1978 1986 1994 2002 2010

year
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Lack of interesting content

Expensive hardware
Impossible at home




# 3D productions

70

60

50

40

30

20

10

1922

Short films

Feature Films

Now

2002




Great content:

e Beautiful shots with complex depth
« Computer generated special effects

3D is coming to our homes:

 Equipment is getting less expensive
e 3Dgames/TV

New better 3D equipment:

e Shutter glasses
* Polarized glasses
* Autostereoscopic displays are getting better



Great content:

e Beautiful shots with complex depth
« Computer generated special effects

3D is coming to our homes:

 Equipment is getting less expensive
e 3Dgames/TV

New better 3D equipment:

e Shutter glasses
* Polarized glasses
* Autostereoscopic displays are getting better



» Different image for each eye




We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

o



We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation,

& &



We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation,




We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues: Vergence i
accommodation, vergence




We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:



We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:
occlusion,



We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:
occlusion, size,



We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:
occlusion, size, shadows...



Depth contrast

0.001 1

0.01-

A Personal Action
space space

Vista space

Occlusion

Relative size

Relative density

} ! g ! ! >

1.0 10 100 1000 10000
Depth [meters]

“Perceiving layout and knowing distances: The integration, relative potency,
and contextual use of different information about depth”
by Cutting and Vishton [1995]



We see depth due to depth cues.

Stereoscopic depth cues:
binocular disparity

Ocular depth cues: Challenge:
accommodation, vergence : : : |
Consistency is required!

Pictorial depth cues:
occlusion, size, shadows...



Present cues:

e Size
e Shadows
 Perspective




Present cues:

e Size
 Shadows
 Perspective
e Occlusion










Disparity & occlusion




We see depth due to depth cues.

Stereoscopic depth cues:

bi lar di it i
Inocular disparity j> Require 3D space

Ocular depth cues: We cheat our Human Visual System!
accommodation, vergence

Pictorial depth cues:
occlusion, size, shadows...

:> Reproducible on flat displays




Screen
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Object in right eye
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/ Object in left eye

Object perceived in 3D
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Comfort zone size depends on:

* Presented content
* Viewing condition

Simple scene

@ 0.3-0.5m 2—-20m

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Comfort zone size depends on:

* Presented content
* Viewing condition

Simple scene, user allowed to look away from screen

0.5-2m

@O

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Comfort zone size depends on:

* Presented content
* Viewing condition

Difficult scene

g
O

10-30cm b——— | F— 8-15cm

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Comfort zone size depends on:

* Presented content
* Viewing condition

Difficult scene, user allowed to look away from screen
11cm F— 6-15cm

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Comfort zone size depends on:

* Presented content
* Viewing condition
e Screen distance

Other factors:

 Distance between eyes
 Depth of field
e Temporal coherence

“The zone of comfort: Predicting visual discomfort with stereo displays” by Shibata et al. 2011

30

Viewing distance (m)
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Comfort zone

Viewing discomfort



Comfort zone

Viewing discomfort -Scene manipulation, ysia\ying comfort



Viewer/Display space

Leye . /
E /\’ 7

eye =

Q‘.!

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Camera/Scene space

Lcamera

A

Rcamera

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Camera/Scene space

e  The parameters can be the same
»  may cause discomfort

. Different parameters for capturing the scene

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001



Define the disparity limits

Calculate appropriate camera parameters
Adjustment in each frame

Compensation for viewer motion

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001
“Evaluating methods for controlling depth perception in stereoscopic cinematography” by Sun et al. 2009



General procedure:

1. Define viewing condition
2. Adjust cameras parameters
3. Capturing

Displaying on different device:

. Potential discomfort
. Recapturing ?




Left view Right view

Can we have pixel disparity / depth ?



Stereo image pair Pixel disparity map

Rendering > Usually available

Only image pair > Computer vision technique



Zero disparity
on the screen plane

Bigger disparities
in front and behind screen

\

Left + right view



Stereo image pair Pixel disparity map Modified pixel disparity

% Image-based rendering ﬁ

Adjusted stereo pair



| A Mapping function

Fny
g
%
2
a
5
Pixel disparity map s
° =
Input pixel disparity
Function: Other possibilities:
 Liner * Gradient domain
* Logarithmic * Local operators

 Content dependent

Modified pixel disparity

“Nonlinear Disparity Mapping for Stereoscopic 3D” by Lang et al. 2010
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40

20

(©)2010 Disney Enterprises

Input stereo image

-10 0 10

s(d)

Disparity importance

20

Saliency map
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-20

20 |
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-9

6 3 0 3 6 9
d

¢(d) =f s(x)dx

0

Disparity mapping function

“Nonlinear Disparity Mapping for Stereoscopic 3D” by Lang et al. 2010



10 pd

9 6 3 0 3 6 9

Output disparity
o

Input disparity

(©?2010 Disney Enterprises (©2010 Disney Enterprises

“Nonlinear Disparity Mapping for Stereoscopic 3D” by Lang et al. 2010






P P
@ captured object @ perceived object

/ right image
left image

Parameters are the same

“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993
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P
W
\
left image X)Q right image
S

P

@ captured object

Eyes position and interocular distance changed

se“so‘

“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993



Eye separation = 65 mm
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“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993
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Screen width = 300 mm

-
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-
NS

+ 200 mm

“Image Distortions in Stereoscopic Video Systems” by Woods et al

. 1993



Viewing distance=1m

o®

“Image Distortions in Stereoscopic Video Systems” by Woods et al. 1993



A

Head Roll: Closer Surface of Cube
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“Misperceptions in Stereoscopic Displays: A Vision Science Perspective” by Held et al. 2008






Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:
occlusion, size, shadows...

“A perceptual model for disparity” by Didyk et al. 2011



Stereoscopic depth cues:
binocular disparity

Ocular depth cues:
accommodation, vergence

Pictorial depth cues:
occlusion, size, shadows...

“A perceptual model for disparity” by Didyk et al. 2011



Depth difference

Depth




Is it noticeable?

How significant
is the difference?

Depth difference

Depth




Is it noticeable? O

How significant O O B \

is the difference? A
1‘

disparity = |a — B|



Is it noticeable? O

Depth difference

Depth




Depth




: é Just noticeable

Detection threshold
(1 JND)

Depth




For sinusoidal depth corrugation
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“Sensitivity to horizontal and vertical corrugations defined by binocular disparity.”

by Bradshaw et al. 1999



Is it noticeable?

How significant
is the difference?

Depth difference

Depth




Existing
depth difference

Depth ———




Just noticeable

Depth ?l- 7




| @ Just noticeable

4 depends on the previous
' amplitude

Depth 2'7- 7




Sensitivity to depth changes depends on:

= Spatial frequency of disparity corrugation

= Existing disparity (sinusoid amplitude)



Parameter space: Y o

1. Sample the space

3. Measure thresholds

» Experiment with adjustment task

>

Threshold

“A perceptual model for disparity” by Didyk et al. 2011



Thresholds measurement:

Two sinusoidal corrugations

Which has more depth? (left/right)

Amplitude adjustment (PEST with 2AFC)

12 participants — 300+ samples

“A perceptual model for disparity” by Didyk et al. 2011



3. Fit analytic function

Threshold
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The HVS response?
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A Disparity sensitivity
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Disparity sensitivity
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Transducers

v

Threshold
Response

" 30

Amplitude

Frequency

Disparity

“A transducer function for threshold and suprathreshold human vision” by Wilson 1980

“A perceptual framework for contrast processing of high dynamic range images” by Mantiuk et al. 2005



We show so far:

VvV Vv

HVS response
(disparity, frequency) :>




The reality is more complex:

= I I
| : ! . weak
-10px

3D scene with pixel disparity Map of HVS response




Problems:

= Pixel disparity [pixels] <> Disparity [arcmin]

= Sinusoidal patterns - Compleximages




disparity = |a — B]



, Screen distance  "-._
Interaxial |€ — — >

} Pixel disparity




(viewing conditions,pixel disparity) - vergence



> Disparity [arcmin]

Vergence [arcmin]



How do people deal with luminance?



:'> Perceptual space

(Perceived contrast)

Luminance



Lowpass filters Contrast decomposed
into frequency bands



tions

Perceptual opera

Lowpass filters



Works because:

Different frequencies are processed separately.

For disparity is similar.

Disparity is processed in independent channels.
“Seeing in depth” by Howard and Rogers 2002

LOWPAss TIIters Perceptual operations



Disparity / Luminance similarity:

Luminance — Vergence

Luminance contrast — Disparity

LOWPAss TIIters Perceptual operations



Vergence [arcmin]



T

Lowpass filters
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Lowpass filters Differences



Lowpass filters Differences

* We can process frequencies independently

* Vergence — Disparity
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“A perceptual model for disparity” by Didyk et al. 2011






For Luminance:

“A visual discrimination model for imaging system design and development”
by Lubin 1995

“A perceptual model for disparity” by Didyk et al. 2011
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“A perceptual model for disparity” by Didyk et al. 2011



Manipulations in perceptual space:

— The HVS is taken into account

//@T, 5

Input Disparity

— Efficient disparity reduction

1 11 “Nonlinear Disparity Mapping for Stereoscopic 3D”
— Important disparities preserved ¢ stereoscopic 307



Disparity manipulations
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“A perceptual model for disparity” by Didyk et al. 2011



Invertible

Disparity sensitivity

JND

Disparity

Perceptual space
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Disparity manipulations
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Standard technique In perceptual space

strong

weak

Perceived distortions Perceived distortions

» Important disparities preserved



Disparity perception depends on:

()
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Equipment



Vergence
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Original disparity

Vergence
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Adjusted disparity
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Perceptual space
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“A perceptual model for disparity” by Didyk et al. 2011



All users perceive the same regardless:

* Equipment
* Disparity sensitivity




Standard stereo



Standard 2D image



Backward-compatible stereo



* Similar perceived contrast



* Similar perceived contrast

* Luminance range reduced




* Similar perceived contrast

* Luminance range reduced

Cornsweet illusion works for depth:

“A Craik-O'Brien-Cornsweet illusion for visual depth ” by Anstis et al. 1997



Standard stereo Backward-compatible stereo

* 3D impression preserved
* No artifacts when special equipment is unavailable

“A perceptual model for disparity” by Didyk et al. 2011



Original
disparity

Backward-compatible
disparity

Standard stereo Backward'compatlble stereo

3D impression preserved
No artifacts when special equipment is unavailable

“A perceptual model for disparity” by Didyk et al. 2011



Stereo is a hot topic

Stereo perception is complex phenomenon
Stereo content should be adjusted according to:
* Viewing conditions, viewer, equipment
Different ways of stereo content adjustment exist:
 Camera adjustment
* Pixel disparity mapping operators
* Perceptual space

Predicting perceived distortions is important for 3D content preparation



