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management of feature 
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Many limitations in current feature modelling systems are 
inherited from the geometric representation they use for the 
product model. Both a very rigid and a very extensive representa- 
tion are unsuitable for feature applications, at least if no convenient 
support is provided to manage the data. This paper describes a 
cellular representation for feature models that contains all the 
relevant information to effectively solve a variety of current 
problems in feature modelling. Much benefit is gained from a 
coherent integration between shapes of a feature model and cells in 
the cellular model. Every feature shape has an explicit volumetric 
representation in terms of cells. Specific subsets of its boundary are 
also distinguished in terms of cell faces and edges. Feature 
interactions are maintained in attributes of cells, cell faces and cell 
edges. Methods for modifying and querying the cellular model are 
presented, and their application is illustrated for feature validity 
maintenance, feature interaction management, feature conversion 
between multiple views, and feature visualization. 0 1998 Elsevier 
Science Ltd. All rights reserved 
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1. INTRODUCTION 

Features are representations of shape aspects of a physical 
product that are mappable to a generic shape and are 
functionally significant. Features can be used in several 
product life cycle activities, e.g. design, manufacturing and 
cost evaluation. Each activity has its own way of looking at 
a product, i.e. its own view of it, and therefore each view 
contains the features relevant to that specific activity. 

The above considerations pose strong demands on the 
geometric representation of features in feature models: 

(1) availability of an explicit representation for the whole 
boundary of volumetric features; 

(2) ability to distinguish the specific roles of different sub- 
sets of that boundary; 
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(3) 

(4) 

(5) 

mapping of feature parameters onto entities of the 
geometry; 
recording of which features (possibly from different 
views) each topological entity relates to; and 
representation of interaction extents between overlap- 
ping or attached features. 

The main goal of this paper is to show how a cellular 
representation of feature models can be effectively used 
for a variety of feature applications. This representation is 
shown to provide a significant contribution to solve several 
current research problems in feature-based modelling, e.g. 
validity maintenance, enhanced user assistance during 
model edition, feature conversion between views, and fea- 
ture visualization. 

We describe the structure and functionality of the Cellu- 
lar Model of the SPIFF? modelling system, a prototype mul- 
tiple-view feature-based modeller developed at Delft 
University of Technology. For an overview of the SPIFF 
system see Bronsvoort et al. ‘. 

This paper is organized as follows. Firstly, we survey 
recent advances in geometric representations for feature 
models. Secondly, we introduce the structure and function- 
ality of the product model and the cellular model of SPIFF, 
with emphasis on the data contained in the cellular repre- 
sentation. The use of the Cellular Model classes interface is 
then illustrated by means of query and modification opera- 
tions. Subsequent sections show how this data can be used, 
allowing for high-level information on feature semantics to 
be derived, analysed and managed. In particular, issues on 
feature validity maintenance, feature interaction detection, 
feature conversion and feature visualization are dealt with, 
emphasizing how their implementation strongly benefits 
from the cellular representation. 

2. PREVIOUS RESEARCH 

Although it did not take long until it was recognized that 
conventional boundary representations were not able to 
meet the requirements described above, such representa- 
tions were sufficient for primitive feature-based modelling 
prototypes. In the meantime, alternative schemes better 
capable of supporting the geometric representation of both 

t Named after Spaceman Spiff, interplanetary explorer exfraordinaire 
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features and part models were sought for. Eventually, the 
need for more powerful and flexible feature model 
manipulation and, in particular, for managing feature 
interactions, led to the use of cellular representation 
schemes, in which feature information can be recorded as 
attributes of cell entities. 

The first explicit proposal to use such a topological struc- 
ture for the integrated representation of both features and the 
part model was presented by Pratt 2, as a direct consequence 
of choosing an explicit volumetric representation of fea- 
tures, with all its advantages. Such representation consists 
of sub-volumes lying either internal or external to the part 
volume itself, thus yielding an irregular structure in the 
representation of the part model. Although an extension 
layer on top of the radial-edge data structure’ was suggested 
for that purpose, so far there are no implementations known 
that actually follow this approach. 

indeed provide a rather convenient scheme for handling 
some of the advanced research problems previously men- 
tioned, in particular for recording feature interactions. One 
limitation, however, that arises from its generality, is the 
inability to attach different attributes to ‘each side’ of a 2- 
cell (face); in this way, when such a cell forms an interior 
boundary, it is hard to keep track of the ‘double’ role it 
plays in bounding both neighbouring 3-cells. 

Comes et al.” proposed a somewhat more elaborate 
hybrid scheme, that recorded the model history while keep- 
ing its evaluated representation. It is based on hierarchically 
structuring all evolution stages of decomposition of sub- 
volumes. Eventually the intensive use of mating relations 
required between cells, together with the intended use of a 
conventional boundary representation for them, made the 
implementation of this proposal complex and inefficient. 

Masuda7 introduced the so-called complex-based non- 
manifold geometric models as a pragmatic alternative to 
SGCs, arguing that the limitation for his cell complexes to 
be always closed does not restrict in practice the flexibility 
of geometric models for CAD applications. Boolean opera- 
tions developed under this approach are based on cancel, 
merge and extract operations specifically developed for the 
data structure, reputedly with considerable improvement in 
performance. This work focuses on representational issues 
of cellular models and on their suitability for feature 
models. For this purpose, original primitive shapes of fea- 
tures are explicitly maintained in parallel with the merged 
cellular model. However, the application of these shapes to 
interaction management and to feature validity issues, 
although promising, is not dealt with in the paper. 

A different proposal suitable for feature model represen- 
tation was done by Rossignac5: the Selective Geometric 
Complex (SGC). This is a cellular scheme that permits the 
representation of objects of mixed dimensionality, with an 
internal decomposition structure. Conceptually, SGCs rely 
on the connectivity between n-dimensional cells (or simply 
n-cells), which is captured on an incidence graph indicating 
‘is-a-boundary-of’ relations between cells of different 
dimensions. The use of an attribute status in each cell is 
proposed to distinguish which cells are contributing or not 
to the actual point set of the part, thus also allowing for 
models with open boundaries. 

It can be concluded that a cautious balance should be 
achieved between the complexity inherent to a given geo- 
metric representation scheme, and the suitability for various 
applications within the scope of feature modelling systems. 
A cellular representation that contains exactly the data 
required, without excessive generality, appears to be more 
effective than other schemes, possibly with a potential 
broader scope, but whose implementation and use might 
cause development of feature applications more proble- 
matic and difficult. Current research problems, such as 
maintenance of feature validity and management of feature 
interactions, show an intrinsic complexity that encourages 
this pragmatic approach. 

The above characteristics of SGCs made it an attractive 
choice for representing potentially overlapping features. But 
it was not until 1995 that its first implementation was devel- 
oped, within the GNOMES geometric engine’. The main pur- 
pose of this system is to support co-operative applications, 
by providing a unified representation scheme for wireframe, 
surface and solid models that could overcome the disparity 
in requirements presented by various CAx systems used in 
different product life cycle activities (e.g. finite element 
analysis, manufacturability analysis, cost evaluation, etc.). 
Although GNOMES is a partial implementation of SGCs, with 
cells of dimensionality lower or equal to 3 only. it may 

3. THE PRODUCT MODEL 

In SPIFF. a product model consists of several views of a 
product, each one with its own feature model. A feature 
model contains a set of features instantiated from a feature 
library specific to that particular view. The geometry of all 
feature instances of a product is represented in a central 
geometric model-the Cellular Model-that is shared by 
all views and provides, thus, a common representation for 
the product geometry, see Figure I. 

Figure 1 The product model 
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baseBlock - ,. 

step1 

Figure 2 Example part with its feature shapes 

Each feature is associated with one (or more) shape 
class(es). A through hole, for example, is associated with 
a cylinder shape. Shapes are parameterized, and their 
parameter values may be either set by the user, or derived 
automatically from those of other features already in the 
model: for a through hole, for example, its depth-the 
cylinder height-may be determined from a stock’s dimen- 
sion parameter. A shape instance, with all its parameter 
values set (dimensions, position and orientation), occupies 
a particular region of space-the shape extent. Features also 
assign to their shapes the nature attribute, specifying 
whether this volumetric extent is additive, i.e. adding mate- 
rial to the volume of the represented part, or subtractive, i.e. 
removing material from it. Each shape contains a set of 
shape elements, comprising functionally meaningful subsets 
of its boundary: shape faces and shape edges. For example, 
the cylinder shape has the following shape elements: the top, 
bottom and side faces, and the top and bottom circular edges. 
Figure 2 depicts the feature shapes of the example part that 
will be used in the following sections. 

Table 1 presents a group of methods that provide access 
to the information just described, pertinent to shapes and 
their elements. 

Table 1 Basic access methods to entities in a feature model 5. OPERATIONS ON THE CELLULAR MODEL 

Feature model (fm) 

fm.shapes returns the set of all feature shapes of the feature 
model 

Shape (s) 

snature 
s.faces 
sedges 
s.view 

Shape element (e) 

returns the nature specified for shape s 
returns the set of shape face elements of shape s 
returns the set of shape edge elements of shape s 
returns the view from which shape s originates 

e.shape returns the shape to which the element e 
(a shape face or a shape edge) belongs 

4. THE CELLULAR MODEL 

The Cellular Model represents a part as a connected set of 
volumetric quasi-disjoint cells, in such a way that each one 
either lies entirely inside a shape extent or entirely outside 
it. Cells in the Cellular Model represent the point sets of all 
shape extents of features from all views of the model. Each 
shape extent is, thus, represented in the Cellular Model by a 
connected subset of those cells. 

Furthermore, this cellular decomposition of space is inter- 
action-driven, i.e. for any two overlapping shapes, some of 
their cells lie in both shape extents (and are called interuc- 
tion cells), whereas the remaining ones lie in either of them. 
As a consequence of this, two cells can never volumetrically 
overlap. They may, however, be adjacent, in which case 
there is an interior topological face of the Cellular Model 
separating them. Such a face can be regarded as having two 
‘sides’, designated as partner cell faces. Naturally, a topo- 
logical face that lies on the boundary of the Cellular Model 
has only one cell face (one ‘side’), that of the only cell it 
bounds. In either case, a cell face always bounds one and 
only one cell. Each shape element is represented by a con- 
nected set of cell faces or cell edges (or simply cell ele- 
ments), which account for the corresponding shape 
boundary point set-the shape element extent. 

It can be concluded that every feature shape has a direct, 
explicit representation at the cellular level. Each cell in the 
Cellular Model stores, in an owner list, which shapes it 
belongs to (see Figure 3~); analogously, cell elements 
store, in an owner list, which shape elements they belong 
to (see Figure 3b). Because the SPIFF Cellular Model is 
aimed at representing feature shapes from different views 
of the product, each Cellular Model entity maintains one 
such owner list for each view. Provided cells can have a 
different nature for different views, the nature of a cell with 
respect to a view is defined as the nature of the shape most 
recently added to the cell’s owner list for that view. A cell’s 
nature expresses whether its volume belongs to the repre- 
sentation of the part in that view. 

Table 2 presents a group of methods that provide access 
to the data explicitly stored in the Cellular Model. This 
information is basically of two kinds: topological, i.e. 
related to structural adjacency of Cellular Model entities 
(e.g. cells and cell faces), and attribute-based, referring to 
the data attached to various entities (e.g. owner lists in cells). 

The Cellular Model was implemented using the cellular 
topology husk of the geometric modelling toolkit ACIS, as 
well as its attribute mechanism to maintain and propagate 
the owner lists in cells and cell elements. 

In this section the basic functionality of the Cellular Model 
presented so far is extended with operations that provide it 
with modifying and querying capabilities. 

5.1. Modification operators 

The two basic operations that modify the Cellular Model are 
the insertion and the removal of a feature shape. These 
operations have a twofold effect on the Cellular Model: (i) 
they change its topology, and (ii) they update owner lists of 
Cellular Model entities accordingly. Both mechanisms are 
described and illustrated. 
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1 haseBlock 

2 - baseBlock, step 1 

3 - haseBlock. step2 

3 - baseBlock, slot 

5 - baseBlock, thruHole 

6 baseBlock, thruHole 

7 - baseBlock. thruHole. slot 

a haseBlock.front 

h - haseBlock.front, slottop 

c - haseBlock.front 

d haseBlock.hottom, slot.endl 

e - haseBlock.hottom 

f baseBlock.right, thmHole.endl 

g - haseBlock.right 

h baseBlock.top, slotend 

i - slotbottom 

j slotleft 

k slotleft 
I thruHole.side 

m thruHole.side 

Figure 3 (a) Cellular model with cell owner lists. (b) Some cell face owner Irsts 

Table 2 Basic access methods to entities in the Cellular Model 

Cellular Model (cm) 

cm.cells 
cm.cellFaces 
cm.cellEdges 

Cell (c) 

returns the set of all cells of the cellular model 
returns the set of all cell faces of the cellular model 
returns the set of all cell edges of the cellular model 

c.boundary 
c.ownerlist(view) 
c.nature(view) 

Cell face (cf) 

returns the set of cell faces that bound the volume of cell c 
returns the list of shapes of specified view that own cell c 
returns the nature of cell c in the apecitied view 

cf.cell 
cf.partner 
cf.boundary 
cf.ownerlist(view) 

Cell edge (ce) 

returns the cell bounded by cell face cl 
returns the partner cell face of cf (if it exists) 
returns the set of cell edges that bound cell face cf 
returns the list of shape elements of shapes from specified view that own cell face cf 

ce.ownerlist returns the list of shape elements of \hapea from specified view that own cell edge ce 
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Feature shape insertion 
First, the Cellular Model uses the fully specified set of shape 
parameter values to instantiate one single cell for the new 
shape and to position it in space. The owner list of this cell 
has just one element: the shape itself. Also, each cell 
element has only one element in its owner list: the 
corresponding shape element. The example in Figure 4 
illustrates this stage for the insertion of a rectangular slot in 
the model, showing the owner lists of the shape cell faces. 

Second, a non-regular Boolean union is performed 
between the Cellular Model and this cell. In this process, 
all cells (C,) in the model are collected that somehow inter- 
sect the shape cell (C,). Mutual cellular decomposition is 
then carried out between C, (or any cell arising from its 
decomposition) and each C,. This may occur in two ways: 

(1) 

(2) 

the two cells intersect only over their boundaries, in 
which case there are no new cells created; instead, 
their overlapping cell elements are decomposed, yield- 
ing cell elements that lie either in the intersection or 
outside it; or 
the two cells overlap volumetrically, in which case the 
decomposition results in cells that lie either inside the 
intersection or outside it. Mostly, a subset of the bound- 
ary of these cells is also decomposed, yielding cell ele- 
ments that lie either on the intersection or outside it (this 
is not the case only when one of the cells lies entirely 
inside the other). 

Whenever two cells undergo this mutual decomposition, 
the owner lists of all new entities are systematically updated 
as follows: 

(1) 

(2) 

(i) a new cell that lies in the intersection of C, and C, 
merges their owner lists into its owner list; (ii) the 
remaining cells resulting from the decomposition 
receive as owner list that of the respective cell from 
which they originate (either C, or C,); 
analogously, (i) a new cell element lying on the bound- 
ary intersection of C, and C, merges the owner lists of 
the overlapping cell elements into its owner list; (ii) new 

cell elements lying on the boundary of either C, or C, 
receive as owner list that of the respective element from 
which they originate; and lastly, (iii) any remaining cell 
elements arising from the decomposition, for example 
an edge arising from a face-face intersection, receive 
an empty owner list. 

The final situation of the Cellular Model after decompo- 
sition and owner list updating is shown in Figure 3. 

Feature shape removal 
The operation of removal of a shape from the Cellular 
Model is carried out in two steps. First, all references to the 
shape or to its elements are removed from the owner lists of 
all entities in the Cellular Model (cells and their cell 
elements). This results in the occurrence of either (i) 
adjacent entities with exactly the same owner lists or (ii) 
cells with an empty owner list; these last cells are 
immediately removed. The second phase is then performed 
by merging and removing unnecessary entities according to 
the 

(1) 

(2) 

(3) 

following scheme: 

while two adjacent cells with the same owner lists can 
be found, merge them, by removing all cell faces that 
separate them 
while two adjacent cell faces with the same owner lists 
can be found, merge them, by removing all cell edges 
that separate them 
while two adjacent cell edges with he same owner lists 
can be found, merge them into just one cell edge 

It can easily be proved that when cellular condensation is 
carried out in this way, the model attained in the final stage 
has the minimal number of entities required for the repre- 
sentation of all feature shapes of all views in the model. 

5.2. Query operators 

Operations in Table 2 provide the appropriate vocabulary on 
top of which a second layer of operations has been devised. 

a - slot.top 

b - slotmdl 

c - slotright 

d - slot.end2 

e - slot.bottom 

f slot.left 

Figure 4 Owner lists of slot cell faces at the insertion stage 
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Table 3 Collector methods 

Collector (c) 

c.contains(element) 
c.remove(element) 
c.add(element) 
c.union(collector) 

Ordered list (I) 

returns TRUE if given element belongs to collector c 
removes given element from collector c 
adds given element to collector c 
adds all elements of given collector c (if not already there) 

I.after(element ,. element ?) returns TRUE if element, occurs after element? in the ordered list 1 
I.first returns the first element of the ordered list 1 
I.last returns the last element of the ordered list I 

Only those methods that are used directly in the application 
problems discussed in this paper are presented. Therefore, 
most geometric queries, and other methods used in 
constraint solving aspects of SPIFF, are here omitted. 
Most of the operations return a collector object; therefore 
we use in their algorithms several methods commonly 
provided by collector classes (sets, ordered lists, etc.), as 
shown in Table 3. The operations in Table 4 give basic 
functionality for selecting Cellular Model entities, possi- 
bly based on some filter criteria, as well as for deriving 
some of their useful properties or relations not explicitly 
stored. 

These operations can be used from the perspective of 
feature model entities (shapes and shape elements), as 
shown in Table 5. In this way, their geometric representa- 
tion can be selectively accessed, allowing for higher-level 
methods to assist in drawing conclusions about actual 
feature semantics in the model, as will be shown in the 
following sections. 

Table 4 Examples of Cellular Model query methods 

6. SEMANTIC CONSTRAINTS 

Many of the current systems that are called feature 
modelling systems are in essence only high-level geometric 
modelling systems, because they provide only very little 
assistance in maintaining the meaning, or validity, of 
features during a modelling session. One approach to 
maintain feature validity is by means of validation 
constraints, which are part of each feature class specifica- 
tion-the generic feature dejinition. Several types of 
validation constraints are used in SPIFF; among them, 
geometric and algebraic constraints, handled by dedicated 
solvers, play an important role in determining each feature’s 
geometry*. All validation constraints must be solved or 
checked to verify whether a feature is valid, both at its 
creation step and in subsequent modelling steps’. 

An important aspect of feature validity is specified in 
generic feature definitions by means of so-called semantic 
constraints lo. Semantic constraints specify how each 

Cell face (cf) 

cf.onBoundary(view) returns TRUE if the cell face lies on the model boundary 
for the specified view, and FALSE otherwise 

if cf.cell.nature(view) = cf.partner.cell.nature(view) 
return FALSE 

else 
return TRUE 

cf.adjacent(cellFace) returns TRUE if cellFace iv adjacent to cell face ct. and 
FALSE otherwise 

for each cell edge ce, in cf.boundary 
for each cell edge ce2 in cellFace.boundary 

ifce, =ce2 
return TRUE 

return FALSE 

Cell (c) 

c.adjacent(cell) returns TRUE if cell is adjacent 
to cell c, and FALSE otherwise 

for each cell face cf in cboundary 
if cf.partner.cell = cell 

return TRUE 
return FALSE 

Cellular Model (cm) 

cm.cell(nature, view) returns the set of cells with specified nature in the Cellular 
Model for specified view 

cm.bound ary( view) Returns the set of cell faces that make up the boundary of 
the part for specified view 

for each cell c in cmcells 
if c.nature(view) = nature 

cells.add(c) 
return cells 

For each cell c in cm.cells(additive, view) 
for each cell face cf in c.boundary 

if cf.onBoundary(view) 
boundary.add(ctI 

return boundary 
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Table 5 Example methods of feature model entities for accessing the cellular representation 

Shape edge (se) 

se.extent returns the set of cell edges that lie in the extent of se for each cell edge ce in cm.cellEdges 
if ce.ownerlist(se.shape.view).contains(se) 

extent.add(ce) 
return extent 

Shape face (so 

sf.extent returns the set of cell faces that lie in the extent of sf for each cell face cf in cm.cellFaces 
if cf.ownerlist(sf.shape.view).contains(sf) 

extent.add(cf) 
return extent 

Shape (s) 

s.extent returns the set of all cells that lie in the shape extent of s for each cell c in cm.cells 
if c.ownerlist(s.view).contains(s) 

extent.add(c) 
return extent 

returns the set of cells with specified nature that lie in 
the shape extent of s 

for each cell c in sextent 
if c. nature(s.view) = nature 

extent.add(c) 
return extent 

returns the set of cell faces that lie in the extent of 
shape face elements of s 

for each shape face sf in s.faces 
for each cell face cf in sf. extent 

boundary.add(cf) 
return boundary 

returns the set of cell faces that lie in the extent of 
shape elements of s, according to whether they lie also 
on the model boundary 

for each cell face cf in s.boundary 
if cf. onBoundary(s.view) xor 

nature = subtractive 
boundary.add(cf) 

return boundary 

s.wire returns the set of cell edges that lie in the extent of 
shape edge elements of s 

for each shape edge se in s.edges 
for each cell edge ce in se.extent 

wire.add(ce) 
return wire 

feature instance is allowed to deviate from its canonical 
behaviour. This can be stated in terms of the feature shape 
and its elements. A semantic constraint on a shape specifies 
that no other shapes (with a specified nature) are allowed to 
overlap with its extent. A semantic constraint on a shape 
element specifies the extent to which it should belong to the 
model boundary or not. An example is that for a cylindrical 
blind hole, its circular bottom face should be completely on 
the boundary of the modelled object, its side face should be 
at least partly on the boundary, whereas its circular top face 
should not be on the boundary. In SPIFF this can be achieved 
by including in a blind hole class specification the following 
semantic constraint declarations: 

semanticBottom: OnBoundary(completely); 
semanticside: OnBoundary(partly); 
semanticTop: NotOnBoundary(completely); 

It should be remarked that this kind of feature validity 
specification has an important role in preserving the func- 
tional and technological meaning of features: in the blind 
hole example, the full presence of the bottom face on the 
boundary assures its ‘non-through’ functional character, 
whereas the absence of the top face on the boundary is a 
necessary (although not sufficient) clearance condition from 
the manufacturability point of view. 

The maintenance of semantic constraints relies on the 
capabilities presented above for querying the Cellular 
Model in order to retrieve a shape (or shape element) extent, 

and to assess topological properties of those cells (or cell 
elements). Table 6 shows several methods that are used in 
SPIFF as Boolean checkers for some semantic constraints. 
They are automatically applied, after any model modifica- 
tion operation, to all shapes on which semantic constraints 
were specified. In addition, their result is used to provide the 
user of SPIFF with more appropriate explanations and/or 
hints whenever some semantic constraint violation needs 
to be overcome. 

7. FEATURE INTERACTION DETECTION 

Feature interactions may have a very wide range of 
consequences and effects on a feature model. While these 
may often be intended, it is also true that most feature 
validity violations are caused, in one way or another, by 
feature interactions. Indeed, these may affect the semantics 
of a feature, ranging from slight changes in actual parameter 
values to the complete suppression of its contribution to the 
model shape. It is, thus, important for any feature-based 
modelling system to be able to detect such situations, so that 
they can be properly classified, reported to the user and 
overcome. For a formal definition of feature interactions and 
a taxonomy, see Bidarra and Bronsvoort”. 

The detection of most types of feature interactions relies 
mainly on analysis of the topology of features in the model; 
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Table 6 Methods for checking semantic constraints 

Shape (s) 

s.noOverlap(nature) returns TRUE if no other shape, with specified nature. 
inserted in the model after s overlaps with it. and 
FALSE otherwise 

for each cell c in sextent 
list +- c.ownerlist(s.view) 

for each shape s, in list 
if list.after(s,,s) and s,.nature = nature 

return FALSE 
return TRUE 

Shape face (sf ) 

sf.onBoundary(mode) returns TRUE if the extent of shape face sf is 
(completley or partly, according to specified mode) 
on the model boundary, and FALSE otherwise 

if mode = completely 
for each cell face cf in sf. extent 

if not cf.onBoundary(sf.shape.view) 
return FALSE 

return TRUE 
else //mode = partly 

for each cell face cf in sf.extent 
if cf.onBoundary(sf.shape.view) 

return TRUE 
return FALSE 

sf.notOnBoundary(mode) returns TRUE if the extent of shape face sf ts 
(completely or partly. according to specified mode) 
not on the model boundary. and FALSE otherwise 

tf mode = completely 
for each cell face cf in sf.extent 

if cf.onBoundary(sf.shape.view) 
return FALSE 

return true 
else //mode = partly 

for each cell face cf in sf.extent 
if not cf.onBoundary(sf.shape.view) 

return TRUE 
return FALSE 

a few interaction classes require, in addition, some geo- 
metric queries. In both cases, however, it is essential that 
at the representation level of the feature model, sufficient 
information is stored and retrieved in an efficient way. The 
Cellular Model provides this functionality. Several methods 
were developed on top of it that identify each interaction 
situation independently of the complexity or the number of 
features involved. This identification also receives valuable 
hints from a detailed analysis of the outcome of semantic 
constraints checking, for instance in the case of feature type 
changes (transmutation interactions). 

The first necessary condition for the occurrence of an 
interaction between two features is that their shapes have 
a non-empty intersection, which may take place either 
volumetrically or between their boundaries. For some 
cases, an intersection is also required between a subset of 
their shape boundaries (with only ‘onBoundary cell faces’, 

Table 7 Methods used for retrieving feature shapes in interaction 

i.e. s.boundary(additive), in Table 5). These two methods, 
shown in Table 7, are used in SPIFF in a first phase, in order 
to delimit the scope of the set of features for the global 
interaction mechanism, whenever a feature shape is added 
to or removed from the model. 

In a second phase, identification of possible classes of 
interaction taking place among features within this set is 
carried out. See Bidarra et a1.9 for an extensive description 
of interaction detection algorithms. Two examples of Boo- 
lean detectors are presented in Table 8. The first one per- 
forms the detection of disconnection interactions, which 
cause a part to have its volume split into several discon- 
nected regions (see Figure 5a for an example). The 
second one identifies absorption interactions on a shape, 
characterized by the complete suppression of the 
contribution of a feature to the global model shape (see 
Figure 5b for an example). 

Shape (s) 

s.overlappingSet returns the set of shapes overlapping with shape \ 
(either volumetrically or between their boundaries 
cell faces and edges) 

for each cell c in scells 
overlappingSet.union(c.ownerlist(s.view)) 

for each cell face cf in sboundary 
overlappingSet.union(cf.ownerlist(s.view)) 

for each cell edge ce in s.wire 
overlappingSet.union(ce.ownerlist(s.view)) 

overlappingSet.remove(s) 
return overlappingset 

s.adjacentBoundaries(s ,) returns TRUE if the “additive boundary” of shape 
s intersects that of shape s ,, and FALSE otherwise 

for each cell face cf, in s , .boundaty(additive) 
for each cell face cf in s.boundary(additive) 

if cf.adjacent(cf t) 
return TRUE 

return FALSE 
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Table 8 Example methods for feature interaction detection 

Cellular Model (cm) 

cm.disconnection(view) returns TRUE if the set of all additive cells of the 
Cellular Mode1 is not connected (i.e. at least one cell 
is not accessible from the others), and FALSE otherwise 

cells + cm.cells(additive. view) 
c, + cells.first 
for each cell c2 in cells 

if not cells.accessible(c ,, cl)*. 
return TRUE 

return FALSE 

Shape (s) 

s.absorption returns TRUE if the shape s has undergone an absorption 
interaction, and FALSE otherwise 

for each cell c in sextent 
if c.ownerlistIs.view).last = 2 

return FALSE 
return TRUE 

*The accessible (el, ez) method applied on a set of entities returns TRUE iff: 

(a) the two specified elements, e I and e 2, verify either e, = e2 ore,. adjacent (ez); or 

(b) there is a third element e; in the set such that el.adjacent(e3) and set. accessible ie3,e2) 

and FALSE otherwise 

8. FEATURE CONVERSION 

For maintaining multiple views of a product, feature 
conversion is used. Two forms of feature conversion can 
be distinguished”. The first is the derivation of a feature 

(a) 

(b) 

model for a new view given the product model already 
specified by one or more other views, which is called 
opening a view. The second form is propagating feature 
parameter changes from one view to the other views. Here, 
bnly opening a iiew is discussed. 

De Kraker et uZ.‘~-‘~ describe a generic method for 

Figure 5 Examples of feature interactions: (a) disconnection interaction; (b) absorption interaction 
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Table 9 Methods of Cellular Model for feature conversion 

Cell (c) 

c.consistent(view ,.view :) returns TRUE if the cell nature with respect to 
the given views is equal. and FALSE otherwise 

if c.nature(view ,) = c.nature(viewJ 
return TRUE 

else 
return FALSE 

Cellular model (cm) 

cm.consistent(view ,. view?) returns TRUE if the nature of each cell ia equal with 
respect to the given views. and FALSE otherwise 

if c.nature(view ,) = c.nature(view?) 
if not c.consistent(view ,,view?) 

return FALSE 
return TRUE 

cm.inconsistentCella (view ,,view:) returns the set of mconktent cells with respect 
to the given views 

for each cell c m cm.cells 
if not c.consistent (view ,, view?) 

inconsistentCells.add(c) 
return inconsistentCells 

opening a view incrementally. In this method, instances of a 
feature class are recognized in the Cellular Model using 
geometric reasoning. 

For recognizing an instance, geometric reasoning proce- 
dures span a search tree using topologic characteristics of 
the feature class, in which generic feature faces are matched 
with Cellular Model faces. This matching is performed effi- 
ciently by using geometric tests, such as parallelism and 
perpendicularity, on normals of planar cell faces. The leaves 
in the search tree generate candidate feature instances that 
satisfy all geometric feature validity conditions. From these 
candidates, the largest feature that also satisfies all other 
feature validity conditions is selected as the recognized 
instance. In this way, valid feature instances are recognized. 

The functionality of the Cellular Model that is used. is 
based on the notion of cell consistent!. A cell is called 
consistent if its nature is the same with respect to the 
views considered. Similarly, views are called consistent if 
they represent the same geometry, i.e. if all cells are con- 
sistent. See Table 9 for some methods to query the Cellular 
Model on consistency. 

Such consistency is illustrated with an example. Figure 6 
depicts the volume owner lists for two consistent views. 
Additive and subtractive cells are depicted in light grey 
and white, respectively. If a hole is inserted into view I, 
the two views become inconsistent because the hole cell 
becomes inconsistent, see Figure 7a. It is subtractive with 

I: <ribl> I: <> 

II: <stock> II: <stock, slot> 

I: <rib27 

II: <stock> 

\ 
I: <base> 

II: <stock> 

Figure 6 Examples of multiple view owner lists 

respect to view I, because the last owner in its list is a hole 
that is subtractive. Yet, it is additive with respect to view II, 
because the last owner in its list is a stock that is additive. 
This inconsistency can be resolved by, for example, insert- 
ing a similar hole in view II, see Figure 7b. 

View consistency is checked by traversing all cells and 
checking their consistency. For feature recognition, firstly 
inconsistent cells, including their faces, are obtained. 
Furthermore, the normals of faces are calculated, which 
are defined only for cell faces that are on the boundary 

I: <rib1 > 

II: <stock> 

I: <z 

II: <stock, slot> 

I: <rib2r 

II: <stock> 

I: <base, holel> I: <base> 
I 3 1 II: <stock> II: <stock> 

I: <rib1 > I: <> I: <rib27 

II: <stock> II: <stock, slot> II: <stock> 

I: <base, holel> I: <base> 
(b) II: <stock, hole2> II: <stock> 

Figure 7 View consistency: (a) inconsistent views; (b) consistent views 
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Figure 8 Distribution of holes 

with respect to a view, and they point away from the addi- 
tive cell they bound. 

9. FEATURE VISUALIZATION 

In most feature-based modelling systems, only the resulting 
geometry of a feature model is visualized, although features 
that incorporate functional product information are also 
important. This functional information can also be 
visualized to provide better insight in the feature model16. 
In SPIFF, a feature can be activated or deactivated for 
visualization. Activated features are visualized in a way 

13) 

different from the rest of the model. They can be visualized 
with a different display method, for example with shaded 
faces, whereas the rest of the model is visualized with lines, 
or with a different colour. 

The following figures show examples of feature 
visualization, with different types of engineering informa- 
tion. In Figure 8, all holes are activated for visualization, 
showing their distribution. This could, for example, be used 
to evaluate manufacturability. Figure 9 demonstrates 
removal of so-called occluded lines. To get a better image 
of an activated feature, here the green coloured step, the 
hidden lines of the rest of the model that are behind the 
visualized feature, which are called occluded lines, are 
removed in Figure 9b. In Figure 10, besides boundary fea- 
ture elements, also non-boundary elements are visualized, 
showing the volume that is removed by the feature. Further- 
more, the relation of parts of one feature can be shown, e.g. 
that the two hole parts actually belong to one hole. Lastly, 
Figure 11 visualizes feature interactions by displaying the 
intersection region of the two slots in a different colour. 

It may be clear that a conventional boundary representa- 
tion does not provide the information required for generat- 
ing the images depicted in Figures 8-11. In a boundary 
representation, topology entities of features may be split, 
missing, or merged with other entities. Furthermore, a 
boundary representation does not contain any feature 
information. The Cellular Model does provide this informa- 
tion in owner lists, and can therefore be used for feature 
visualization. 

As the geometric model for visualization, a subset of the 
cells in the Cellular Model is used. This set consists of all 
additive cells, and all subtractive cells that belong to acti- 
vated features. It contains exactly the information necessary 
for visualization: subtractive cells that would obstruct visi- 
bility are not there, but it does contain all required topolo- 
gical elements, with the required feature identification 
information in attached owner lists. 

To generate an image, visualization parameters and the 
subset of cells in the Cellular Model are used. Examples of 
visualization parameters are the set of activated features and 

b) 

Figure 9 Occluded lines: (a) present; (b) removed 
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Figure 10 Non-boundary faces 

their associated colours, and the display methods for bound- 
ary and non-boundary feature elements and for the rest of 
the model. Visibility information of the cell elements is 
calculated, including occluded line information. Subse- 
quently, the cell elements are drawn in different ways, 
depending on the visualization parameters and on the infor- 
mation stored in the owner lists, e.g. whether or not an 
activated feature occurs in the owner list. 

10. CONCLUSIONS 

A cellular model is a very good basis for the geometric 
representation of feature models. Considerable advantages 

Figure 11 Feature interactions 
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arise from integrating explicit representations for feature 
volumes, feature boundaries and their mutual interaction 
extents. The cellular model that has been presented contains 
all information required for maintaining high-level feature 
semantics. The use of attributes on cellular model entities 
proves to be very effective for this goal, if their propagation 
is consistently carried out as the model evolves. Operations 
that perform selective access to cellular model entities have 
been developed, and successfully applied to solve problems 
such as feature validation, feature interaction management, 
feature conversion between views, and advanced feature 
visualization. 
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