
PII: SOOlO-4485(97)00070-S

Computer-Aided Design. Vol. 30, No. 4, pp. 301-313, 1998
6 1999 Elsevier Science Ltd. All tights reserved

Printed in Great Britain
0010~4495/98/$19.00+0.00

Representation and
management of feature
information in a cellular model
Rafael Bidarrat, Klaas Jan de Kraker and Willem F. Bronsvoort*

Many limitations in current feature modelling systems are
inherited from the geometric representation they use for the
product model. Both a very rigid and a very extensive representa-
tion are unsuitable for feature applications, at least if no convenient
support is provided to manage the data. This paper describes a
cellular representation for feature models that contains all the
relevant information to effectively solve a variety of current
problems in feature modelling. Much benefit is gained from a
coherent integration between shapes of a feature model and cells in
the cellular model. Every feature shape has an explicit volumetric
representation in terms of cells. Specific subsets of its boundary are
also distinguished in terms of cell faces and edges. Feature
interactions are maintained in attributes of cells, cell faces and cell
edges. Methods for modifying and querying the cellular model are
presented, and their application is illustrated for feature validity
maintenance, feature interaction management, feature conversion
between multiple views, and feature visualization. 0 1998 Elsevier
Science Ltd. All rights reserved

Keywords: feature representation, cellular model, feature
validity maintenance, feature interactions, feature conversion,
feature visualization

1. INTRODUCTION

Features are representations of shape aspects of a physical
product that are mappable to a generic shape and are
functionally significant. Features can be used in several
product life cycle activities, e.g. design, manufacturing and
cost evaluation. Each activity has its own way of looking at
a product, i.e. its own view of it, and therefore each view
contains the features relevant to that specific activity.

The above considerations pose strong demands on the
geometric representation of features in feature models:

(1) availability of an explicit representation for the whole
boundary of volumetric features;

(2) ability to distinguish the specific roles of different sub-
sets of that boundary;

Faculty of Information Technology and Systems, Delft University of
Technology, Zuidplantsoen 4, NL-2628 BZ Delft, The Netherlands
*To whom correspondence should be addressed. E-mail: BronsvoortCCcs.

tudelft.nl

(3)

(4)

(5)

mapping of feature parameters onto entities of the
geometry;
recording of which features (possibly from different
views) each topological entity relates to; and
representation of interaction extents between overlap-
ping or attached features.

The main goal of this paper is to show how a cellular
representation of feature models can be effectively used
for a variety of feature applications. This representation is
shown to provide a significant contribution to solve several
current research problems in feature-based modelling, e.g.
validity maintenance, enhanced user assistance during
model edition, feature conversion between views, and fea-
ture visualization.

We describe the structure and functionality of the Cellu-
lar Model of the SPIFF? modelling system, a prototype mul-
tiple-view feature-based modeller developed at Delft
University of Technology. For an overview of the SPIFF
system see Bronsvoort et al. ‘.

This paper is organized as follows. Firstly, we survey
recent advances in geometric representations for feature
models. Secondly, we introduce the structure and function-
ality of the product model and the cellular model of SPIFF,
with emphasis on the data contained in the cellular repre-
sentation. The use of the Cellular Model classes interface is
then illustrated by means of query and modification opera-
tions. Subsequent sections show how this data can be used,
allowing for high-level information on feature semantics to
be derived, analysed and managed. In particular, issues on
feature validity maintenance, feature interaction detection,
feature conversion and feature visualization are dealt with,
emphasizing how their implementation strongly benefits
from the cellular representation.

2. PREVIOUS RESEARCH

Although it did not take long until it was recognized that
conventional boundary representations were not able to
meet the requirements described above, such representa-
tions were sufficient for primitive feature-based modelling
prototypes. In the meantime, alternative schemes better
capable of supporting the geometric representation of both

t Named after Spaceman Spiff, interplanetary explorer exfraordinaire

301

Characterization of successive extract fractions: R Bidarra et al.

features and part models were sought for. Eventually, the
need for more powerful and flexible feature model
manipulation and, in particular, for managing feature
interactions, led to the use of cellular representation
schemes, in which feature information can be recorded as
attributes of cell entities.

The first explicit proposal to use such a topological struc-
ture for the integrated representation of both features and the
part model was presented by Pratt 2, as a direct consequence
of choosing an explicit volumetric representation of fea-
tures, with all its advantages. Such representation consists
of sub-volumes lying either internal or external to the part
volume itself, thus yielding an irregular structure in the
representation of the part model. Although an extension
layer on top of the radial-edge data structure’ was suggested
for that purpose, so far there are no implementations known
that actually follow this approach.

indeed provide a rather convenient scheme for handling
some of the advanced research problems previously men-
tioned, in particular for recording feature interactions. One
limitation, however, that arises from its generality, is the
inability to attach different attributes to ‘each side’ of a 2-
cell (face); in this way, when such a cell forms an interior
boundary, it is hard to keep track of the ‘double’ role it
plays in bounding both neighbouring 3-cells.

Comes et al.” proposed a somewhat more elaborate
hybrid scheme, that recorded the model history while keep-
ing its evaluated representation. It is based on hierarchically
structuring all evolution stages of decomposition of sub-
volumes. Eventually the intensive use of mating relations
required between cells, together with the intended use of a
conventional boundary representation for them, made the
implementation of this proposal complex and inefficient.

Masuda7 introduced the so-called complex-based non-
manifold geometric models as a pragmatic alternative to
SGCs, arguing that the limitation for his cell complexes to
be always closed does not restrict in practice the flexibility
of geometric models for CAD applications. Boolean opera-
tions developed under this approach are based on cancel,
merge and extract operations specifically developed for the
data structure, reputedly with considerable improvement in
performance. This work focuses on representational issues
of cellular models and on their suitability for feature
models. For this purpose, original primitive shapes of fea-
tures are explicitly maintained in parallel with the merged
cellular model. However, the application of these shapes to
interaction management and to feature validity issues,
although promising, is not dealt with in the paper.

A different proposal suitable for feature model represen-
tation was done by Rossignac5: the Selective Geometric
Complex (SGC). This is a cellular scheme that permits the
representation of objects of mixed dimensionality, with an
internal decomposition structure. Conceptually, SGCs rely
on the connectivity between n-dimensional cells (or simply
n-cells), which is captured on an incidence graph indicating
‘is-a-boundary-of’ relations between cells of different
dimensions. The use of an attribute status in each cell is
proposed to distinguish which cells are contributing or not
to the actual point set of the part, thus also allowing for
models with open boundaries.

It can be concluded that a cautious balance should be
achieved between the complexity inherent to a given geo-
metric representation scheme, and the suitability for various
applications within the scope of feature modelling systems.
A cellular representation that contains exactly the data
required, without excessive generality, appears to be more
effective than other schemes, possibly with a potential
broader scope, but whose implementation and use might
cause development of feature applications more proble-
matic and difficult. Current research problems, such as
maintenance of feature validity and management of feature
interactions, show an intrinsic complexity that encourages
this pragmatic approach.

The above characteristics of SGCs made it an attractive
choice for representing potentially overlapping features. But
it was not until 1995 that its first implementation was devel-
oped, within the GNOMES geometric engine’. The main pur-
pose of this system is to support co-operative applications,
by providing a unified representation scheme for wireframe,
surface and solid models that could overcome the disparity
in requirements presented by various CAx systems used in
different product life cycle activities (e.g. finite element
analysis, manufacturability analysis, cost evaluation, etc.).
Although GNOMES is a partial implementation of SGCs, with
cells of dimensionality lower or equal to 3 only. it may

3. THE PRODUCT MODEL

In SPIFF. a product model consists of several views of a
product, each one with its own feature model. A feature
model contains a set of features instantiated from a feature
library specific to that particular view. The geometry of all
feature instances of a product is represented in a central
geometric model-the Cellular Model-that is shared by
all views and provides, thus, a common representation for
the product geometry, see Figure I.

Figure 1 The product model

302

Characterization of successive extract fractions: R Bidarra et a/.

baseBlock - ,.

step1

Figure 2 Example part with its feature shapes

Each feature is associated with one (or more) shape
class(es). A through hole, for example, is associated with
a cylinder shape. Shapes are parameterized, and their
parameter values may be either set by the user, or derived
automatically from those of other features already in the
model: for a through hole, for example, its depth-the
cylinder height-may be determined from a stock’s dimen-
sion parameter. A shape instance, with all its parameter
values set (dimensions, position and orientation), occupies
a particular region of space-the shape extent. Features also
assign to their shapes the nature attribute, specifying
whether this volumetric extent is additive, i.e. adding mate-
rial to the volume of the represented part, or subtractive, i.e.
removing material from it. Each shape contains a set of
shape elements, comprising functionally meaningful subsets
of its boundary: shape faces and shape edges. For example,
the cylinder shape has the following shape elements: the top,
bottom and side faces, and the top and bottom circular edges.
Figure 2 depicts the feature shapes of the example part that
will be used in the following sections.

Table 1 presents a group of methods that provide access
to the information just described, pertinent to shapes and
their elements.

Table 1 Basic access methods to entities in a feature model 5. OPERATIONS ON THE CELLULAR MODEL

Feature model (fm)

fm.shapes returns the set of all feature shapes of the feature
model

Shape (s)

snature
s.faces
sedges
s.view

Shape element (e)

returns the nature specified for shape s
returns the set of shape face elements of shape s
returns the set of shape edge elements of shape s
returns the view from which shape s originates

e.shape returns the shape to which the element e
(a shape face or a shape edge) belongs

4. THE CELLULAR MODEL

The Cellular Model represents a part as a connected set of
volumetric quasi-disjoint cells, in such a way that each one
either lies entirely inside a shape extent or entirely outside
it. Cells in the Cellular Model represent the point sets of all
shape extents of features from all views of the model. Each
shape extent is, thus, represented in the Cellular Model by a
connected subset of those cells.

Furthermore, this cellular decomposition of space is inter-
action-driven, i.e. for any two overlapping shapes, some of
their cells lie in both shape extents (and are called interuc-
tion cells), whereas the remaining ones lie in either of them.
As a consequence of this, two cells can never volumetrically
overlap. They may, however, be adjacent, in which case
there is an interior topological face of the Cellular Model
separating them. Such a face can be regarded as having two
‘sides’, designated as partner cell faces. Naturally, a topo-
logical face that lies on the boundary of the Cellular Model
has only one cell face (one ‘side’), that of the only cell it
bounds. In either case, a cell face always bounds one and
only one cell. Each shape element is represented by a con-
nected set of cell faces or cell edges (or simply cell ele-
ments), which account for the corresponding shape
boundary point set-the shape element extent.

It can be concluded that every feature shape has a direct,
explicit representation at the cellular level. Each cell in the
Cellular Model stores, in an owner list, which shapes it
belongs to (see Figure 3~); analogously, cell elements
store, in an owner list, which shape elements they belong
to (see Figure 3b). Because the SPIFF Cellular Model is
aimed at representing feature shapes from different views
of the product, each Cellular Model entity maintains one
such owner list for each view. Provided cells can have a
different nature for different views, the nature of a cell with
respect to a view is defined as the nature of the shape most
recently added to the cell’s owner list for that view. A cell’s
nature expresses whether its volume belongs to the repre-
sentation of the part in that view.

Table 2 presents a group of methods that provide access
to the data explicitly stored in the Cellular Model. This
information is basically of two kinds: topological, i.e.
related to structural adjacency of Cellular Model entities
(e.g. cells and cell faces), and attribute-based, referring to
the data attached to various entities (e.g. owner lists in cells).

The Cellular Model was implemented using the cellular
topology husk of the geometric modelling toolkit ACIS, as
well as its attribute mechanism to maintain and propagate
the owner lists in cells and cell elements.

In this section the basic functionality of the Cellular Model
presented so far is extended with operations that provide it
with modifying and querying capabilities.

5.1. Modification operators

The two basic operations that modify the Cellular Model are
the insertion and the removal of a feature shape. These
operations have a twofold effect on the Cellular Model: (i)
they change its topology, and (ii) they update owner lists of
Cellular Model entities accordingly. Both mechanisms are
described and illustrated.

303

Characterization of successive extract fractions: R Bidarra et al.

1 haseBlock

2 - baseBlock, step 1

3 - haseBlock. step2

3 - baseBlock, slot

5 - baseBlock, thruHole

6 baseBlock, thruHole

7 - baseBlock. thruHole. slot

a haseBlock.front

h - haseBlock.front, slottop

c - haseBlock.front

d haseBlock.hottom, slot.endl

e - haseBlock.hottom

f baseBlock.right, thmHole.endl

g - haseBlock.right

h baseBlock.top, slotend

i - slotbottom

j slotleft

k slotleft
I thruHole.side

m thruHole.side

Figure 3 (a) Cellular model with cell owner lists. (b) Some cell face owner Irsts

Table 2 Basic access methods to entities in the Cellular Model

Cellular Model (cm)

cm.cells
cm.cellFaces
cm.cellEdges

Cell (c)

returns the set of all cells of the cellular model
returns the set of all cell faces of the cellular model
returns the set of all cell edges of the cellular model

c.boundary
c.ownerlist(view)
c.nature(view)

Cell face (cf)

returns the set of cell faces that bound the volume of cell c
returns the list of shapes of specified view that own cell c
returns the nature of cell c in the apecitied view

cf.cell
cf.partner
cf.boundary
cf.ownerlist(view)

Cell edge (ce)

returns the cell bounded by cell face cl
returns the partner cell face of cf (if it exists)
returns the set of cell edges that bound cell face cf
returns the list of shape elements of shapes from specified view that own cell face cf

ce.ownerlist returns the list of shape elements of \hapea from specified view that own cell edge ce

304

Characterization of successive extract fractions: R Bidarra et a/.

Feature shape insertion
First, the Cellular Model uses the fully specified set of shape
parameter values to instantiate one single cell for the new
shape and to position it in space. The owner list of this cell
has just one element: the shape itself. Also, each cell
element has only one element in its owner list: the
corresponding shape element. The example in Figure 4
illustrates this stage for the insertion of a rectangular slot in
the model, showing the owner lists of the shape cell faces.

Second, a non-regular Boolean union is performed
between the Cellular Model and this cell. In this process,
all cells (C,) in the model are collected that somehow inter-
sect the shape cell (C,). Mutual cellular decomposition is
then carried out between C, (or any cell arising from its
decomposition) and each C,. This may occur in two ways:

(1)

(2)

the two cells intersect only over their boundaries, in
which case there are no new cells created; instead,
their overlapping cell elements are decomposed, yield-
ing cell elements that lie either in the intersection or
outside it; or
the two cells overlap volumetrically, in which case the
decomposition results in cells that lie either inside the
intersection or outside it. Mostly, a subset of the bound-
ary of these cells is also decomposed, yielding cell ele-
ments that lie either on the intersection or outside it (this
is not the case only when one of the cells lies entirely
inside the other).

Whenever two cells undergo this mutual decomposition,
the owner lists of all new entities are systematically updated
as follows:

(1)

(2)

(i) a new cell that lies in the intersection of C, and C,
merges their owner lists into its owner list; (ii) the
remaining cells resulting from the decomposition
receive as owner list that of the respective cell from
which they originate (either C, or C,);
analogously, (i) a new cell element lying on the bound-
ary intersection of C, and C, merges the owner lists of
the overlapping cell elements into its owner list; (ii) new

cell elements lying on the boundary of either C, or C,
receive as owner list that of the respective element from
which they originate; and lastly, (iii) any remaining cell
elements arising from the decomposition, for example
an edge arising from a face-face intersection, receive
an empty owner list.

The final situation of the Cellular Model after decompo-
sition and owner list updating is shown in Figure 3.

Feature shape removal
The operation of removal of a shape from the Cellular
Model is carried out in two steps. First, all references to the
shape or to its elements are removed from the owner lists of
all entities in the Cellular Model (cells and their cell
elements). This results in the occurrence of either (i)
adjacent entities with exactly the same owner lists or (ii)
cells with an empty owner list; these last cells are
immediately removed. The second phase is then performed
by merging and removing unnecessary entities according to
the

(1)

(2)

(3)

following scheme:

while two adjacent cells with the same owner lists can
be found, merge them, by removing all cell faces that
separate them
while two adjacent cell faces with the same owner lists
can be found, merge them, by removing all cell edges
that separate them
while two adjacent cell edges with he same owner lists
can be found, merge them into just one cell edge

It can easily be proved that when cellular condensation is
carried out in this way, the model attained in the final stage
has the minimal number of entities required for the repre-
sentation of all feature shapes of all views in the model.

5.2. Query operators

Operations in Table 2 provide the appropriate vocabulary on
top of which a second layer of operations has been devised.

a - slot.top

b - slotmdl

c - slotright

d - slot.end2

e - slot.bottom

f slot.left

Figure 4 Owner lists of slot cell faces at the insertion stage

305

Characterization of successive extract fractions: R Bidarra et al.

Table 3 Collector methods

Collector (c)

c.contains(element)
c.remove(element)
c.add(element)
c.union(collector)

Ordered list (I)

returns TRUE if given element belongs to collector c
removes given element from collector c
adds given element to collector c
adds all elements of given collector c (if not already there)

I.after(element ,. element ?) returns TRUE if element, occurs after element? in the ordered list 1
I.first returns the first element of the ordered list 1
I.last returns the last element of the ordered list I

Only those methods that are used directly in the application
problems discussed in this paper are presented. Therefore,
most geometric queries, and other methods used in
constraint solving aspects of SPIFF, are here omitted.
Most of the operations return a collector object; therefore
we use in their algorithms several methods commonly
provided by collector classes (sets, ordered lists, etc.), as
shown in Table 3. The operations in Table 4 give basic
functionality for selecting Cellular Model entities, possi-
bly based on some filter criteria, as well as for deriving
some of their useful properties or relations not explicitly
stored.

These operations can be used from the perspective of
feature model entities (shapes and shape elements), as
shown in Table 5. In this way, their geometric representa-
tion can be selectively accessed, allowing for higher-level
methods to assist in drawing conclusions about actual
feature semantics in the model, as will be shown in the
following sections.

Table 4 Examples of Cellular Model query methods

6. SEMANTIC CONSTRAINTS

Many of the current systems that are called feature
modelling systems are in essence only high-level geometric
modelling systems, because they provide only very little
assistance in maintaining the meaning, or validity, of
features during a modelling session. One approach to
maintain feature validity is by means of validation
constraints, which are part of each feature class specifica-
tion-the generic feature dejinition. Several types of
validation constraints are used in SPIFF; among them,
geometric and algebraic constraints, handled by dedicated
solvers, play an important role in determining each feature’s
geometry*. All validation constraints must be solved or
checked to verify whether a feature is valid, both at its
creation step and in subsequent modelling steps’.

An important aspect of feature validity is specified in
generic feature definitions by means of so-called semantic
constraints lo. Semantic constraints specify how each

Cell face (cf)

cf.onBoundary(view) returns TRUE if the cell face lies on the model boundary
for the specified view, and FALSE otherwise

if cf.cell.nature(view) = cf.partner.cell.nature(view)
return FALSE

else
return TRUE

cf.adjacent(cellFace) returns TRUE if cellFace iv adjacent to cell face ct. and
FALSE otherwise

for each cell edge ce, in cf.boundary
for each cell edge ce2 in cellFace.boundary

ifce, =ce2
return TRUE

return FALSE

Cell (c)

c.adjacent(cell) returns TRUE if cell is adjacent
to cell c, and FALSE otherwise

for each cell face cf in cboundary
if cf.partner.cell = cell

return TRUE
return FALSE

Cellular Model (cm)

cm.cell(nature, view) returns the set of cells with specified nature in the Cellular
Model for specified view

cm.bound ary(view) Returns the set of cell faces that make up the boundary of
the part for specified view

for each cell c in cmcells
if c.nature(view) = nature

cells.add(c)
return cells

For each cell c in cm.cells(additive, view)
for each cell face cf in c.boundary

if cf.onBoundary(view)
boundary.add(ctI

return boundary

306

s.extent(nature)

sboundary

s.boundary(nature)

Characterization of successive extract fractions: R Bidarra et a/.

Table 5 Example methods of feature model entities for accessing the cellular representation

Shape edge (se)

se.extent returns the set of cell edges that lie in the extent of se for each cell edge ce in cm.cellEdges
if ce.ownerlist(se.shape.view).contains(se)

extent.add(ce)
return extent

Shape face (so

sf.extent returns the set of cell faces that lie in the extent of sf for each cell face cf in cm.cellFaces
if cf.ownerlist(sf.shape.view).contains(sf)

extent.add(cf)
return extent

Shape (s)

s.extent returns the set of all cells that lie in the shape extent of s for each cell c in cm.cells
if c.ownerlist(s.view).contains(s)

extent.add(c)
return extent

returns the set of cells with specified nature that lie in
the shape extent of s

for each cell c in sextent
if c. nature(s.view) = nature

extent.add(c)
return extent

returns the set of cell faces that lie in the extent of
shape face elements of s

for each shape face sf in s.faces
for each cell face cf in sf. extent

boundary.add(cf)
return boundary

returns the set of cell faces that lie in the extent of
shape elements of s, according to whether they lie also
on the model boundary

for each cell face cf in s.boundary
if cf. onBoundary(s.view) xor

nature = subtractive
boundary.add(cf)

return boundary

s.wire returns the set of cell edges that lie in the extent of
shape edge elements of s

for each shape edge se in s.edges
for each cell edge ce in se.extent

wire.add(ce)
return wire

feature instance is allowed to deviate from its canonical
behaviour. This can be stated in terms of the feature shape
and its elements. A semantic constraint on a shape specifies
that no other shapes (with a specified nature) are allowed to
overlap with its extent. A semantic constraint on a shape
element specifies the extent to which it should belong to the
model boundary or not. An example is that for a cylindrical
blind hole, its circular bottom face should be completely on
the boundary of the modelled object, its side face should be
at least partly on the boundary, whereas its circular top face
should not be on the boundary. In SPIFF this can be achieved
by including in a blind hole class specification the following
semantic constraint declarations:

semanticBottom: OnBoundary(completely);
semanticside: OnBoundary(partly);
semanticTop: NotOnBoundary(completely);

It should be remarked that this kind of feature validity
specification has an important role in preserving the func-
tional and technological meaning of features: in the blind
hole example, the full presence of the bottom face on the
boundary assures its ‘non-through’ functional character,
whereas the absence of the top face on the boundary is a
necessary (although not sufficient) clearance condition from
the manufacturability point of view.

The maintenance of semantic constraints relies on the
capabilities presented above for querying the Cellular
Model in order to retrieve a shape (or shape element) extent,

and to assess topological properties of those cells (or cell
elements). Table 6 shows several methods that are used in
SPIFF as Boolean checkers for some semantic constraints.
They are automatically applied, after any model modifica-
tion operation, to all shapes on which semantic constraints
were specified. In addition, their result is used to provide the
user of SPIFF with more appropriate explanations and/or
hints whenever some semantic constraint violation needs
to be overcome.

7. FEATURE INTERACTION DETECTION

Feature interactions may have a very wide range of
consequences and effects on a feature model. While these
may often be intended, it is also true that most feature
validity violations are caused, in one way or another, by
feature interactions. Indeed, these may affect the semantics
of a feature, ranging from slight changes in actual parameter
values to the complete suppression of its contribution to the
model shape. It is, thus, important for any feature-based
modelling system to be able to detect such situations, so that
they can be properly classified, reported to the user and
overcome. For a formal definition of feature interactions and
a taxonomy, see Bidarra and Bronsvoort”.

The detection of most types of feature interactions relies
mainly on analysis of the topology of features in the model;

307

Characterization of successive extract fractions: R Bidarra et al.

Table 6 Methods for checking semantic constraints

Shape (s)

s.noOverlap(nature) returns TRUE if no other shape, with specified nature.
inserted in the model after s overlaps with it. and
FALSE otherwise

for each cell c in sextent
list +- c.ownerlist(s.view)

for each shape s, in list
if list.after(s,,s) and s,.nature = nature

return FALSE
return TRUE

Shape face (sf)

sf.onBoundary(mode) returns TRUE if the extent of shape face sf is
(completley or partly, according to specified mode)
on the model boundary, and FALSE otherwise

if mode = completely
for each cell face cf in sf. extent

if not cf.onBoundary(sf.shape.view)
return FALSE

return TRUE
else //mode = partly

for each cell face cf in sf.extent
if cf.onBoundary(sf.shape.view)

return TRUE
return FALSE

sf.notOnBoundary(mode) returns TRUE if the extent of shape face sf ts
(completely or partly. according to specified mode)
not on the model boundary. and FALSE otherwise

tf mode = completely
for each cell face cf in sf.extent

if cf.onBoundary(sf.shape.view)
return FALSE

return true
else //mode = partly

for each cell face cf in sf.extent
if not cf.onBoundary(sf.shape.view)

return TRUE
return FALSE

a few interaction classes require, in addition, some geo-
metric queries. In both cases, however, it is essential that
at the representation level of the feature model, sufficient
information is stored and retrieved in an efficient way. The
Cellular Model provides this functionality. Several methods
were developed on top of it that identify each interaction
situation independently of the complexity or the number of
features involved. This identification also receives valuable
hints from a detailed analysis of the outcome of semantic
constraints checking, for instance in the case of feature type
changes (transmutation interactions).

The first necessary condition for the occurrence of an
interaction between two features is that their shapes have
a non-empty intersection, which may take place either
volumetrically or between their boundaries. For some
cases, an intersection is also required between a subset of
their shape boundaries (with only ‘onBoundary cell faces’,

Table 7 Methods used for retrieving feature shapes in interaction

i.e. s.boundary(additive), in Table 5). These two methods,
shown in Table 7, are used in SPIFF in a first phase, in order
to delimit the scope of the set of features for the global
interaction mechanism, whenever a feature shape is added
to or removed from the model.

In a second phase, identification of possible classes of
interaction taking place among features within this set is
carried out. See Bidarra et a1.9 for an extensive description
of interaction detection algorithms. Two examples of Boo-
lean detectors are presented in Table 8. The first one per-
forms the detection of disconnection interactions, which
cause a part to have its volume split into several discon-
nected regions (see Figure 5a for an example). The
second one identifies absorption interactions on a shape,
characterized by the complete suppression of the
contribution of a feature to the global model shape (see
Figure 5b for an example).

Shape (s)

s.overlappingSet returns the set of shapes overlapping with shape \
(either volumetrically or between their boundaries
cell faces and edges)

for each cell c in scells
overlappingSet.union(c.ownerlist(s.view))

for each cell face cf in sboundary
overlappingSet.union(cf.ownerlist(s.view))

for each cell edge ce in s.wire
overlappingSet.union(ce.ownerlist(s.view))

overlappingSet.remove(s)
return overlappingset

s.adjacentBoundaries(s ,) returns TRUE if the “additive boundary” of shape
s intersects that of shape s ,, and FALSE otherwise

for each cell face cf, in s , .boundaty(additive)
for each cell face cf in s.boundary(additive)

if cf.adjacent(cf t)
return TRUE

return FALSE

308

Characterization of successive extract fractions: R Bidarra et a/.

Table 8 Example methods for feature interaction detection

Cellular Model (cm)

cm.disconnection(view) returns TRUE if the set of all additive cells of the
Cellular Mode1 is not connected (i.e. at least one cell
is not accessible from the others), and FALSE otherwise

cells + cm.cells(additive. view)
c, + cells.first
for each cell c2 in cells

if not cells.accessible(c ,, cl)*.
return TRUE

return FALSE

Shape (s)

s.absorption returns TRUE if the shape s has undergone an absorption
interaction, and FALSE otherwise

for each cell c in sextent
if c.ownerlistIs.view).last = 2

return FALSE
return TRUE

*The accessible (el, ez) method applied on a set of entities returns TRUE iff:

(a) the two specified elements, e I and e 2, verify either e, = e2 ore,. adjacent (ez); or

(b) there is a third element e; in the set such that el.adjacent(e3) and set. accessible ie3,e2)

and FALSE otherwise

8. FEATURE CONVERSION

For maintaining multiple views of a product, feature
conversion is used. Two forms of feature conversion can
be distinguished”. The first is the derivation of a feature

(a)

(b)

model for a new view given the product model already
specified by one or more other views, which is called
opening a view. The second form is propagating feature
parameter changes from one view to the other views. Here,
bnly opening a iiew is discussed.

De Kraker et uZ.‘~-‘~ describe a generic method for

Figure 5 Examples of feature interactions: (a) disconnection interaction; (b) absorption interaction

Characterization of successive extract fractions: R Bidarra et al.

Table 9 Methods of Cellular Model for feature conversion

Cell (c)

c.consistent(view ,.view :) returns TRUE if the cell nature with respect to
the given views is equal. and FALSE otherwise

if c.nature(view ,) = c.nature(viewJ
return TRUE

else
return FALSE

Cellular model (cm)

cm.consistent(view ,. view?) returns TRUE if the nature of each cell ia equal with
respect to the given views. and FALSE otherwise

if c.nature(view ,) = c.nature(view?)
if not c.consistent(view ,,view?)

return FALSE
return TRUE

cm.inconsistentCella (view ,,view:) returns the set of mconktent cells with respect
to the given views

for each cell c m cm.cells
if not c.consistent (view ,, view?)

inconsistentCells.add(c)
return inconsistentCells

opening a view incrementally. In this method, instances of a
feature class are recognized in the Cellular Model using
geometric reasoning.

For recognizing an instance, geometric reasoning proce-
dures span a search tree using topologic characteristics of
the feature class, in which generic feature faces are matched
with Cellular Model faces. This matching is performed effi-
ciently by using geometric tests, such as parallelism and
perpendicularity, on normals of planar cell faces. The leaves
in the search tree generate candidate feature instances that
satisfy all geometric feature validity conditions. From these
candidates, the largest feature that also satisfies all other
feature validity conditions is selected as the recognized
instance. In this way, valid feature instances are recognized.

The functionality of the Cellular Model that is used. is
based on the notion of cell consistent!. A cell is called
consistent if its nature is the same with respect to the
views considered. Similarly, views are called consistent if
they represent the same geometry, i.e. if all cells are con-
sistent. See Table 9 for some methods to query the Cellular
Model on consistency.

Such consistency is illustrated with an example. Figure 6
depicts the volume owner lists for two consistent views.
Additive and subtractive cells are depicted in light grey
and white, respectively. If a hole is inserted into view I,
the two views become inconsistent because the hole cell
becomes inconsistent, see Figure 7a. It is subtractive with

I: <ribl> I: <>

II: <stock> II: <stock, slot>

I: <rib27

II: <stock>

\
I: <base>

II: <stock>

Figure 6 Examples of multiple view owner lists

respect to view I, because the last owner in its list is a hole
that is subtractive. Yet, it is additive with respect to view II,
because the last owner in its list is a stock that is additive.
This inconsistency can be resolved by, for example, insert-
ing a similar hole in view II, see Figure 7b.

View consistency is checked by traversing all cells and
checking their consistency. For feature recognition, firstly
inconsistent cells, including their faces, are obtained.
Furthermore, the normals of faces are calculated, which
are defined only for cell faces that are on the boundary

I: <rib1 >

II: <stock>

I: <z

II: <stock, slot>

I: <rib2r

II: <stock>

I: <base, holel> I: <base>
I 3 1 II: <stock> II: <stock>

I: <rib1 > I: <> I: <rib27

II: <stock> II: <stock, slot> II: <stock>

I: <base, holel> I: <base>
(b) II: <stock, hole2> II: <stock>

Figure 7 View consistency: (a) inconsistent views; (b) consistent views

310

Characterization of successive extract fractions: R Bidarra et al.

Figure 8 Distribution of holes

with respect to a view, and they point away from the addi-
tive cell they bound.

9. FEATURE VISUALIZATION

In most feature-based modelling systems, only the resulting
geometry of a feature model is visualized, although features
that incorporate functional product information are also
important. This functional information can also be
visualized to provide better insight in the feature model16.
In SPIFF, a feature can be activated or deactivated for
visualization. Activated features are visualized in a way

13)

different from the rest of the model. They can be visualized
with a different display method, for example with shaded
faces, whereas the rest of the model is visualized with lines,
or with a different colour.

The following figures show examples of feature
visualization, with different types of engineering informa-
tion. In Figure 8, all holes are activated for visualization,
showing their distribution. This could, for example, be used
to evaluate manufacturability. Figure 9 demonstrates
removal of so-called occluded lines. To get a better image
of an activated feature, here the green coloured step, the
hidden lines of the rest of the model that are behind the
visualized feature, which are called occluded lines, are
removed in Figure 9b. In Figure 10, besides boundary fea-
ture elements, also non-boundary elements are visualized,
showing the volume that is removed by the feature. Further-
more, the relation of parts of one feature can be shown, e.g.
that the two hole parts actually belong to one hole. Lastly,
Figure 11 visualizes feature interactions by displaying the
intersection region of the two slots in a different colour.

It may be clear that a conventional boundary representa-
tion does not provide the information required for generat-
ing the images depicted in Figures 8-11. In a boundary
representation, topology entities of features may be split,
missing, or merged with other entities. Furthermore, a
boundary representation does not contain any feature
information. The Cellular Model does provide this informa-
tion in owner lists, and can therefore be used for feature
visualization.

As the geometric model for visualization, a subset of the
cells in the Cellular Model is used. This set consists of all
additive cells, and all subtractive cells that belong to acti-
vated features. It contains exactly the information necessary
for visualization: subtractive cells that would obstruct visi-
bility are not there, but it does contain all required topolo-
gical elements, with the required feature identification
information in attached owner lists.

To generate an image, visualization parameters and the
subset of cells in the Cellular Model are used. Examples of
visualization parameters are the set of activated features and

b)

Figure 9 Occluded lines: (a) present; (b) removed

311

Characterization of successive extract fractions: R Bidarra et a/.

Figure 10 Non-boundary faces

their associated colours, and the display methods for bound-
ary and non-boundary feature elements and for the rest of
the model. Visibility information of the cell elements is
calculated, including occluded line information. Subse-
quently, the cell elements are drawn in different ways,
depending on the visualization parameters and on the infor-
mation stored in the owner lists, e.g. whether or not an
activated feature occurs in the owner list.

10. CONCLUSIONS

A cellular model is a very good basis for the geometric
representation of feature models. Considerable advantages

Figure 11 Feature interactions

312

arise from integrating explicit representations for feature
volumes, feature boundaries and their mutual interaction
extents. The cellular model that has been presented contains
all information required for maintaining high-level feature
semantics. The use of attributes on cellular model entities
proves to be very effective for this goal, if their propagation
is consistently carried out as the model evolves. Operations
that perform selective access to cellular model entities have
been developed, and successfully applied to solve problems
such as feature validation, feature interaction management,
feature conversion between views, and advanced feature
visualization.

ACKNOWLEDGEMENTS

Rafael Bidarra’s work is supported by the Praxis XXI
Program of the Portuguese Foundation for Scientific and
Technological Research (FCT).

Klaas Jan de Kraker’s work is supported by the Nether-
lands Computer Science Research Foundation @ION) with
financial support from the Netherlands Organisation for
Scientific Research (NWO).

REFERENCES

I

2.

3.

4

5

6

7

x

9

10

I1

I2

13.

Bronsvoort, W. F., Bidarra, R., Dohmen, M., van Holland, W. and de
Kraker, K. J., Multiple-view feature modelling and conversion. In
Geometric Modelling: Theory and Pructice-The State of the Art.
ed. W. Strasser, R. Klein and R. Rau. Springer-Verlag, Heidelberg,
1997, pp. 159-174.
Pratt, M. J., Synthesis of an optimal approach to form feature model-
ling. In Proceedings of the ASME 1988 Computus in Engineering
Conference, Vol. 1, ASME, New York, 1988, pp. 263-274.
Weiler, K., Topological structures for geometric modelling. PhD
Thesis, Rensselaer Polytechnic Institute, NY, 1986.
Games, A., Bidarra, R. and Teixeira, J. C., A cellular approach for
feature-based modelling. In Graphics Model@ and Visualization in
Science and Technology, ed. M. Gobel and J. C. Teixeira. Springer-
Verlag, Heidelberg, 1993, pp. 128- 143.
Rossignac, J. R., Issues on feature-based editing and interrogation of
solid models. Computers & Gruphics. 1990, 14(2), 149- 172.
Sriram, R. D., Wong, A. and He, L. X., GNOMES: an object-oriented
nonmanifold geometric engine. Computer-Aided Design, 1995,
27(1 l), 853-868.
Masuda, H., Topological operators and boolean operations for com-
plex-based nonmanifold geometric models. Computer-Aided Design.
1993, 25(2), 119-129.
Dohmen, M., de Kraker, K. J. and Bronsvoort, W. F., Feature valida-
tion in a multiple-view modeling system. In CD-ROM Proceedings of
the ASME 1996 Computers in Engineering Conference, ed. J. M.
McCarthy, ASME, New York, 1996.
Bidarra, R., Dohmen, M. and Bronsvoort, W. F., Automatic detection
of interactions in feature models. In CD-ROM Proceedings of ASME
1997 Computers in Engineering Conference, ASME, New York,
1997.
Bidarra, R. and Teixeira, J. C., A semantic framework for flexible
feature validity specification and assessment, In Proceedings of the
ASME 1994 Computers in Engineering Conference. Vol. 1, ASME,
New York, 1994, pp. 151-158.
Bidarra, R. and Bronsvoort, W. F., Towards classification and auto-
matic detection of feature interactions. In Proceedings of the 29th
International Symposium on Automotive Technology and Automation,
ed. D. Roller, Automotive Automation Ltd. Croydon, 1996, pp. 99-
108.
de Kraker. K. J., Dohmen, M. and Bronsvoort, W. F., Multiple-way
feature conversion to support concurrent engineering. In Proceedings
of the Third Symposium on Solid Modeling and Applications, ed. C.
Hoffmann and J. Rossignac. ACM Press, New York, 1995, pp. 105-
114.
de Kraker, K. J., Dohmen, M. and Bronsvoort, W. F., Multiple-way
feature conversion-opening a view. In Product Modeling for

Characterization of successive extract fractions: R Bidarra et al.

Computer Integrated Design and Manufacture, ed. M. Pratt, R. D.
Sriram and M. J. Wozny. Chapman & Hall, London, 1996, pp.
203-212.

14. de Kraker, K. J., Dohmen, M. and Bronsvoort, W. F., Maintaining
multiple views in feature modeling. In Proceedings of the Fourth
Symposium on Solid Modeling and Applications, ed. C. Hoffmann
and W. F. Bronsvoort, ACM Press, New York, 1997, pp. 123-130.

15. de Kraker, K. J., Feature conversion for concurrent engineering. PhD
thesis, Delft University of Technology, The Netherlands, 1997.

16. Versluis, J. W., Bronsvoort, W. F., de Kraker, K. J. and Seebregts, K.,
Feature visualization. In CD-ROM Proceedings of the ASME 1997
Computers in Engineering Conference, ASME, New York, 1997.

Rafael Bia’arra is a research assistant
at Delft University of Technology
since 1995. He graduated in electro-
nics engineering at the University of
Coimbra, Portugal, in 1987, and has
specialized since then in computer
science. His main research interests
are feature modelling and geometric
reasoning. He is working on a PhD
project on feature validation and
interaction management.

Klaas Jan de Kraker has been a
research assistant at Delf University
of Technology. He received his mas-
ter’s degree in computer science from
this university in 1993. From 1993 to
1997 he worked on a PhD project on
multiple-view feature modelling and
conversion for concurrent engineer-
ing. Since 1997 he has worked at the
research department of Baan Com-
pany in Ede, The Netherlands.

Willem F. Bronsvoot? is an associate
professor CAD/CAM at Del& Univer-
sity of Technology. He received his
master’s degree in computer science
from the University of Groningen in
1978, and his PhD degree from Delft
University of Technology in 1990. His
main research interests are geometric
modelling, including display and
mesh generation algorithms, and fea-
ture modelling. including assembly
features, feature validation and inter-
action, and multiple-view feature con-

version. He has had many publications in international journals, books
and conference proceedings. He is book review editor of Computer-
Aided Design, and has served as programme co-chair of Solid Model-
ling ‘97 and as a member of several programme committees.

313

