
Persistent Naming Through Persistent Entities

Rafael Bidarra and Willem F. Bronsvoort
Faculty of Information Technology and Systems

Delft University of Technology
Mekelweg 4, NL-2628 CD Delft, The Netherlands

Email: (Bidarra/Bronsvoort)@cs.tudelft.nl

Abstract

Current parametric modeling systems suffer from the per-
sistent naming problem, which is responsible for the un-
predictable, sometimes stunning, behavior of such systems
when re-evaluating a model, even after simple editing
operations.
This paper claims that the problem is an inherent diffi-
culty of history-based parametric modeling, and that it is
of little use to insist on developing more and more persis-
tent naming schemes which end up solving only a fraction
of the problem. Instead, it is argued that the rationale
behind such schemes should itself be revised. Alternative
approaches to define a parametric model based on per-
sistent parametric entities can, in fact, eliminate the use of
references to non-persistent geometric model entities,
which is the cause of the problem.
One such approach is described here, which is able to
take full advantage of parametric solid modeling. It pro-
vides persistent entities in the parametric definition do-
main, which can be safely and consistently referred to. A
number of examples illustrate how user specification of
modeling operations can be performed through interac-
tion with a declarative feature model.

Keywords: parametric modeling, feature modeling,
boundary representation, persistent naming

1. Introduction

Most current modeling systems are parametric, history-
based feature modeling systems using a dual representa-
tion for solid objects: on the one hand a parametric defi-
nition of the object, on the other hand a boundary repre-
sentation (b-rep) of the resulting shape; see Figure 1. The
parametric definition can consist of a large variety of in-
formation, usually organized in a graph structure. Typi-
cally, the graph represents relations involving instances of
parameterized features, constraints, set operations, auxil-

iary geometric entities, etc. Among these relations, the
most important is usually the order of creation of feature
instances, defining the so-called model history.

Creating a new feature in the model, by providing a set
of input values for its parameters, appends a new node to
the model history, yielding a new parametric definition of
the object. Similarly, feature instances can be modified by
specifying new values for their parameters, or be deleted
from the model. This is done by modifying, or deleting,
the respective feature node in the model history. When-
ever a new parametric definition is obtained, it can be
input to the boundary evaluator, which generates the cor-
responding new boundary representation. This can be re-
alized by, for example, sequentially re-executing all op-
erations in the modified model history.

The ability to easily generate variants of a feature
model has been pointed out as the most important reason
for the popularity of current parametric modeling systems
[9]. An important characteristic of these systems, high-
lighted by the loop in Figure 1, is that they allow the use
of topologic entities (e.g. edges and faces) of the b-rep in

Parametric
definition

Boundary
representation

Boundary
evaluator

boundary entities usable
in future definitions

Figure 1. Dual representation in
current parametric modeling systems

Proceedings of the Geometric Modeling and Processing — Theory and Applications
0-7695-1674-2/02 $17.00 © 2002 IEEE

the specification of subsequent parametric definitions.
Consequently, each node in the model history typically
contains references to topologic entities of the intermedi-
ate b-rep which resulted from the previous modeling step.
As an example of this, the model in Figure 2.a shows a
cylindrical through slot, attached to the top face of the
model, and positioned at a distance a from the indicated
edge, causing the top face of the model to be split into
faces f1 and f2. In the next modeling step, a rib is attached
to face f2, at a distance b from an edge of f1, as indicated in
Figure 2.b.

Obviously, references to boundary entities in paramet-
ric definitions should always be unambiguous, so that
these entities can be unequivocally identified, every time
the boundary evaluator is called to create a new b-rep.
However, a general property of b-reps is that topologic
entities may be split, as the top face in Figure 2.a, merged
or deleted because of modeling operations. As a result,
parametric definitions referring to such entities can be-
come ambiguous or invalid, and therefore unsuitable for
the boundary evaluator. This is usually called the persis-
tent naming problem.

This problem has been classified as one of the most se-
rious difficulties plaguing current parametric solid mod-
eling systems. As Ragothama and Shapiro [8] put it, “the
new solid modeling systems no longer guarantee that the
parametric models are valid and unambiguous, and the
results of modeling operations are not always predict-
able”.

This paper claims that this problem is an inherent diffi-
culty of history-based parametric modeling, and that it is
of little use to insist on developing more and more persis-
tent naming schemes which end up solving only a fraction
of the problem. Instead, it revises the rationale that led to
such schemes, and presents an alternative approach to
parametrically define a model, which does not involve any
references to changeable boundary model entities, but

instead to persistent entities in the parametric definition
only.

The paper first briefly surveys current approaches to
the persistent naming problem (Section 2). Next, an alter-
native approach to the definition of parametric models is
presented, which effectively solves the problem (Section
3). This approach is further elaborated, and its use is il-
lustrated with examples of parametric definitions referring
to faces (Section 4) and to edges (Section 5). These ex-
amples have been kept relatively simple, to best illustrate
the basic ideas, but more complex models are also cor-
rectly handled. Finally, some conclusions are given (Sec-
tion 6).

2. Current approaches

Persistent naming is the process of tracking and identify-
ing topologic entities as a model evolves. Currently, all
commercial parametric modeling systems use a b-rep, and
have their own scheme for maintaining persistent names,
based on their own taxonomy of situations, heuristics and
matching rules. Little is known of their details, which are
proprietary information, let alone of the underlying theory,
if any.

The main goal of such schemes is to guarantee that the
boundary evaluator produces a valid boundary, in a de-
terministic way. In practice, although they seem to work
correctly in some foreseen situations, all these schemes
exhibit unpredictable results after certain modeling opera-
tions, which are not even the same for all systems. Be-
cause there are no standards for either defining persistent
names or consistently using them in parametric defini-
tions, “different systems employ incompatible, ad hoc, and
often internally inconsistent semantics for processing
parametric models” [9].

A typical situation is illustrated in Figure 3, with a very
simple operation on the model of Figure 2.b. The position

 (a) an attach face is split by the round
slot

 (b) a resulting edge is used for
positioning the rib

 Figure 2. Using boundary entities in parametric definitions

Proceedings of the Geometric Modeling and Processing — Theory and Applications
0-7695-1674-2/02 $17.00 © 2002 IEEE

of the round slot is modified, making the parameter value
a equal to the radius of the slot, by which face f1 in Figure
2.a collapses into an edge. According to the positioning
constraints specified, the user would most likely expect
the model in Figure 3.a as the result of this parameter
modification. However, some current modeling systems
produce the model in Figure 3.b, and other systems the
model in Figure 3.c, where the rib is flipped across the
slot and becomes disconnected from the object.

Because the slot edge used to position the rib (Figure
2.b) has been merged with another edge, it is possible to
guess what the rationale is behind these disparate results:
according to its particular naming scheme, a system may
select the merged edge (Figure 3.a), another edge of the
slot (Figure 3.b), or the merged edge but the other side of
it (Figure 3.c), to position the rib.

Several schemes have been proposed to alleviate the
persistent naming problem [4, 3, 2, 5], so that the bound-
ary re-evaluation can at least be consistently executed. See
ref. [6] for a recent survey on the persistent naming prob-
lem, containing several more references. All these
schemes use auxiliary data structures to keep track of how
faces and edges evolve, but don’t really solve the problem,
as explained in ref. [8], where the persistent naming
problem was first formalized.

Raghothama and Shapiro [8] introduced boundary rep-
resentation deformations in their approach to the problem,
which they related to the question of how to define fami-
lies of objects in parametric modelling. The main issue in
the latter is to determine which objects belong to a family,
defined by a prototype model, and which objects do not.
Basically they argue that as long as a continuous boundary
deformation is possible from the prototype model to the
new instance, the latter is considered to be a member of
the family. However, as they also admit, continuous de-
formations seem to be too restrictive, and operations like
splitting and merging of model entities would have to be
dealt with, in order to allow topological changes such as
the elimination of holes, but this has not been elaborated.

It can be concluded that the current approaches to per-
sistent naming have not completely solved the problem.
This is caused by a wrong starting point: they all try to
keep track of b-rep entities that are not persistent, and this
is impossible in a truly generic way. It seems, therefore,
more effective to develop a new approach, with a better
starting point.

3. An alternative approach

All approaches mentioned in the previous section are in
one way or another tied to the generic scheme of Figure 1.
Their basic reasoning goes as follows:

1. intermediate boundary entities must be available
for use in parametric definitions;

2. however, such entities have a transient existence
in b-reps;

3. hence, we need to give them persistent names.
As a result of the closed loop in Figure 1, parametric

definitions are dependent on (the entities of) a previously
generated b-rep, while at the same time they determine a
new resulting b-rep. Since this interdependence between
parametric definitions and boundary representations is the
main cause of the persistent naming problem, one may
legitimately wonder whether it is possible to eliminate the
loop in Figure 1. In other words, wouldn’t it be possible to
drop requirement 1 above, and still provide powerful
parametric definition capabilities?

This question is affirmatively answered in this section,
which presents an alternative approach to the parametric
definition of feature models. Its basic idea can be summa-
rized as follows:

1. provide persistent entities in the parametric defi-
nition domain (instead of in the b-rep domain);

2. consistently refer to these entities, whenever
needed, in any parametric definition.

 (a) (b) (c)

 Figure 3. Disparity of boundary evaluation results

Proceedings of the Geometric Modeling and Processing — Theory and Applications
0-7695-1674-2/02 $17.00 © 2002 IEEE

A similar idea has been hinted before by Pratt [7], but, to
the best of our knowledge, it has never been elaborated.
Clearly, the lion’s share of this approach lies in task 1
above. Once we have persistent entities at our disposal,
using them in a systematic way is straightforward, pro-
vided that they are generic and intuitive enough to express
our intent. The next subsections introduce three categories
of such entities that effectively support this approach:
feature, reference and constraint classes. A parametric
feature model basically consists of interrelated instances
of these classes, and thus contains persistent entities only.

3.1. Feature classes
The notion of feature class, extending that used in current
parametric feature modeling systems, is particularly useful
in this approach. A feature class can be defined as a
structured description of all properties of a given feature
type, defining a template for all its instances.

Feature class descriptions build on a parameterized
volumetric shape, accounting for a bounded region of
space, called the feature’s shape extent. This parameter-
ized shape allows us to think of a feature class as a para-
metric family of objects.

On the boundary of the shape extent, one can distin-
guish each boundary entity (e.g. face or edge) with a
unique, generic name. Such entities are usually called
feature elements. For example, Figure 4.a depicts the
shape of a cylindrical hole class, indicating some of its
feature element names. As will be shown in the following
sections, such feature elements, unlike b-rep entities, are
never split, merged or deleted, even though their geomet-
ric representation may be.

In addition to the boundary entities just mentioned,
other uniquely named feature elements linked to the fea-
ture shape may be specified as auxiliary geometric entities
in a feature class, so-called datums or references. Exam-
ples of these are the axis line reference or a longitudinal
symmetry plane reference of a cylindrical hole; see Figure
4.b.

Internally, a feature class encapsulates a set of con-
straints which geometrically and/or algebraically relate its
shape parameters and its feature elements. All these fea-
ture constraints and feature elements are members of the
feature class, and are therefore automatically instantiated
with each new feature instance. Furthermore, a feature
class associates to its shape the notion of feature nature,
indicating whether its feature instances represent material
added to or removed from the model (respectively addi-
tive and subtractive natures).

Typically, the feature elements and a number of feature
shape parameters are made public in a feature class, and
belong therefore to the class interface. In addition, each
feature class may specify in its interface a number of po-
sitioning and orientation schemes, which relate some of its

feature elements to external entities. The latter can be cho-
sen out of, for example, the feature elements of features
already present in the model. For example, the top and
bottom faces of a through hole’s cylindrical shape may be
used to attach it to, say, the top and bottom faces of a
block, respectively.

The main advantage of using feature elements for at-
taching and positioning features relative to each other in a
model, is that each of these elements is indeed persistent,
and therefore its unique name is also persistent. In fact,
assuming no two feature instances have equal names, the
combination
<feature instance name>.<feature element

name>
univocally determines one and only one entity, which can
always be found in the parametric definition, as long as
that feature instance has not been explicitly removed.

The next subsection explains that besides feature ele-
ments, also other persistent entities may be useful in
parametric definitions for attaching, positioning or orien-
tating features.

3.2. Reference classes
The use of references was introduced above with the goal
of providing auxiliary datums for a feature shape, within
the scope of feature classes. This notion can now be taken
one step further, by observing that standalone reference
instances can also play a very useful role in creating and
editing features in a model. For example, instead of posi-
tioning each hole in a row relative to some common fea-
ture element in the model, it may be much more conven-
ient to first place a reference plane, at a given distance of

 (a) (b)

 Figure 4. Feature elements of a cylindrical hole

Proceedings of the Geometric Modeling and Processing — Theory and Applications
0-7695-1674-2/02 $17.00 © 2002 IEEE

that common feature element, followed by the creation of
the hole instances, each one positioned relative to this
reference plane. Subsequent displacement of these holes
can then be easily achieved in one step by modifying that
reference’s position. In other words, this use of references
allows positioning of other features relative to entities in
the parametric definition that do not even correspond to
any face or edge in the boundary representation of an ob-
ject.

In order to make possible the creation and use of such
standalone reference instances in parametric definitions, a
number of reference classes should be available to the
user of the modeling system. Basic examples of these are
a plane reference class and a line reference class, from
which other classes can easily be derived or composed.
Each reference class should provide its own positioning
and orientation scheme, which fixes the degrees of free-
dom of a reference relative to other feature or reference
elements in the parametric model. Again, referring to such
entities is not only unambiguous, but it is also always
valid, as long as those entities remain in the parametric
definition.

Similarly as for feature instances, each reference in-
stance is assigned a unique name when it is created in a
parametric definition.

3.3. Constraint classes
The third and last building block for sound parametric
definitions in this approach regards constraint classes.

Various categories of constraints exist (e.g. algebraic,
geometric and topologic constraints), each one with its
own solving methods. We concentrate here on geometric
constraints, because typically this category is most directly
involved in current persistent naming problems, as illus-
trated in the example of Figure 3.

Geometric constraints were already implicitly referred
to in the previous subsections, in connection with the po-
sitioning and orientation schemes of features and refer-
ences. For that purpose, they were members of the respec-
tive feature or reference class, hence automatically created
with each of its instances.

However, additional geometric constraint instances can
be profitably used in parametric definitions in order to
express one’s intent in a model. In conformity with the
goal of the new approach, the only condition for the use of
such constraint instances is that they should establish their
relations among entities in the parametric definitions, i.e.
feature element instances and/or reference instances, in-
stead of among boundary entities in the b-rep of the ob-
ject. Simple examples of geometric constraint classes are
distance-face-face – imposing a given distance between
two parallel, planar entities –, and distance-line-face –
imposing a given distance between a reference line and a
parallel, planar entity.

4. References to feature faces

In this section it will be illustrated how our approach
works with a few examples of parametric definitions in-
volving feature elements. For this, one should keep in
mind that each face in the b-rep of a feature model is al-
ways a geometric representation of (possibly a part of) a
feature element of type ‘face’ (or feature face, for short).
In more informal terms, if one would “stamp” each b-rep
face with the name of the feature face from which it origi-
nates, no b-rep face would remain unvisited. This property
is very important for user interaction purposes, at the mo-
ment of picking some b-rep face on the visualized model,
e.g. in order to attach or position a feature: it is always
possible to find out which corresponding feature face
should be stored in the parametric definition of the opera-
tion.

For example, if one wishes to attach a through hole in-
stance to the model of Figure 5.a, as shown in Figure 5.b,
all that is needed is to let it refer to the top and bottom
feature faces of the block instance as its attach faces. Ad-
ditionally, one will have to choose two other feature ele-
ments for fixing the through hole’s position, e.g. the
block’s right face and the slot’s left face, as shown in
Figure 5.b.

All entities referred to in this operation are persistent
feature elements, and thus always available in the para-
metric definition of the object. Moreover, the relations
established with this operation unambiguously define a
dependency between the new feature (the through hole)
and the features which it refers to (the block and the slot).
As a result, it is always possible to determine within a
parametric definition which entities depend on a given
entity, so that removal of the latter may be disallowed as
long as those dependencies are not cleared away. In the
example of Figure 5.b, removing the slot of the model is
not possible as long as it has the through hole as a de-
pendent feature instance. Fortunately, this dependency can
easily be removed, by modifying the parametric definition
of the through hole, for example, repositioning it relative
to the block’s front face; see Figure 5.c.

5. References to boundary edges

The example in the previous section deals with the use of
feature faces for attaching and positioning features. How-
ever, some feature classes, e.g. chamfers and blends, are
intuitively associated with edges, rather than with faces,
on a b-rep. An apparent problem with this is that, in con-
trast to the correspondence observed in Section 4 between
b-rep faces and feature faces, not all edges in the b-rep of
a feature model are a geometric representation of some
feature element of type ‘edge’ (or feature edge, for short).

Proceedings of the Geometric Modeling and Processing — Theory and Applications
0-7695-1674-2/02 $17.00 © 2002 IEEE

For example, in the model with two crossing slots of
Figure 6, the highlighted edges are not representing fea-
ture edges of either slot, but result instead from the inter-
section of their side faces. Such edges of a b-rep are here
called intersection edges, to distinguish them from those
representing feature edges.

In any case, for each edge in a manifold b-rep holds
that it has always two and only two adjacent b-rep faces.
In turn, because each of these two b-rep faces is always
representing some feature face, the problem of referring to
a b-rep edge can again be transferred to a problem in the
parametric definition domain, involving the corresponding
feature faces. These two faces can therefore be used to
identify that edge, although they will not always be suffi-
cient, as will be shown later in this section.

A few examples are now given that illustrate how this
method of referring to edges is put into practice in various
situations. In the first example, a chamfer is created on an
edge of a slot; see Figure 7. To specify this in the paramet-
ric definition of the chamfer, the two feature faces –
slot.right and block.top – corresponding to the b-rep faces
adjacent to that edge, are stored as the attach faces for the
chamfer. In addition, two other feature faces should be
provided that bound the start and end of the chamfer, in

this case block.left and block.right.
The fact that two feature faces, instead of two b-rep

faces, are used to identify an edge does not necessarily
mean that only a complete feature edge can be referred to,
as was the case in the chamfer of Figure 7. For example,
in Figure 8 another chamfer is attached to a b-rep edge
that is a part of a block edge. Although the feature edge
adjacent to the feature faces block.top and block.right
corresponds to two b-rep edges (see Figure 8.a), the start
and end bounds of the chamfer in Figure 8.b – block.front
and slot.left – univocally determine the desired result.

A third example shows that this method also applies for
referring to intersection edges. In Figure 9, a chamfer on
an intersection edge is specified, by identifying its two
adjacent b-rep faces, determining the corresponding fea-
ture faces –slot1.left and slot2.right–, as shown in Figure
9.a. The start and end of this chamfer are specified as in-
dicated in Figure 9.b.

All examples given so far deal with planar feature
faces, which always intersect along a single rectilinear
edge. Dealing with non-planar feature faces, in contrast,

 (a) attach faces (b) positioning faces (c) alternative positioning faces

 Figure 5. Referring to feature faces to attach a through hole

Figure 6. Intersection edges on a b-rep model

(a) (b)

Figure 7. Creating a chamfer on a feature edge

Proceedings of the Geometric Modeling and Processing — Theory and Applications
0-7695-1674-2/02 $17.00 © 2002 IEEE

requires the ability to handle multiple intersection edges
between feature faces. A number of examples will demon-
strate how the approach successfully applies to such cases
as well.

The basic idea is that whenever two feature faces inter-
sect along multiple edges, the explicit use of references
should identify the particular edge to be chosen. In the
following examples, distinguishing such multiple inter-
sections is achieved through the use of auxiliary planar
references, defined within the feature classes with shapes
involving non-planar faces; see Figure 4 in Subsection 3.1
for an example.

In the first example, a blend has to be made on one of
the side edges of a round slot; see Figure 10.a. Because
the two feature faces defining that edge –cylinder.top and
roundslot.side– intersect twice, the longitudinal plane ref-
erence of the round slot is used to identify the edge to be
blended. In Figure 10.b, the one in its right half space has
been chosen.

The second example consists of blending one of the
edges highlighted in Figure 11.a. Because the two cylin-

drical feature faces –cylinder.side and roundslot.side–
intersect twice, a transversal plane reference of the round
slot is used to identify the edge to be blended; see Figure
11.b.

An advantage of this approach is that the
disambiguating role of these references only needs to be
invoked if the two attach feature faces actually have
multiple edge intersections. For example, displacing the
round slot in Figure 11.b to the left, as shown in Figure
11.c, yields one single intersection edge. Hence there is no
longer ambiguity for attaching the blend feature to the
edge defined by the cylinder.side and the roundslot.side
faces. In this case, even though the transversal plane
reference of the round slot still keeps its information, it
does not need to be taken into account. However, if later
on the round slot is moved back to, say, its original
position of Figure 11.b, the reference’s information would
again be used to select the correct edge for the blend
feature.

If the round slot were originally located as shown in
Figure 11.c, and the edge blend subsequently applied, an
essentially different situation would occur, because that
edge can be univocally determined by its two adjacent
faces, without recurring to references of any features.
However, if later on that round slot is displaced to the
position shown in Figure 11.b, so that two intersection
edges occur, the user will have to explicitly identify which
of them (or possibly both) should be blended.

6. Conclusions

An alternative approach has been presented to solve the
well-known persistent naming problem in parametric fea-
ture modeling systems. Usually a dual representation is
used in such systems: a parametric definition and a b-rep

 (a) (b)

 Figure 8. Creating a chamfer on part of a feature
edge

(a) (b)

Figure 9. Creating a chamfer on an intersection
edge

(a) (b)

Figure 10. Identifying an edge for blending

Proceedings of the Geometric Modeling and Processing — Theory and Applications
0-7695-1674-2/02 $17.00 © 2002 IEEE

of the resulting shape. It was shown that the problem oc-
curs because in the parametric definition of an object,
non-persistent entities in intermediate b-reps are refer-
enced to attach and position additional features in the
model.

Previous attempts to solve the problem tried to keep
track of all non-persistent entities with auxiliary data
structures, but this has so far not been successful, and it is
questionable whether it will ever be.

A completely different approach was therefore pro-
posed, in which all references are made to entities in the
parametric definition, instead of in the b-rep. Such entities
are persistent and so, obviously, their names too. One
might say that in this way the persistent naming problem
in its original formulation was in fact avoided.

The approach has been illustrated with several exam-
ples resulting from an implementation in our prototype
semantic feature modeling system [1]. However, it may be
used in any parametric modeling system, as long as there
is a clear separation between the parametric definition and
the representation of the resulting shape, and all refer-
ences are made to entities in the parametric domain.

Acknowledgements
We thank Klaas Jan de Kraker for valuable comments on
the manuscript, and Eelco van den Berg for his assistance
in producing most figures.

References
[1] Bidarra, R. and Bronsvoort, W.F. (2000) Semantic feature

modelling. Computer Aided-Design 32(3): 201–225
[2] Capoyleas, V., Chen, X. and Hoffmann, C.M. (1996) Ge-

neric naming in generative, constraint-based design. Com-
puter-Aided Design 28(1): 17–26

[3] Chen, X. and Hoffmann, C.M. (1995) On editability of
feature-based design. Computer-Aided Design 27(12): 905–
914

[4] Kripac, J. (1995) A mechanism for persistently naming
topological entities in history-based parametric solid mod-
els. In: Proceedings Solid Modeling ‘95 – Third Sympo-
sium on Solid Modeling and Applications, 17–19 May, Salt
Lake City, UT, USA, Hoffmann, C.M. and Rossignac, J.R.
(Eds.), ACM Press, New York, pp. 21–30. Also in: Com-
puter-Aided Design 29(2): 113–122

[5] Lequette, R. (1997) Considerations on topological naming.
In: Product Modeling for Computer Integrated Design and
Manufacturing – Proceedings TC5/ WG5.2 International
Workshop on Geometric Modeling in Computer Aided De-
sign, 19–23 May 1996, Airlie, VA, USA, Pratt, M., Sriram,
R.D. and Wozny, M.J. (Eds.), Chapman & Hall, London,
pp. 394–403

[6] Marcheix, D. and Pierra, G. (2002) A survey of the persis-
tent naming problem. In: Proceedings Solid Modeling ‘02 –
Seventh Symposium on Solid Modeling and Applications,
17-21 June, Saarbrücken, Germany, Lee, K. and Patrika-
lakis, N.M. (Eds.)

[7] Pratt, M.J. (1988) Synthesis of an optimal approach to form
feature modelling. In: Proceedings of the 1988 ASME
Computers in Engineering Conference, August, San Fran-
cisco, CA, USA, ASME, New York, Vol. 1, pp. 263–274

[8] Raghothama, S. and Shapiro, V. (1998) Boundary repre-
sentation deformation in parametric solid modeling. ACM
Transactions on Graphics 17(4): 259–286

[9] Shapiro, V. and Vossler, D.L. (1995) What is a parametric
family of solids? In: Proceedings of Solid Modeling ‘95 –
Third Symposium on Solid Modeling and Applications, 17–
19 May, Salt Lake City, UT, USA, Hoffmann, C.M. and
Rossignac, J.R. (Eds.), ACM Press, New York, pp. 43–54

 (a) (b) (c)

 Figure 11. Identifying an edge for blending at feature instantiation stage

Proceedings of the Geometric Modeling and Processing — Theory and Applications
0-7695-1674-2/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

