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Summary. A virtual endoscopic view is not necessarily the best way to examine
a hollow organ, such us, the colon. The inner surface of the colon is where polyps
are located, and therefore what is examined by the physicians. A flight through the
colon using a common endoscopic view shows a small percentage of the inner surface.
Virtually unfolding of the colon can be a more efficient way to look at the inner
surface. We propose two methods to unfold the colon: a method that unfolds the
colon locally using local projections, and a method that obtains a global unfolding
of the colon by achieving a suitable parameterization of its surface.

1 Introduction

Most of the virtual endoscopy applications presented in the last years concentrate
on simulating the view of a real endoscope. This is the view that endoscopists are
used to, and it is useful for certain applications. like in an intraoperative scenario.
However. it is not necessarily the best way to inspect the inner surface of an organ.
Actually, a real endoscope and organ are subject to physical limitations that a
virtual endoscope and organ do not have. In this chapter. we concentrate on virtual
colonoscopy, which focuses on the examination of the colon.

Physicians are mainly interested in visualizing the inner surface of the colon
which is where polyps can be detected with endoscopy. It is important that the
physician can estimate the size of polyps, since large polyps are more likely to
develop into malignancies. The usual endoscopic view visualizes just a small part of
the surface. Furthermore, it is difficult to detect polyps that are situated behind the
folds of the colon. An efficient way to inspect the inner surface would be to open and
unfold the colon, and then examine its internal surface. Unfortunately. this cannot
be done in reality, if we want that the patient survives. On the other hand. there
is no patient damage if this dissection of the organ can be achieved virtually with
the medical data obtained by CT or MRI (i.e.. the virtual organ). The resulting
unfolded model has to facilitate the physician’s inspection and detection of polyps.

In this chapter, we present different approaches to unfold the colon. After an
overview of the existing methods, we present in detail two methods: a method that
unfolds the colon locally using local projections, and a method that obtains a global
unfolding of the colon.
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Fig. 1. Illustration of the possible undersampling and multiple appearance of
polyps due to intersections of the cross-sections in high curvature areas. The dashed
cross-section line produces a multiple appearance of the polyp.

2 Related Work

Wang et al. [20] proposed a technique to straighten and unravel an organ virtually.
Their approach starts with defining a path which is placed as close to the center
of the object as possible. Then, a sequence of frames is calculated. For each frame,
a cross-section orthogonal to the path tangent is calculated. The central path is
straightened and the cross-sections are piled to form a stack. As a last step, the
straightened colon is unfolded by tracing rays in radial directions to the path.
The result is a volumetric model of the unfolded colon. The model is displayed
afterwards using standard volume rendering techniques. This method can be seen
as a resampling and parameterization operation.

However, one of the main problems of this technique appears in high curvature
areas of the central path. i.c., at path locations where the radius of curvature is
bigger than the organ diameter. In such cases, orthogonal cross-sections intersect
cach other in some regions or are far apart in some other regions (see figure 1). As
a consequence, a polyp can appear more than once in the unfolded model or it can
be missed completely. These probleins are the consequence of undersampling and
an ambiguous parameterization of the organ surface.

In later works Wang et al. [18.19] try to overcome these problems. The au-
thors use electrical field lines generated by a locally charged path to govern curved
cross-sections instead of planar sections. The cross-sections tend to diverge avoid-
ing conflicts. If the complete path is charged then the curved cross-sections will not
intersect. However, for each point of the field lines the contribution of each charge
on the path must be calculated. This operation is computationally so expensive
that the authors propose to just locally charge the path. A small segment of the
path contains the charges for each cross-section. In this way. the method is feasible
in practice, but it cannot ensure anymore that the curved cross-sections will not
intersect each other. In other words, it cannot ensure that the parametrization of
the space will be unambiguouns. Furthermore, the undersampling is still a problem.
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Other authors propose methods to flatten a polygonal representation of the
colon surface. These techniques involve tasks that have already been used in texture-
mapping for computer graphics. A major step thereby is to come up with a suitable
surface parameterization. For texture mapping, this parameterization is used to as-
sign texture values to surface points. For surface flattening the parameterization
allows to display surface values (e.g., color) in the 2D parameter space [13]. Many
techniques are dealing with texture distortions which generally cannot be avoided
entirely. The distortions depend on the chosen surface-parameterization character-
istics {c.g., length and arca preserving [2], angle preserving [6] or a combination of
both [3,9]).

Haker et al. [5] use conformal (i.e., angle preserving) texture mapping to map the
polygonal colon surface to a plane. One of the main problems of this method is that
a highly accurate segmentation is necessary to ensure good results for diagnosis. The
entire polygonal surface is flattened. The result is a triangulated plane where the
polyps have also been flattened. Shading is applied to the flattened surface using the
normals of the original surface and the color-coded mean curvature. This is the only
information which helps the physician in identifying polyps in the unfolded plane.
Furthermore, the surface needs to be smoothed to achicve a good mean-curvature
calculation which can imply smoothing and missing polyps.

In the previous methods, the whole colon surface was unfolded or flattened.
To increase the visible surface, Paik et al. [12] propose to use different camera
projections. With a normal endoscopic view just 8% of the solid angle of the camera
is seen in each frame. Paik et al. project the whole solid angle of the camera by
map projection techniques used for geographical charts. They suggest to use the
Mercator projection for mapping the solid angle to the final image. This technique
samples the solid angle of the camera, then the solid angle is mapped onto a cylinder
which is mapped finally to the image. This method generates a video that the
physician has to inspect.

Serlie et al. [14] present a method based on image-based rendering. In a pre-
processing step, a cubic environment map is calculated at each camecra position
along the central path. These environment maps can be used to obtain real-time
navigation using image-based rendering, as proposed by Wegenkittl et al. [21]. Ser-
lic et al. [14] also propose to display these cubic maps unfolded in order that the
physician has a 360 degrees field of view.

All these methods introduce some kind of deformation. Flattening a surface
in 3D space onto a 2D plane introduces distortions unless the surface has zero
Gaussian curvature. {11]

3 Local Colon Unfolding

In this section, we propose a method to unfold the colon using a new camera
projection technique. This method 17| generates a video where each frame is a
local unfolding of the organ. It allows to inspect locally unfolded regions such that
multiple appearances of polyps do not occur. This method is similar to the one
proposed by Serlie et al. [14].

The presented method involves moving a camera along the central path of the
colon. Several techniques can be used to generate a smooth central path (see, e.g.,
Vilanova et al. [15]).



156 Anna Vilanova and Eduard Groller

At cach camnera position along the central path, an orthogonal coordinate system
is taken which specifies the location and orientation of a cylinder. One coordinate
axis is given by the tangent vector of the central path. The other axes are in the
plane orthogonal to the central path at the camera position. The Frenet frame is
commonly used to define a coordinate system for a4 point on a curve. However, it
is not a good choice in our case. Firstly, the Frenet frame is not defined in linear
portions of the central path. Secondly, by moving along the path, the two vectors
orthogonal to the tangent vector can rotate considerably, thus reducing coherence
between adjacent frames. Instead of the Frenet frame. we use a rotation-minirmizing
coordinate frame as presented by Kiok [8].

C(h,a)
‘H H +
Vi fisStjmessiis
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Fig. 2. Illustration of the projection procedure. A region of the organ surface is
projected onto the cylinder C(h, a). Then, the cylinder is mapped to the image
1(u,v).

For each camera position, a small cylinder C(h, o) tangent to the path is
defined. The point in the middle of the cylinder axis corresponds to the camera
position. For each ray, direct volume rendering is used to calculate the color which
corresponds to the cylinder point where the ray was projected. Finally, the colored
cylinder with the sampled rays is developed into a 2D image I(u,v) by a simple
mapping function f : (h,a) — (u,v) (see figure 2). The simplest mapping function
is the identity where f(h, @) = (h, a).

The cylinder axis must be short enough, such that the cylinder does not pene-
trate the surface of the colon. This can be done by taking into account the distance
of the path to the organ surflace.

The result is a video where each frame shows the projection of a small part of
the inner surface of the organ onto a cylinder. If the camera is moved slowly enough
the coherence between frames will be high and the observer will be able to follow
the movement of the surface and polyps.

In high curvature areas, the intersection of cross-sections also occurs (see fig-
ure 1). However, crossing of rays can happen just between frames, which does not
cause a multiple appearance of a polyp within a single image. Moving along the
central path in a high curvature area, a polyp might move up and down (due to

! Throughout this chapter, scalars are given in italics and vectors in bold typeface.
Angles are denoted by Greek letters. For example, C(h, a) is a function which
returns a vector (point) and has as parameters two scalars h and a, where a is
an angle.
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misscd polyp

Fig. 3. a) Constant angle sampling: it is shown that different surface lengths are
represented by the same length in the cylinder. b) Perimeter sampling: same length
but different angle.

crossing rays), but it is clearly identified as a single object. The user is able of
tracking the polyp movement if the coherence between frames is high enough.

The sampling distance (i.e., the distance between two consecutive rays) in the h-
direction is constant, and it must be at most half of the size of a voxel (see [igure 2).
In this way, correct sampling {with respect to the Nyquist limit) is possible in the
h-direction.

In the next sections. two methods are described which project the organ surface
onto the cylinder depending on the sampling of angle a, i.e., constant angle sampling
and perimeter sampling.

3.1 Constant Angle Sampling

Constant angle sampling means that the angle between consecutive rays in the a-
direction is constant for rays with the same h-value. Figure 3a illustrates how this
sampling is done. Using this method, the cylinder is sampled uniformly but not the
organ surface.

I'he advantage of this method is that the relationship between both directions
is preserved locally. Therefore, the angles are locally preserved too. An image gen-
erated by this method can be seen in figure 4a.

On the other hand, the area of the projected region is not preserved (see fig-
ure 3a). Therefore, the size of a projected polyp depends on the distance of the
cylinder axis to the organ surface cavity. Consequently, the physician cannot trust
the sizes of the projected polyps. With constant sampling, polyps can be missed
if the angle increment is too large (see figure 3a). II' the sampling distance is too
small, rays arc traced where it would not be necessary. This makes the method
inefficient.

3.2 Perimeter Sampling

With perimeter sampling, rays are calculated such that the surface length that they
represent is constant. A constant sample length [ is defined. [ must be at most half
the size of a voxel to stay above the Nyquist frequency and therefore not to miss
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any important feature. ! should have the same value as the sampling distance in
the h-direction to preserve the ratio, or proportion, in the final mapping.

The algorithm incrementally calculates the ray directions which are in the plane
defined by a certain value of #. The angle between the current ray and the next
one is computed such that the length of the surface sample that the current ray
represents is [ in the o-direction (see figure 3b). r, is defined as the distance from
the cylinder axis to the surface point hit by the ith ray. The surface sample length
in the a-direction that a ray represents ts approximated by the arc with radius r,.
Therefore, the value of the angle increment for the next ray is estimated as r‘_. ra-
dians. This projection method projects the organ surface to a generalized cylinder

Fig. 4. a) Constant angle sampling of the organ surface. b) Same camera position
as a) but with perimeter sampling. The bottom images show a grid with constant
angle a.

whose radii are not constant within the cylinder. Moving along the central path,
varying perimeter lengths arc represented by a varying number of rays. Therefore,
the generalized cylinder is not mapped to a complete rectangular domain (see fig-
ure 4b). The mapping function f in this case maps each sampled ray to a pixel in
the image (i.e., each pixel corresponds to an area of size I x | on the surface). The
projected point that corresponds to the first ray is positioned on a vertical line in
the center of the image. Then, from left to right, the ray values are mapped onto
the image until the perimeter length is reached.

This projection is area preserving. The relative sizes of surface elements are
preserved in the image plane and do not depend on the distance of the cylinder axis
to the surface. On the other hand, a distortion is introduced with respect to the A
and a-directions, so the angles are not preserved anymore. At the vertical center line
of the image, no distortion occurs, but the distortion increases progressively when
we move to the left or right. Figure 4b shows an image generated with perimeter
sampling. The superimposed grid corresponds to a regular grid in a constant angle
sampling of the cylinder.
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4 Nonlinear Colon Unfolding

The method presented in section 3 requires that the physician reviews a video
and cannot visunalize the complete surface at once. In this section, we describe a
method [16] to obtain a complete model of the unfolded colon. This method uses
similar ideas as the method by Wang et al. [20]. The technique provides solutions
to multiple appearances of polyps, distortion and undersampling. In our approach,
the colon unfolding does not produce a surface but a height field (distance of the
colon surface to a central path). This avoids that the polyps are flattened as with
the methods proposed by Haker ¢t al. [5]. Furthermore, the height field gives a more
natural visualization than a color-coded flattened surface.

Unfolding the colon can be divided into three main steps: nonlinear ray casting,
which solves the problem of multiple appearances of polyps; nonlinear 2D scaling,
which reduces the distortion due to nonuniform sampling; and resampling, which
avoids to miss polyps.

As iu local unfolding, a central path is calculated. A distance map is generated
from the central path [10]. The distance map contains the distance to the nearest
point on the central path. A coordinate frame is moved along the path. For each path

missed polyp ; cross-sections

multiple appearances

Fig. 5. Elimination of multiple polyp appearances by nonlinear ray casting.

position, rays are initialized in the plane orthogonal to the path, following radial
directions (constant angle sampling). To avoid multiple appearances of polyps in
high curvature areas of the path, the rays follow the negative gradient direction of
the precalculated distance map. The rays are not straight lines anymore. They do
not cross each other. but converge at most (see figure 3). Nonlinear ray casting has
already been investigated before by several authors (e.g.. Groller [4]). Section 4.1
explains how these rays are traced.

Along each curved ray, direct volume rendering is performed. The ray is termi-
nated when it hits the surface of the colon. The result of the nonlinear ray casting
can be interpreted as a 2D cylindrical parameterization of the inner colon surface.
One parameter corresponds to the position along the path. The second parame-
ter specifies the ray within the plane orthogonal to the current path position. The
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distances between ray origins on the central path and intersected points on the
colon surface determine a height field. The height field is unfolded, and the result
corresponds to a parallel projection of the unfolded height field.

Nonlinear ray casting samples the height field nonuniformly. A straightforward
unfolding to a regular grid (i.c., a uniforin parameterization) contains severe area
distortions and is therefore not optimal. In a second step, an iterative scaling trans-
forms the previously generated 2D parameter grid in order to compensate for these
distortions. After the scaling, the ratios between the area that the samples rep-
resent and their areca in the 2D grid are approximately equal. The second step is
based on nonlinear 2D scaling that is used in a similar way for magnification fields
in information visualization [7]. In section 4.2, the algorithm is described in detail.
Afterwards. the colon surface is resampled with an adequate minimum sampling
rate using the transformed 2D grid.

4.1 Nonlinear Ray Casting

The central path of the colon is described by a parametric curve c(v). We define
dist(p) : IR® — IR as a function which gives the minimum distance between a point
p and c(u). dist(p) is sampled in a discrete distance map Dist(q) : IN® — IR where
q is a voxel position in the volume. A reconstruction filter is applied to Dist(q) to
approximate dist(p)(sce Vilanova et al. [16] for details).

dist(p) is continucus in the first derivative nearly everywhere. Exceptions are
ridge and valley lines of the distance map dist(p). dist(p) induces a vectorfield
that is defined by the gradient, —Vdist(p). It is known that trajectories of such
vectorfields will not cross each other and are unambiguous (sce Abraham et al. [1]
for details). These trajectories will correspond to our nonlinear rays. The nonlinear
rays are traced from the central path in uphill direction, i.e., along the negative
gradient direction —Vdist(p). Furthermore, in our situation. trajectories will not
produce cycles, since it is impossible to return to the same point by always moving
uphill. In the worst case, the nonlinear rays will merge in ridge and valley lines,
but they will not cross. With these curved rays the multiple appearance of polyps
is avoided and an unambiguous and correct parameterization of the inner colon
surface is obtained.

Casting of Nonlinear Rays

The first step to trace the nonlinear rays is to move a coordinate frame along
the curve ¢(v). We again use the rotation-minimizing coordinate frame of Klok [8].
For each position on the path, a constant number of rays is traced. The initial point
of each ray is placed in the plane orthogonal to the path. Note that the gradient is
not defined along the path c(v) since it is a valley line of the distance map dist(p).
Therefore. the initial points are placed circularly at a small distance from the path
position. Once the initial points have been determined (u parameterization), the
rays arc traced integrating the negative gradient of the distance map.

The rays have the tendency to be perpendicular to the path c(v). This is the
direction of maximal change of dist(p) in linear segments of the path. The rays
become curved in areas where the curvature of the path increases.

Colon Surface Parameterization
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In the previous section, nonlinear and non-crossing rays were traced from the
central path ¢(v) towards the colon surface. While the rays are traced, direct, volume
rendering is performed. The ray terminates when the colon surface is hit. The result
of the nonlinear ray casting is a sampling of the inner surface of the organ.

The tracing of the nonlinear rays defines an unambiguous parameterization of
the inner colon surface s(u, v). Here, v is the parameter along the central path c(v),
and u is the radial angle along which the nonlinear rays are started (u € [0, 27]).

SN

—

"ig. 6. Surface obtained after nonlinear ray casting. The sampling of the surface
is nonuniform.

Figure 6 shows s(u,v) which results from applying nonlinear ray casting to a
colon piece. The lines correspond to the isolines of the parametric surface s(u,v).
The parameter space is sampled uniformly in the u and v direction, but this does
not correspond to a uniform sampling of s(u,v).

Unfolding of the s(u,v) surface can casily be done by mapping s(u,v) onto
a regular grid in the 2D u, v-parameter space. [n figure 7a, parameterization of
the colon surface is done with straight rays (ambiguous parameterization and non-
uniform sampling). In figure 7b, a parameterization of the colon surface is done
with curved rays (unambiguous parameterization. but still non-uniform sampling).

Nonlinear ray casting avoids that features appear more than once, but on the
other hand the sampling of the surface is far from being uniform. There are over-
sampled areas, which lead to geometric deformations. and also undersampled areas
exist. In the latter case, deformations appear but also features of the surface can
be missed.

In figure Ta, the solid circles indicate areas where features appear more than
once. Using nonlinear ray casting. the polyps do not appear more than once, and
instead an enlargement of the feature appears (figure 7b). The areas marked by
dashed circles indicate undersampled areas and therefore areas where features are
possibly missed. Note that the same undersampled areas are present in both figures.

In the next section. an algorithm is presented to obtain an unfolding of the
parametric surface s{u, v) which avoids geometric deformations and undersainpling.
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Fig. 7. a) Unfolding of the colon surface of the data set presented in figure 6 using
straight rays. Solid circles indicate areas where polyps appear more than once.
Dashed circles indicate undersampled areas. b) Parametric surface generated using
nonlinear rays as shown in figure 6. Unfolding is done onto a regular grid. Multiple
appearance of polyps disappear, but undersampled areas not.

4.2 Nonlinear 2D Scaling

In the previous section, an unambiguous parameterization of the inner colon surface
projected to the central path has been introduced. The sampling of the surface
s{u,v) defines a valid and non self-iutersecting quadrilateral mesh on the colon
surface (see figure 6). Furthermore, the distance between the surface point s(u, v)
and the corresponding path position c(v) defines a height field r(u, v).

The goal of nonlinear 2D scaling is to achieve a 2D grid (i.e., parameter space)
which approximates a parallel projection of the unfolded height field (see 4.1). The
unfolded height field shall approximately preserve the length of the edges of s(u, v)
in u- and v-direction.

Height-field Unfolding

In the nonlinear ray casting, a 3D quadrilateral mesh is obtained. We know the
distances b; between adjacent quadrilateral vertices (i.e., the length of the edges
of the quadrilateral). If we preserve these distances in the 2D grid (i.e., parameter
space), the sizes of the quadrilaterals will be preserved (sce figure 8b). However,
by preserving the 3D edges of the quadrilateral mesh, we flatten the surface and
the polyps. This is due to the fact that we do not take the height field r(u,v) into
account. We want that the edges of the 3D quadrilateral mesh are preserved in the
unfolded height field. This implies that the distance e between edges in the 2D grid
should correspond to the length of the projection of the edges onto the grid plane
(see figure 8c¢).
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Using these observations, we define e such that the unfolded height field pre-
serves the length of the edges of the 3D quadrilateral mesh in w and v direction (see
Vilanova et al. [16] for details). In the next section. an algorithm to obtain such a
2D grid is presented.

O
sbel L
b, grid line grid liné
b) c)

Fig. 8. lllustration of height ficld unfolding in 1 direction: a) cross-section of r{u, v)
for a tixed value of ©, b) unfolding preserving the edge lengths b, of the 3D quadri-
lateral mesh in the 2D grid, and ¢) unfolding preserving the edge lengths b, of the
3D quadrilateral mesh in the height field.

Nonlinear 2D Scaling

The objective of the nonlinear 2D scaling algorithm is to generate a 2D grid
whose edges preserve the length e(i, 7. k, 1), calculated as explained in the previous
section. In e(Z,j. k1), + and k correspond to the ith and Ath sampled parameter
value in u-direction, and respectively j and [ correspond to the jth and kth sampled
parameter value in v-direction. Finding an analytical solution to this problem is too
complex, so a numecrical solution is adopted. We use an approach similar to the one
presented by Keahey et al [7]. The main difference is that our algorithm not only
preserves areas, but also the edge lengths.

We define a function T(i,j) : IN? — [R? as a transformation of a 2D regular
grid. T(,7) has to be C%continuous and it should preserve the order (ie., no
llipping edge or grid node).

We define a 2D scaling field S as a field of scalar values for each edge. Fach
scalar value indicates the scaling factor that a transformation T has applied to
the edge. The 2D scaling ficld S for an edge defined between T(i, j) and T(k,!) is
S, 7, k1) = (|T(i,7) — T(k.)]l. A 2D scaling field S is defined for any transfor-
mation T.

The goal of the nonlinear 2D scaling algorithm is to find a transformation Tg
such that the equation ez, j, k,1) = || Tg(¢,7) — Te(k, )] bolds for all values of
(i.7). where (k.l) is a 4-connected neighbor of (i,7). In other words, we want to
find a transformation Ty whose 2D scaling field is Sq¢(4, 7, k,1) = e(4, 5, k, 1) for each
edge of the grid.

The major problem is to find the coordinates (x.y) of the transformation Tg,
given the scalar values of the 2D scaling field S,. It is clear that for the same
2D scaling field several transformations are possible. We have used an iterative
method which provides a numerical solution. The goal of the algorithm is to find a
transformation T, that provides a good approximation of Tg.
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Fig. 9. lllustration of the nonlinear 2D scaling algorithm using the same data set as
in figure 6. a) Lnitial Ta corresponding to a 128x171 grid. b) Ta after 960 iterations
of the algorithm.

Given a transformation T,. the corresponding scaling field S, can easily be
calculated. A scaling field error can then be computed by S. = Sy — S.. Se gives
the difference between the current scaling field S, aud the desired scaling field S,.

The iterative algorithm starts with 15, as a regular grid. Then S, and S, are
calculated. The algorithm iterates over each node of the grid. For each node, the
value of S, at each of the 4-connected neighbors is investigated. If Se > 0 (i.e., the
edge is not long enough) then the neighbor is moved away from the node . If Se < 0
(i.e., the edge is too long) then the neighbor is pulled towards the node. The edge
is modified by a length of S.(:.7. k,1)C, /2 where C, € [0,1] is a parameter of the
algorithim. The division by 2 is necessary because cach edge is treated twice, once
for each vertex of the edge. Changing an edge is thus done by modifying each of
its vert:ces. An important requirement of the algorithm is to preserve the order. So
the neighbors are moved as far as S, and C, allow without flipping edges.

The ncighboring nodes are changed with coordinate-aligned movements. These
movements have the tendency to preserve the rectangular appearance defined by
{Ta (i,7),Ta (1 +1,7).Ta (i+ 1,7+ 1), Ta (¢, + 1)}, which, for example, does
not degenerate to a triangle.

Once the iteration has run for all the nodes, the new T, is generated. Then,
a new S, and a new S, are calculated from the resulting Ta. S, is calculated just
once per iteration.

The convergence factor is measured using the distance between the approxi-
mating scaling field S, and the desired 2D scaling field Sy. This is expressed as the
root mean squared error o of S...

The convergence of the algorithm can be improved by starting with a Ty which
is a closer approximation of the desired result than a regular grid. The length of
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the edges within a horizontal line (i.e., the horizontal edges between nodes with
the same j value) are set such that the tine length approximates the perimeter of
the colon in the corresponding cross-section. The distance between two consecutive
horizontal lines is set to the average of the vertical edge lengths in .Sy which join
the nodes between the two lines (see figure 9a). This initial modified grid leads to a
faster convergence by generating basically the same result as a regular grid would
give.

The complexity of the nonlincar 2D scaling algorithm is O(k - n - m) where
n x m is the size of the original grid and & is the number of iterations needed for
convergence.

Figure 9a shows the initial grid T4 for the segment of the colon presented in
figure 6. The resolution of the grid is 128x171 and the initial value of ¢ is 0.8008.
After 960 iterations T, has been evolved into the grid in figure 9b. The value of o
is .2808.

Fig. 10. Resampling after the nonlinear 2D scaling. a) 128x171 shaded grid using
bilinear interpolation. b} Shading of the resampled grid.

4.3 Resampling

The nonlinear 2D scaling provides a mapping between the 3D quadrilateral mesh
and a 2D grid avoiding area deformations. The color of each ray obtained in the
nonlinear ray casting step is assigned to its corresponding node in the 2D grid.
Bilinear interpolation is used to fill the quadrilaterals of the grid. An example can
be seen in figure 10a. The areas encircled by dashed ellipses are the same as in
figure 7. Some features are missing due to undersampling.

The undersampled areas are easily identifiable from the 2D grid. A minimum
sample step for the 2D grid is defined. The sample step corresponds directly to
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a sample step in the 3D space. For each quadrilateral, the subdivision consists of
generating a subgrid whose edge lengths are smaller than or equal to the sample
step.

Each of the newly generated nodes in the grid can easily be identified with its
corresponding point in 3D using linear interpolation. The 3D points do not corre-
spond to surface points, but they are close to the colon surface. A short nonlinear
ray segment through the point is investigated to locate the correct surface point.
Then the rays are traced forward again to find the correct surface point.

The resulting color values are mapped directly to the corresponding point in
the 2D grid. The results of the resampling procedure can be seen in figure 10b. The
encircled areas show regions where features that were not present in figure 10a have
been identified.

4.4 Results

The CT volume data of an extracted colon with a resolution of 381x120x632 is
used in our experiments (see figure C.33 right top). The colon is 50 cm long and
contains 13 polyps. The unfolding of this colon can be seen in figure C.33 to the
left. All the polyps could be detected easily by inspection. The extracted colon
was physically dissected and several pictures of the dissected colon were also taken.
These pictures enable a qualitative comparison between the real data and the results
of the presented algorithm (see figure C.33).

5 Conclusions

Simulating an endoscopic view is not the most suitable visualization technique in
many endoscopy procedures. For example, if the physician is interested in inspecting
the inner surface of the organ, the endoscopic view visualizes just a very small
percentage of it. This chapter presented various techniques which generated an
unfolded model of a colon. This unfolded model allows a more efficient visualization
of the inuer surface. They are generated by projection, resampling and/or adequate
parameterization of the organ.

Section 3 describes a technique that locally unfolds the colon, and generates an
animation sequence from consecutive unfolded regions. The images allow the physi-
cian to visualize most of the surface, and to easily recognize polyps that would be
hidden in an endoscopic view by folds or would be hard to localize. For more ex-
amples refer to www.cg.tuvien.ac.at/research/vis/vismed/ColonFlattening/.

With the previous method, the physician has to inspect a video to be able to
visualize the whole surface. The colon-unfolding technique in section 4 enables the
physicians to get a fast overview of the entire organ surface within a single image.
This approach solves the problem that previous techniques had [20]. Compensation
of area distortions due to the unfolding is achieved using an iterative method.
However angle distortions are not taken into account. For more results refer to
www.cg.tuwien.ac.at/research/vis/vismed/ColonUnfolding/.

The methods presented in chapters 3 and 1 have been tested with a data set
that enabled a qualitative comparison of the resulting images with images of the
corresponding real extracted colon with satisfactory results.
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These techniques present a new way to parameterize the organs in order to

inspect their inner surface.
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