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Figure 1: An equal-time comparison between our proposed spectral gradient sampling and standard sampling within a conventional path
tracer. The insets in the bottom right corner show the difference images to the reference, where blue and red indicates small resp. large errors.
Our method improves the convergence and reduces chromatic noise in regions affected by wavelength-dependent scattering.

Abstract
Spectral Monte-Carlo methods are currently the most powerful techniques for simulating light transport with wavelength-
dependent phenomena (e.g., dispersion, colored particle scattering, or diffraction gratings). Compared to trichromatic ren-
dering, sampling the spectral domain requires significantly more samples for noise-free images. Inspired by gradient-domain
rendering, which estimates image gradients, we propose spectral gradient sampling to estimate the gradients of the spectral
distribution inside a pixel. These gradients can be sampled with a significantly lower variance by carefully correlating the path
samples of a pixel in the spectral domain, and we introduce a mapping function that shifts paths with wavelength-dependent
interactions. We compute the result of each pixel by integrating the estimated gradients over the spectral domain using a one-
dimensional screened Poisson reconstruction. Our method improves convergence and reduces chromatic noise from spectral
sampling, as demonstrated by our implementation within a conventional path tracer.

CCS Concepts
•Computing methodologies → Ray tracing;

1. Introduction

Monte-Carlo light transport algorithms are popular techniques for
rendering high-quality, photo-realistic images. While most render-
ers are RGB-based, several advanced phenomena of light, such as
dispersion, diffraction gratings, or thin-film materials, can only be
accurately simulated with spectral rendering. Adding spectral sam-
pling to a Monte-Carlo renderer adds another level of complexity
to an already costly process and drastically increases the number of
samples required for noise-free images. If the sampling rate is in-
sufficient, visual quality is highly degraded as color noise appears.
While previous approaches lower chromatic noise by reusing each

path sample for multiple wavelengths [EM99, RBA09, WND∗14],
the number of required samples still remains drastically higher
compared to trichromatic rendering. Further, they do not improve
scenes with perfectly-specular materials (e.g., perfect glass).

Recently, gradient-domain rendering has been introduced as
a new approach for noise reduction in Monte-Carlo rendering
[LKL∗13]. It is based on the idea of directly estimating gradi-
ents between image pixels using correlated pairs of paths and it
has been shown that gradient sampling can significantly reduce
variance. In this paper, we extend gradient-domain rendering be-
yond trichromatic light transport and introduce gradient sampling
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for the spectral domain. In contrast to traditional gradient sam-
pling, which estimates differences between pixels, we estimate fi-
nite differences between points in the spectral distribution of a
single pixel. This is achieved by sampling pairs of paths using a
novel shift mapping that correlates path samples in the spectral do-
main. The final pixel color is then computed from the noisy esti-
mate of the spectral distribution and the gradient of that distribu-
tion using a one-dimensional screened Poisson reconstruction. To
reduce the computational overhead introduced by pair sampling,
we propose a scheme to balance standard and gradient sampling.
This scheme favors paths with higher contributions. We connect
our method to a conventional path tracer and show that it signifi-
cantly improves convergence and reduces chromatic noise in image
regions which are affected by wavelength-dependent effects. Our
approach is orthogonal to previous methods which reuse path sam-
ples for multiple wavelength and we demonstrate how to combine
our method with the recently introduced Hero wavelength sam-
pling [WND∗14] for improved performance in scenes with glossy
and diffuse wavelength-dependent scattering.

2. Related Work

Spectral Light Transport To render an image, physically-based
light transport algorithms integrate over the space of all light-
carrying paths in a scene. Spectral rendering introduces an addi-
tional integration domain over the space of wavelengths. Using the
general path-space form of light transport [Vea97], the radiance
spectrum of a pixel, denoted by I, can be expressed as a double
integral with form:

I =
∫

Λ

∫
Ωλ

f (x,λ) dµ(x)dλ (1)

where Λ denotes the spectral domain, Ωλ is the union of all
paths of finite length through which light with the wavelength λ

can travel and arrive at the pixel, and f (x,λ) denotes the mea-
surement contribution of the path x for the given wavelength λ.
The spectral radiance distribution I is often stored in discretized
form using a set of uniformly distributed bins, each represent-
ing a range of wavelengths. More adaptive representations of the
spectral distribution use sets of basis functions, e. g. Gaussian
[Mey88], the Fourier-basis [Pee93], or specialized basis functions
[DMCP94, RP97, DF03, BDM09]. In the discrete case, there is a
straightforward analogy between the classic image gradient and
our proposed spectral gradient; the former is the finite difference
between two pixels, while the latter is the difference between two
bins. Without loss of generality, we assume a discrete representa-
tion in the following for an easier intuition.

Spectral Monte-Carlo light transport methods solve Eq. 1 using
point sampling and a naive unbiased estimator given by:

I ≈ 1
N

N

∑
i=1

f (xi,λi)

p(xi,λi)
(2)

Here, N denotes the sampling rate and p(xi,λi) the probability den-
sity of the sample pair (xi,λi). The naive estimator uses a path sam-
ple xi for only a single wavelength, which potentially introduces
a large amount of color noise and is especially wasteful in cases
where a path does not encounter any wavelength-dependent inter-
actions. A wavelength-dependent interaction is here defined as an

intersection with a dispersive material, whose scattering distribu-
tion function depends on the wavelength (e. g. glass or water).

Improved Wavelength Sampling More advanced sampling
strategies reuse a path sample for multiple wavelengths to reduce
color noise. Evans and McCool [EM99] introduced stratified wave-
length sampling and separated the number of samples taken for
the spectral and path domain. This allows a path sample to con-
tribute to multiple wavelengths until it encounters a wavelength-
dependent surface. Given such an interaction, the path is split,
which leads to either exponential path growth or selecting a single
wavelength for further propagation, which introduces color noise.
Furthermore, their approach requires the path sampling to be inde-
pendent of the wavelength, i. e. p(x,λ) = p(λ) · p(x), which for-
bids proper importance sampling for wavelength-dependent mate-
rials. Radziszewski et al. [RBA09] and more recently Wilkie et al.
[WND∗14] proposed to use spectral multiple importance sampling
[Vea97] to overcome this problem. Each wavelength is treated as a
different path sampling strategy and initially a single wavelength,
the Hero wavelength, is chosen for path propagation. The sampled
path then contributes to a set of wavelengths which are either ran-
domly sampled [RBA09] or deterministically chosen [WND∗14].
Since a path-wavelength pair can now be sampled from several
wavelengths, multiple importance sampling is required to account
for the changed probability density. An unbiased estimator using
multiple importance sampling is given as:

I ≈ 1
N

1
C

N

∑
i=1

C

∑
j=1

wλh
(xi,λ j)

f
(
xi,λ j

)
p(xi,λ j)

(3)

wλh
(xi,λ j) =

p(xi,λh)

∑
C
k=1 p(xi,λk)

(4)

where C is the number of sampled wavelengths, wλh
(xi,λk) de-

notes the weight (here using the balance heuristic [Vea97]), and
λh is the sampled hero wavelength of xi. The probability density
of the path sampling is now dependent on the wavelength, i. e.
p(x,λ) = p(λ) · p(x | λ). Note that although the path is reused
for multiple wavelengths, its spatial configuration is not changed
which is a major distinction in comparison to our method. Un-
fortunately, reusing a path for multiple wavelengths has no ef-
fect for perfectly-specular materials (e.g., a perfect glass dielectric)
which isolate a single wavelength from the spectrum. Nevertheless,
these approaches improve convergence for interactions with glossy
and diffuse wavelength-dependent surfaces. Since they are orthog-
onal to our approach, a combination is potentially fruitful and we
demonstrate how this is achieved for the Hero wavelength sampling
approach from Wilkie et al. [WND∗14] in Sec. 3.4.

Gradient-Domain Rendering (GDR) Gradient-domain render-
ing, originally introduced by Lehtinen et al. [LKL∗13] in the con-
text of Metropolis Light Transport [VG97], is a new way of re-
ducing noise for Monte-Carlo rendering. At its core, GDR directly
estimates image gradients in addition to pixel colors. By using pairs
of paths, which are correlated between pixels, the image gradients
are estimated with a significantly lower variance. This occurs due
to some of the randomness from the Monte-Carlo process cancel-
ing out. A final image is computed by integrating the image gradi-
ents together with the estimated pixel colors using a 2D screened
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Poisson reconstruction [BCCZ08]. An important role in gradient-
domain rendering is played by the shift mapping, which is a bi-
jective function that creates a pair of paths with similar contribu-
tions by shifting a base path from one pixel to another. Lehtinen
et al. [LKL∗13] proposed a shift mapping which employs the pow-
erful Manifold Exploration technique from Jakob and Marschner
[JM12]. However, it relies on global information about the path
and costly numerical optimizations. Later, Manzi et al. [MRK∗14]
introduced several improvements for gradient samplings, such as
symmetric gradient sampling. This circumvents issues with non-
bijective mappings and improves the robustness of the gradient es-
timator. Manzi et al. [MRK∗14] further combine the two ways a
gradient can be estimated (standard sampling and gradient sam-
pling) to better handle singularities in the path-space using an addi-
tional binary weighting which switches between the two strategies.
We make use of this technique for a different purpose and design a
binary weighting that allows us to perform spectral gradient sam-
pling only for paths with larger contributions.

The seminal work on gradient-domain path tracing from Ket-
tunen et al. [KMA∗15] showed that gradient sampling can also lead
to significant improvements for standard Monte-Carlo path tracing.
They further proposed a simpler shift mapping which only requires
local path information and can be computed sequentially during the
path sampling. Lately, the gradient-domain rendering paradigm has
received a lot of attention from the computer graphics community
and has been successfully applied in the context of bi-directional
path tracing [MKA∗15], photon mapping [HGNH17], vertex con-
nection and merging [SSC∗17], and recently path reusing [BPE17].
Noticeably, temporal gradient-domain path tracing [MKD∗16] was
the first approach to extend gradient sampling beyond the image
domain by computing spatio-temporal differences between frames
of animations. Our approach is the first to apply gradient-domain
rendering in a non-trichromatic setting and adapt the concept for
the spectral domain.

We briefly summarize the analytic definition of the image gradi-
ent in gradient-domain rendering. We refer the reader to the original
work [LKL∗13, MRK∗14, KMA∗15] for a more detailed descrip-
tion and derivation. The gradient between two pixels i and j can
analytically be expressed in a single integration over path-space
using a shift mapping Ti→ j(x) [LKL∗13]:

∆i j =
∫

Ωi

fi (x)− f j
(
Ti→ j(x)

)⏐⏐T ′
i→ j
⏐⏐ dµ(x)

=
∫

Ωi

gi j(x)dµ(x) (5)

The Jacobian determinant of the shift mapping
⏐⏐T ′

i→ j
⏐⏐ accounts for

the change of integration variable for the pixel j. Since it is non-
trivial to find a good path sampler for the pixel i that is also guaran-
teed to cover the path-space of pixel j after mapping, Manzi et al.
and Kettunen et al. performed symmetric sampling of the gradi-
ents. In practice, this allows to generate base paths from both pix-
els using the standard pixel path sampler. The symmetric gradient
sampling estimator is given by:

∆i j =
∫

Ωi

wi j(x)gi j(x)dµ(x)+
∫

Ω j

w ji(x)g ji(x)dµ(x) (6)

The weights wi j(x) and w ji(x) either account for the duplicated

(a) Image Gradients (b) Spectral Gradients

Figure 2: Spectral Gradient Concept. While gradient-domain ren-
dering in the image space (a) estimates differences between pix-
els, our method (b) computes the gradients of the spectral radiance
distribution inside each pixel. Spectral gradient samples are taken
using pairs of paths which are correlated by a spectral shift map-
ping that maps a base path x sampled using the wavelength λ to an
offset path x′ which contributes to the wavelength λ

′.

appearance of path pairs using multiple importance sampling or
handle non-invertible shifts. These formulations form the basis for
our definition of the spectral gradient.

3. Spectral Gradient Sampling

A typical spectral renderer computes the value of an image pixel by
estimating its spectral radiance distribution I. Inspired by gradient-
domain rendering in the image domain, we propose to additionally
estimate the "gradients" of I for each pixel. Assuming that each
point in the spectrum is associated with a certain wavelength λ, we
define the spectral gradient at a point in the spectrum to be the finite
difference between the spectral (scalar) values Iλ and Iλ′ with λ

′ =
λ + δ being another wavelength offset by a small δ. We illustrate
our concept in Fig. 2.

Conventionally, we can express the gradient at λ as:

∆λλ′ = Iλ − Iλ′

=
∫

Ωλ

f (x,λ) dµ(x)−
∫

Ω
λ′

f
(
x,λ′) dµ(x) (7)

Alternatively, we can follow the derivation of the analytic image
gradient using a shift mapping from Lehtinen et al. [LKL∗13] and
express the spectral gradient in a single integration:

∆λλ′ =
∫

Ωλ

f (x,λ)− f
(

Sλ→λ′(x),λ′
)⏐⏐⏐S′λ→λ′

⏐⏐⏐dµ(x)

=
∫

Ωλ

gλλ′(x,λ)dµ(x) (8)

Here, Sλ→λ′(·) is a spectral shift function which maps a base path
associated with a wavelength λ to another wavelength λ

′. We de-
note the spectral shift mapping with the letter S instead of T to em-
phasize that the mapping is performed between two wavelengths
and not pixels. Accordingly, we denote the Jacobian determinant
of the spectral shift mapping with

⏐⏐⏐S′λ→λ′

⏐⏐⏐. We discuss the require-
ments for spectral shift mappings and the design of our proposed S
in Sec. 3.1.

The benefit of the formulation of Eq. 8 is that it allows our
method to directly estimate the spectral gradient with significantly
lower variance by sampling it using pairs of correlated paths.
In practice, this is achieved by creating a base path sample for
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the wavelength λ, mapping it to the wavelength λ
′ using the

correlation-inducing shift S, and measuring the difference in contri-
bution between the paths. For each pixel, we estimate the spectral
radiance I and additionally keep track of the spectral gradient dis-
tribution G. Both values are estimated using the same set of path
samples. After I and G have been estimated, we perform a one-
dimensional screened Poisson reconstruction to compute the final
pixel color (Sec. 3.2). In contrast to gradient-domain rendering in
the image plane, spectral gradient sampling only correlates path
samples inside each pixel and only along the spectral dimension.
Hence, each pixel can be processed independently.

Since a typical wavelength-dependent pixel path sampler is not
guaranteed to fully cover the space of paths Ωλ′ through mapping
from Ωλ , we also perform symmetric sampling of the gradients
using spectral multiple importance sampling:

∆λλ′ = ∆
λ

λλ′ +∆
λ
′

λλ′ =
∫

Ωλ

wλλ′(x,λ)gλλ′(x,λ)dµ(x)

+
∫

Ω
λ′

wλ′λ(x,λ
′)gλ′λ(x,λ

′)dµ(x) (9)

The weights wλλ′ and wλ′λ are computed using the wavelength-
dependent path probability densities. Using the balance heuristic
[Vea97], they are defined as:

wλλ′(x,λ) =
p(x,λ)

p(x,λ)+ p(Sλ→λ′(x),λ′)
(10)

wλ′λ(x,λ
′) =

p(x,λ′)
p(x,λ′)+ p(Sλ′→λ(x),λ)

(11)

In practice, a base path sampled by the standard wavelength-
dependent pixel sampler using the wavelength λ is mapped twice
to the wavelengths λ

′ = λ + δ and λ
′′ = λ − δ to generate a sam-

ple for the gradients gλλ′ and gλ′′λ . Although the offset paths are
typically cheaper to generate than two completely new paths, gra-
dient sampling introduces a non-negligible computational overhead
compared to traditional sampling. We present how we reduce com-
putational overhead by restricting gradient sampling to paths with
significant contributions in Sec. 3.3.

3.1. A Spectral Shift Mapping

The shift mapping S receives a path sampled with a wavelength
λ and shifts it to a similar path which contributes to the wave-
length λ

′. As demonstrated by Kettunen et al. [KMA∗15], gra-
dient sampling is beneficial when the contributions of the base
and offset path are similar: more precisely, the integrand f (x,λ)−
f (Sλ→λ′(x),λ′)

⏐⏐⏐S′λ→λ′

⏐⏐⏐ should become as small as possible. The
major distinction between existing shift mappings and our new
function S is that we do not shift the origin of a path in the image
plane but instead its associated wavelength in the spectral domain.
This has several implications. First, the two paths in a correlated
pair originate at the same image location and will only diverge
when they encounter a wavelength-dependent interaction (assum-
ing that the sensor itself does not introduce any dispersion). Sec-
ond, a spectral gradient path pair can diverge and reconnect mul-
tiple times, e. g. by passing through several refractive objects with
diffuse interactions in-between. Third, the classification if a base

path vertex is connectable or not also depends on the wavelength-
dependency of the vertex’s scattering function. For example, a tra-
ditional shift mapping would classify a rough dielectric material
as connectable, since it is not considered as (near-)specular. How-
ever, in the spectral domain such a material potentially causes a
wavelength-dependent dispersion.

We design our shift mapping S by building on the main idea be-
hind the shift mapping from Kettunen et al. [KMA∗15], which is
to replicate the projected half-vectors of the base path for the offset
path until two consecutive connectable vertices are found. Hereby,
the offset path has a similar contribution as the base path, which, as
indicated, is advantageous for the gradient-domain computations.
Given a base path xλ , our shift computes an offset path xλ′ in the
following way (shown in Fig. 3). First, the offset path follows the
base path until a wavelength-dependent interaction is encountered.
If no such interaction occurs, xλ and xλ′ will be identical. At the
first wavelength-dependent interaction, the paths will disperse and
we choose a new outgoing direction for the offset path. We denote
the incoming directions for the base and offset path at the respec-
tive vertices with iλ and iλ′ , and the outgoing direction of the base
path as oλ . We choose a new outgoing direction for the offset path
oλ′ in such a way that the half-vectors for both paths (projected to
the local shading space) are identical. The half-vector can be conve-
niently expressed for reflection and refraction using the generalized
half-vector formulation [WMLT07]

hλ = ĥλ/
ĥλ

 ĥλ =−
(

ni
λ iλ +no

λ oλ

)
(12)

where ni
λ

and no
λ

are the indices of refraction of the inside and out-
side media at the base vertex. Note that these indices are differ-
ent for the half-vector hλ′ , since they depend on the wavelength
λ. With a similar incoming direction but a different wavelength,
the same half-vector corresponds to different refracted directions,
as seen on the first interaction in Fig. 3. As long as wavelength-
dependent materials are encountered by both paths, the shifted path
direction is deterministically computed by replicating the base path
half-vector. Intuitively, by duplicating the wavelength-dependent
half-vector, we ensure that the base and offset path maintain a sim-
ilar throughput. Furthermore, we apply the half-vector shift for ma-
terials which are independent of wavelength but represent specular
scattering. Once two consecutive vertices whose scattering func-
tions are neither (near-)specular nor wavelength-dependent are en-
countered, the offset path can be reconnected to the base path. After
the reconnection, the offset path will follow the base path again un-
til the next wavelength-dependent interaction diverges the pair once
again, and the above process repeats.

Jacobians To evaluate the integration in Eq. 8, we need to com-
pute the Jacobian determinant of the shift mapping

⏐⏐⏐S′λ→λ′

⏐⏐⏐ which
reflects the change in density for the path-space of the offset path. In
our case, the Jacobian determinant is simply the product of the local
changes at each path vertex. A change in path density is only intro-
duced after the base and offset paths diverge and the new outgoing
direction at each disconnected vertex of the offset path is chosen
by either reflection, refraction or reconnection. The Jacobian de-
terminant for reflection and reconnection events do not depend on
the wavelength and we refer to [KMA∗15] (Sec 5.2) for their def-
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Figure 3: Spectral Shift concept. A base/offset path pair is con-
nected until the first dispersive event, and reconnected as soon as
two consecutive connectable and wavelength-independent events
are found. The process is repeated as long as dispersive events are
encountered.

inition. However, in case of a refractive event, the local Jacobian
determinant needs to reflect the change in path density introduced
by the changes in the path geometry and the wavelength, and it is
defined as:⏐⏐⏐⏐⏐∂oλ′

∂oλ

⏐⏐⏐⏐⏐=
(

no
λ

no
λ′

)2 ⏐⏐oλ ·hλ

⏐⏐⏐⏐⏐oλ′ ·hλ′

⏐⏐⏐
⎛⎝ni

λ′

(
iλ′ ·hλ′

)
+no

λ′

(
oλ′ ·hλ′

)
ni

λ

(
iλ ·hλ

)
+no

λ

(
oλ ·hλ

)
⎞⎠2

(13)

A detailed derivation of this expression can be found in [Sta01]
and [WMLT07].

3.2. Poisson Reconstruction

After computing an estimate of the spectral distribution I of a pixel
and its gradients G, we perform a one-dimensional screened Pois-
son reconstruction to get the final pixel result:

Î = argmin
Î

∇Î −G
2

2 +α
Î − I

2
2 (14)

Hereby, the spectral distribution provides the lower frequencies
while the higher ones are taken from the gradient estimates. Since
the latter are assumed to have a lower variance, chromatic noise in
the final pixel value Î is to be reduced. The gradient operator ∇ is
defined as the finite differences between two points in the spectrum
with distance δ. The parameter α controls the balancing between
the least-squares fitting to I and G. We empirically evaluate the in-
fluence of α in the spectral domain in Sec. 4. Using the L2-norm,
the final pixel result will be unbiased (see [LKL∗13], Sec. 6 for a
proof). In contrast to gradient-domain rendering in the image do-
main, we have no large 2D Poisson problem, but many small and
independent one-dimensional ones. We rely on a 1D variant of the
Fourier-based method from Bhat et al. [BCCZ08] to solve Eq. 14
efficiently.

3.3. Performance-Oriented Sampling

Gradient sampling is more expensive than traditional sampling,
since an offset path is needed for each base path sample. Although
the offset path often shares vertices with its base path, the overhead
of tracing the diverging segments is non-negligible. For example,
gradient-domain path tracing shifts each base path four times for
symmetric gradient sampling in the vertical and horizontal image
dimension and Kettunen et al. report an overhead factor of ≈ 2.5
per sample. Since the spectral domain is one-dimensional, symmet-
ric sampling requires only two shifts. However, a spectral shift can
be more expensive because an offset path can diverge from the base
path multiple times. To reduce this overhead, we choose between
standard and spectral gradient sampling depending on the contri-
bution of a path pair via a user-defined threshold τ, as explained
below.

The gradient ∆
λλ′ can be estimated in an unbiased way using a

mixture of several sampling strategies, which has been expressed
in a general form by Manzi et al. as the Multiple Weighted Gradi-
ent Integrals technique (see [MRK∗14], Sec. 3.3). While originally
used to reduce singularities in the path-space, we employ the tech-
nique to improve performance. In our case, we have two sampling
strategies: uncorrelated standard sampling -Eq. 7) and sampling us-
ing correlated pairs of paths (Eq. 8). We can express the partial
gradient from λ in the symmetric formulation of Eq. 9 as a mix-
ture between these two strategies using a binary weight ws and its
complement ws = 1−ws:

∆
λ

λλ′ =
∫

Ωλ

ws(x,λ)wλλ′(x,λ)gλλ′(x,λ)+ws(x,λ) f (x,λ) dµ(x)

(15)

The weight ws is defined as:

ws(x,λ) =

{
1 if min

(
f (x,λ) , f

(
Sλ→λ′(x),λ′

))
> τ

0 otherwise
(16)

When the gradients are sampled symmetrically, a base path for λ

appears either simply as a sample for the integral of Iλ or in the
gradient formulation, where it is guaranteed that its offset path is
also shifted conversely. The value τ balances between standard and
gradient sampling and larger values mean that less spectral shifts
are performed. Since we designed the offset path to have a similar
contribution as its base path, it is likely that both paths either fail
or pass the shifting criteria together. We evaluate its influence in
Sec. 4.

3.4. Reusing Gradient Samples for Multiple Wavelengths

So far, a gradient sample only contributed to the wavelengths λ

and λ
′ that are associated with the base and offset paths. We com-

bine our approach with Hero wavelength sampling [WND∗14].
Hero wavelength sampling chooses a single wavelength λ0 for
path propagation, but lets each path sample contribute to several
other wavelengths which are evenly distributed over the spectrum.
Similarly, we can select two sets (. . . ,λ−2,λ−1,λ0,λ1,λ2, . . .) and(
. . . ,λ′

−2,λ
′
−1,λ

′
0,λ

′
1,λ

′
2, . . .

)
with C wavelengths which are posi-

tioned at equidistant locations around the wavelengths λ and λ
′.

Each wavelength λ
′
j is offset from λ j by δ. We now let the base and
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Figure 4: Hero Wavelength Sampling combination. We show how
to combine our Spectral Gradient Sampling technique with Hero
Wavelength Sampling. Similar to [WND∗14], we evaluate our base
and shifted paths for their own wavelength and also the rotated
wavelengths, thus covering the whole spectrum. The contributions
of each path for each wavelength are combined using an adapted
multiple importance sampling weight.

offset path of the gradient sample contribute to all wavelengths in
their corresponding sets. Intuitively, this process can be interpreted
as computing multiple versions of the gradient which are "rotated"
around the spectrum as illustrated in Fig. 4. For each j ∈ C, an es-
timator for Eq. 8 that performs Hero wavelength sampling is given
by:

∆λ jλ
′
j
≈ 1

N

N

∑
i=1

wλ(xi,λ j)gλ jλ
′
j
(xi,λ j) (17)

The multiple importance weight wλ(xi,λ j) accounts for every sam-
pling technique that is able to sample the path pair

(
x,λ j

)
and(

y = Sλ→λ′(x),λ′
j

)
. This pair can be directly sampled with the

wavelength λ j or it can be obtained by sampling the shifted path y
with the wavelength λ

′
j, which is then shifted. Additionally, x can

also be sampled with any other wavelength λk and then rotated,
or finally be generated by being shifted after sampling y with any
other wavelength λ

′
k. Hence, we define the weight as:

wλ(x,λ j) =
p(x,λ j)

∑
C
k=1 p(x,λk)+ p(Sλ→λ′(x),λ′

k)
(18)

A small overhead is introduced when computing the needed ad-
ditional probabilities. This sampling technique is most beneficial
to glossy and diffuse wavelength-dependent interactions, where a
path can contribute to multiple wavelengths.

4. Results

We integrated our method into the Mitsuba renderer [Jak10], build-
ing on top of the standard path tracing implementation. While
Mitsuba supports spectral rendering, it does not provide any
wavelength-dependent materials and we added dispersions based
on Cauchy’s equation [JW01] to the specular and rough dielectric
scattering functions. Mitsuba stores the spectral distribution of each
pixel in discretized form and the visible spectrum ranges from 360
nm to 830 nm. The visible spectrum is considered cyclic: if the
shifted wavelength λ

′ falls outside the range, it is put back on the
other end of the spectrum. We used a discretization of 15 equally-
sized bins, where each bin represents a range of around 31 nm. The
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Figure 5: δ and α evaluation. We evaluate the wavelength spacing
δ and the Poisson reconstruction parameter α for our test scenes
averaged over multiple sampling rates. The relMSE ratio defines
the gain of our method over standard sampling. (a) The trend shows
that δ values around 0.15 provide the best results. (b) Larger val-
ues for α favor the standard estimate during the Poisson recon-
struction. A reasonably good value can be found at α = 0.2 which
coincides with the findings for gradient-domain path tracing.

implementation of Mitsuba and our method is fully CPU-based,
implemented in C++ with multi-threading support.

We evaluate our method for three test scenes shown in Fig. 7(a).
In the POOL scene, a dispersive water surface is viewed through
a wavelength-dependent glass window. This scene should be ben-
eficial for our approach, as it exhibits several paths that can ben-
efit from our solution. The SUZANNE scene is a complex object
made of rough glass projecting colored caustics on the ground.
This scene is optimal for Hero wavelength sampling. Additionally,
the less advantageous configuration makes it a worst-case-like sce-
nario for our solution. The TORUS scene consists of a diffuse ob-
ject encased in perfect glass, showcasing complex specular-diffuse-
specular paths. The perfect glass lets Hero wavelength sampling
mostly revert to path tracing, while our approach can handle the
material. Still, the geometric configuration only allows a few paths
to profit from our approach. We focus our evaluation for each scene
on two image regions which are strongly affected by wavelength-
dependent phenomena (the regions are shown in Fig. 7). The ref-
erence images were rendered on a CPU cluster with 56 cores us-
ing 2 to 5 million samples per pixel which required several days.
All other results were captured on a Windows 10 PC with an Intel
Core i7-4770 CPU with 3.40 GHz and 16GB of system memory.
We report errors using the commonly-used relative mean-square
error (relMSE) [RKZ12] but also the perception-based structural
similarity (SSIM) [WBSS04] in Fig. 7 and Fig. 8, since reduc-
ing color noise greatly improves the image’s visual quality. The
reported timings include the sampling as well as the Poisson recon-
struction step. The latter only requires a few hundred milliseconds
for a mega-pixel image and is typically negligible compared to the
total rendering time.

Parameter Evaluation First, we evaluate the wavelength spacing
parameter δ for all three scenes averaged over multiple sampling
rates using an α value of 0.2 (proposed in [KMA∗15]). We report
the ratio between the standard path tracing error and our method
for equal sampling rates as an indicator for the achieved gain. We
express δ as a percentage over the whole spectrum (360-830 nm)
to make the evaluation suitable for other types of spectral repre-
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sentations besides discretized spectra. The highest gain is reached
around δ = 0.15, which corresponds to 15% of the spectral range
(Fig. 5(a)). Consequently, we used this value as a default setting for
all evaluations.

The parameter of the Poisson reconstruction α was empirically
tested (Fig. 5(b)). Again, the gain of our method is compared to
path tracing with the same sampling rate. As expected, a large α

reduces the impact of gradient sampling and reduces the gain. Fol-
lowing [KMA∗15], α = 0.2 gives reasonable values and is used for
the following evaluations.

Our method can tradeoff gradient sampling and standard path
tracing (Sec. 3.3) via a shift threshold parameter τ, as illustrated in
Fig. 6. Increasing τ implies that fewer paths are shifted, which de-
creases the efficiency of our method but also reduces time overhead.
However, the gain of our method decreases slower since the paths
omitted from shifting have rather small contributions early on. Our
method achieves a gain even for larger thresholds, where very few
paths are shifted. These paths are typically outliers, which heavily
benefit from our spectral gradient sampling. We report statistics on
the percentage of performed shifts and redundant shift attempts in
Table 1 and it can be seen that the overhead from redundant shifts is
small, especially for lower thresholds. The threshold value depends
on the spectral complexity of the scene and we choose trade-off
values of 2.5 (SUZANNE), 5.0 (TORUS), and 10.0 (POOL) for the
following comparisons.

Comparison with previous approaches We compare our method
to standard path tracing and Hero wavelength sampling in Fig. 7.
We do not include the combination with Hero wavelength sampling
(Sec. 3.4), as our tests showed that the difference to standard Hero
wavelength sampling is small. For all other techniques, we present
visual comparisons with varying sampling rates, as well as conver-
gence plots (in terms of relMSE and SSIM; the axes are given in
the log-scale, except for the SSIM axis). It can be seen that our
method usually improves convergence over path tracing and gives
visually more pleasant results with less chromatic noise, except for
the TORUS scene, where both results are similar. An explanation
is that our spectral shift is based on the mapping from gradient-
domain path tracing which is not as efficient for specular-diffuse-
specular paths, as described in [KMA∗15]. In the POOL and TORUS

scenes, we clearly outperform Hero wavelength sampling, as it can-
not handle perfectly specular materials and leads to an overhead.
When the first bounce after the camera is diffuse and not disper-
sive (as in Fig. 7(c) and (g)), our method performs the best since
paths mostly bounce on diffuse surfaces and encounter few disper-
sive materials. In contrast, the SUZANNE scene is optimal for Hero
wavelength sampling and a worst-case scenario for our solution,
yet our method performs almost on par. In this scene, both shown
insets exhibit the same trend since they represent the same condi-
tions: a caustic formed by a rough glass object.

Denoising filtering Given that our approach reduces color noise,
it can also prove beneficial when applying filtering to denoise the
results – see Fig. 8. The SUZANNE scene’s glass in this example is
not rough as in Fig. 7, but instead clear, which is a case that can-
not be handled well by Hero wavelength sampling. We employed
a bilateral filter whose parameters were chosen manually to obtain
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Figure 6: Shift Criteria Threshold. The plot shows the influence
of the shift criteria parameter τ on time overhead and achieved
gain (relative to standard path tracing for the same sampling rate).
While the gain of our method reduces with increasing τ, the time
overhead drops faster. By adjusting the parameter for each scene,
a good trade-off can be found.

τ SUZANNE TORUS POOL

0.1 48.3% / 8.6% 64.5% / 17.4% 42.52% / 7.9%
1.0 17.8% / 3.9% 32.5% / 10.1% 38.87% / 7.8%
10.0 5.0% / 1.5% 0.04% / 0.02% 28.07% / 6.6%

Table 1: Shifting Statistics. The table shows the average percent-
age of base paths that fulfill the shifting criteria for our test scenes
rendered with 256 samples per pixel. The second reported number
is the percentage of shifted paths for which the base path passes the
criteria but the shifted path does not.

a good result for Hero wavelength sampling and then kept identi-
cal for our approach. The filtered images improve significantly in
quality and our improved color correlation manifests itself in terms
of an improved relMSE and SSIM.

Spiky illuminants A limitation that our method shares with previ-
ous techniques is efficient handling of luminaires with spiky spec-
tral distributions. When a ray hits a luminaire with a wavelength
inside the illuminant spike, the shifted ray can fall off the interest-
ing spectrum region in case of a spiky spectrum. The gradient be-
tween the two rays is substantial since the shifted ray conveys very
little energy. Nevertheless, covering only a small spectral range,
the advantage of gradient sampling for spiky illuminants was too
small with respect to its cost, as confirmed by various tests we ran.
Additionally, sampling rays that do not contribute to the final im-
age is costly. Hence, with our cost-reduction scheme described in
Sec. 3.3, such low-energy rays are actually discarded. Here, our
technique automatically falls back to standard spectral path tracing.
The behavior of Hero wavelength sampling faces similar difficul-
ties and does not perform well – a rotated wavelength is a quarter
of spectrum away from the main wavelength and falls outside of
the spectral spike as well.

5. Conclusion

We introduced spectral gradient sampling as a new noise reduction
technique for spectral Monte-Carlo light transport. Our approach
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Figure 7: Comparison with previous approaches. The figure shows a visual comparison of our method to standard path tracing (PT) and
Hero wavelength sampling (Hero) for multiple sampling rates. Furthermore, convergence plots are provided for a numerical equal-time
comparison (note that the "relMSE" and "Time" axis are given in the log-scale). Our method provides significant improvement over path
tracing and performs better than Hero wavelength sampling for scenes for which the latter reverts to path tracing (e. g. for the POOL scene).
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Figure 8: Filtering. With our reduced color noise, denoising (here with a bilateral filter) produces smoother results with our method. Both
raw images were rendered with the same amount of samples using Hero wavelength sampling (b and e) or our method (c and f).
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directly estimates the gradients of a pixel’s spectral distribution us-
ing pairs of paths, which are correlated in the spectral domain. Fi-
nal pixel colors are computed from the noisy spectral distributions
and their estimated gradients by solving a 1D screened Poisson re-
construction. To generate pairs of correlated paths, we introduced
a novel shift function which performs mappings in the spectral do-
main. Further, we proposed a weighting scheme to focus on high-
energy paths, reducing the computational overhead of our method.
Our approach can significantly reduce color noise and offers in-
creased convergence when integrated in a conventional path tracer.
While currently not beneficial in practice, our method is orthogonal
to previous approaches, as demonstrated by combining it with Hero
wavelength sampling.

Integration in bidirectional path sampling and application in a
Metropolis Light Transport context seem fruitful directions for
future work. Finally, we would like to extend our spectral shift
mapping beyond the spectral domain (e.g., explore a combination
with image and temporal gradients) and investigate more advanced
shift mappings to support scenes with complex specular-diffuse-
specular transport.
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