
The Responsive Workbench Simulator: a Tool for Application
Development and Analysis

Michal Koutek and Frits H. Post

Faculty of Information Technology and Systems
Delft University of Technology

Mekelweg 4, 26 28 CD Delft, The Netherlands
{M.Koutek,F.H.Post}@cs.tudelft.nl

ABSTRACT

In this paper we present a software environment for visualization and interaction on the Responsive
Workbench (RWB). Our main focus will be on the RWB Simulator. We will also briefly describe
the architecture and the usage of the RWB Library.
The RWB Simulator is an excellent tool for development, evaluation and analysis of the RWB
applications. It is a powerful introduction, learning and presentation tool for the RWB. We
will also present a novel method for development of immersive VR applications. Finally we will
demonstrate the RWB Simulator on some visualization applications.

Keywords: Virtual Reality, Responsive Workbench (RWB) Library, RWB Simulator

1 Introduction

The Virtual Reality Responsive Workbench
(RWB) is a powerful system for 3D visualization
and interaction [1]. It intensifies perception of 3D
models and data. The RWB is a semi-immersive
virtual environment: the user stands in the real
world and is looking into a virtual world which is
projected on the screen of the Workbench. One
of the advantages of the RWB is its tabletop
metaphor. It creates for the user an illusion of
a laboratory table or a design studio, while the
only real element is the wooden construction of
the workbench, everything else is purely virtual.
The RWB also offers a large screen to visualize
the 3D models. Combined 2D and 3D interfaces
can be used for the user interaction.

The RWB is complementary to the CAVE [3],
where the user is almost fully immersed into the
projected virtual environment. The usage of the
RWB is a bit different than of the CAVE. The
RWB benefits from the table metaphor although
its field of view is rather limited. In the CAVE,
all objects are usually virtual. In automotive in-
dustry they put mock-ups, car-seats inside the
CAVE to have at least something real with a sub-
stance to be able naturally interact with the vir-
tual environment, but they have to face the prob-

lems of interference with electro-magnetic track-
ing and thus wooden or plastic materials have
to be used and sometimes even different tracking
system must be applied. In the CAVE usually
larger objects are visualized, and the user inter-
acts with them often at a larger distance than on
the RWB. For our application the RWB is more
suitable than the CAVE. We mainly make use of
the laboratory table metaphor.

1.1 Related Work

For controlling these types of immersive systems
VR software and libraries are needed. Three
years ago, when the RWB facility was installed
at the HPaC Centre at TU Delft, there were
not many software options. On one hand there
were a few experimental libraries (like Avo-
cado/Avango [2], VR-Lib [18], MR Toolkit [17],
VrTool [15],SVE-lib [16], Studierstube [19] ) used
by VR researchers and on the other hand there
was a commercial software, like the CAVE Li-
brary [13] or the WorldToolKit (WTK). Today
we can see variety of VR systems and libraries
more or less specialized on specific types of VR
applications, like data visualization, industrial or
medical applications, etc. VR systems, like VR-
Juggler [9], MAVERICK [11] and others, follow
the global trend and are available as open-source



software. This gives us an opportunity to get
better understanding about the concepts of VR
systems and sometimes also to improve their im-
plementation.

1.2 Our Perspective

We have found that the process of developing VR
application needs a special attention.

With some systems the development has to be
done directly on the VR facility. Some systems
have today an option of making the VR applica-
tions off-line in a sort of ”VR on desktop - sim-
ulator”, like the CAVE Simulator. Systems like
Avango, Lightning [10] or VR-Juggler and oth-
ers, where the application developer can define
the virtual application platform to be, for exam-
ple, a desktop system driven by keyboard and
mouse which emulate the 3D input from the im-
mersive VR systems.

However, trying to simulate 6 DOF (degrees of
freedom) input with 2 DOF mouse is not a very
practical solution. It is impossible to simulate in
this way a complex 3D interaction that the user
does (would do) in the virtual environment (VE)
with the implemented application. We think that
the user interaction is one of the most important
aspects of VR applications. Therefore we should
devote enough attention to it during the develop-
ment of an application. The best way of testing
the real 3D interaction is in the immersive VE it-
self. However, almost everybody has found that it
is much more effective to develop the VR applica-
tion off-line on a desktop-system. The developer
then pays the price of missing 3D interaction with
the application, which can be compensated by us-
ing (semi-) 3D input devices like the Spacemouse,
etc., but still that is not the same level of interac-
tion as on the Responsive Workbench or in other
immersive VEs.

Our proposed solution for this problem is based
on capturing the user’s (developer’s) 3D interac-
tion with the prototype application on the Re-
sponsive Workbench. We measure the tracker
data (user’s head and 3D interaction devices)
with a given frame rate and we also store time-
stamps of the RWB application running on the
Responsive Workbench. This measured data are
then used by the application developer within the
RWB Simulator for the next stage of development
and improvement of the RWB application. The
RWB Simulator works on a desktop system and
is controlled by mouse and keyboard commands.
The tracker data steer the interactions of the vir-
tual user inside the application. A powerful tool

is available to the developer for tracing and sim-
ulating of application forward, in some cases also
backward in time with captured 3D interaction.

It is not only a problem of simulating the real
3D interaction during VR application develop-
ment that we solve with our concept of the RWB
Simulator. The use of this tool has a strong im-
pact on the processes of application development,
analysis, evaluation and presentation. It reduces
the time needed on the Responsive Workbench
and increases the efficiency of the whole process.
Detailed explanation on these concepts follows in
this paper.

We give a necessary overview of the framework
and the architecture of our RWB system. We
want to put an emphasis on the process of ap-
plication development using the RWB Simulator.
We will also discuss the old problem of application
developer and application user in a VR context.
Animations and images of RWB Simulator will
document the application spectrum.

2 RWB Basics

The Responsive Workbench is based on a stereo
back-projection table system, which is combined
with an electro-magnetic tracking system, see
Figure 1. The stereo images are generated from
the SGI ONYX 2 with 4 CPUs and the Infinite
Reality 2 graphic card. We use the display res-
olution of 1120 × 840 pixels in 96 Hz in stereo
mode.

Figure 1: Top and side views on the Workbench

The image from the RGB projector is reflected
though two mirrors and has to fit properly on
the glass table which is tilted by 10◦. To obtain a
clear and a sharp image the RGB projector has to
be well calibrated and precisely aligned. Crystal
Eyes shutter glasses are used to create the stereo
effect.

The virtual world projected on the screen of the
RWB is represented in workbench table coordi-
nates. The tracked positions and orientations of
the user’s head and hand must be converted to
the same table coordinate system. We are using
table-centered and table-aligned coordinate sys-
tem, see Figure 2.



Figure 2: Workbench table coordinate system

In the RWB environment, the head-tracker up-
dates user’s viewpoint, and the tracking of the
stylus pen forms the base for a 3D interaction.

3 The RWB Library

Considering the available hardware and our needs
we have built our own RWB Library. The avail-
able hardware resources should be used effectively
by the RWB application.

Besides the Onyx 2, we have also other SGI work-
stations in our laboratories: the Onyx, the Oc-
tane and several O2s. We want them to be used
also in combination with our VR facility.

The typical RWB application needs real time 3D
graphics and 3D interaction. Therefore we have
chosen for Iris Performer which offers an opti-
mized 3D graphics pipeline based on OpenGL,
and which also provides a good support for multi-
processing and shared memory access in the IRIX
6.5 operating system.

The tracker daemon is a separate application
which reads the data from the tracking systems
and converts them to the workbench coordinate
system. On the side of the RWB Library there
are functions to read the tracker data from the
tracker daemon’s shared memory. An advan-
tage of such a solution is that multiple appli-
cations/processes can access the shared memory
without using the HW ports of the tracking sys-
tem. For compensation of static tracking errors
we use the grid-calibration method [4].

We have set up the stereo-projection pipeline us-
ing the off-axis perspective projection. We have
tried several stereo projection schemes including
the on-axis perspective which we had proved not
to be suitable for the RWB, especially because
of the distorted perspective which was a serious
problem for 3D interaction with the stylus pen.
Head-tracking together with the stereo-projection
creates for the user an illusion of 3D objects rest-
ing on the workbench tabletop.

Iris Performer together with our RWB Library
offers many functions to access 3D geometry files
or for creating a custom geometry and building
the scene graph of the virtual world which is dis-
played on the RWB.

We have incorporated a generic class, the rwb-
obj, which contains the geometrical information
as well as interaction functions in the form of in-
teraction, drawing and culling call-backs. This
type of class also incorporates collision detection
and intersection calculations.

3.1 The Structure of RWB Applications

We defined a multiprocessing scheme for a gen-
eral RWB application, which consists of the main
RWB process, the tracker daemon, the key-
board/mouse interaction process and the user
application process. The main RWB process
consists of application, culling and draw sub-
processes as defined in Iris Performer. All pro-
cesses can communicate through shared memory.
For this purpose we have created unified shared
memory object called ”Shared”. All the neces-
sary parameters of an RWB application can be
accessed from there.

We have designed the functions of the RWB Li-
brary to be clear, easy to use, and to minimize
the programming for the developer of an RWB
application. The user has to specify just the
rwb-objects within the virtual world and to de-
fine the special functional/interaction call-backs
of the application and the rwb-objects. The doc-
umentation of the RWB Library functions and
example applications can be found at [4], [12].

3.2 3D Interaction and User Interface

The RWB Library offers the user interaction with
devices like a keyboard, a mouse, a space-mouse
(with 6 degrees of freedom), and a stylus pen (6
DOF). The space-mouse is used for navigation in
large environments and to its 9 keys extra func-
tionality can be assigned by the application. For a
real 3D interaction the RWB applications use the
stylus pen with a tracking sensor and one button.
A widget set is available for building a 3D user
interface with buttons, sliders, menus, or display,
dial and type-in windows. At the position of the
stylus pen the actual tool is displayed.

3.2.1 Interaction with virtual objects

When the stylus pen is located inside an rwb-
object (colliding with it), the object is selected
and changes its color to red.



The user can then invoke object’s function by
clicking on the button, or holding the button and
simultaneously performing some motion. There
are four basic call-back functions of a generic rwb-
object: touch/untouch, pick, manipulation, re-
lease.

Each of these can be user specified. For example
touch call-back can print object information, or
for example if the user picks a door it starts an
animation of opening the door.

Figure 3: Object manipulation; FOV volume

Objects can be selected and manipulated directly
with the stylus, or in the case of distant objects,
using a ray-casting technique (see Figure 3).

Into the RWB Library we have also built a vi-
sual force-feedback method to provide a visual
interface and to substitute a real force input. We
use spring-based tools attached to objects assist-
ing the manipulation. The spring manipulation
tools: spring, spring-fork, spring-probe were in-
troduced in [5]. During the design of these tools
we have built a physics-based world and we were
using the RWB simulator to simulate and trace
manipulation tasks.

3.2.2 Object Collisions

For a realistic object behavior in user interaction,
collision detection is important to prevent objects
from moving through each other. Detecting ob-
ject collisions helps to create an illusion that vir-
tual objects have a substance.

We have implemented the following object col-
lision schemes: collision between stylus-object,
ray-object and object-object. The stylus and ray
intersection is supported by Iris Performer. Colli-
sions between objects were implemented into our
library [4].

3.3 Workbench In Workbench

Besides the functions and features of the RWB
Library mentioned above, the collision and the in-
tersection functions, the 3D user interface and the
spring-based manipulation tools, there are some
special functions and features of the RWB Li-
brary.

Figure 4: WIW: mini preview

For an improvement of the user’s orientation in
the virtual world projected on the RWB we have
built in the library the Workbench In Workbench
function, see Figures 4 and 5.

A small copy of the Workbench is projected onto
the RWB table top. It contains the whole virtual
world with all its objects as well as the user’s head
and the stylus. The user can navigate in a large
world by looking onto the Workbench miniature
and seeing which part of the world is displayed on
the RWB. The WIW function helps to locate and
manipulate objects which are not projected onto
the RWB table top because they are outside the
field of view (FOV), which is shown in Figures 3,
7. These objects are visible in the workbench
miniature. In the RWB Simulator it can be seen
which virtual objects collide with the FOV, see
Figure 7. We should mention that when objects
are cut-off by the FOV volume it destroys the 3D
immersion. Thus, we have to try to avoid this by
placing the virtual objects inside the FOV.

Figure 5: WIW: navigation assistance

The WIW metaphor is also used for collaboration
with another user in distributed applications. On
the miniature of the workbench the user can see



what the other user does in the virtual environ-
ment.

The WIW function can also assist in learning how
to use RWB applications, serving as a virtual ap-
plication guide.

3.4 Monitoring of User Interaction

A very important aspect of the work with the
RWB is to be able to monitor and debug an
RWB application in a distributed VR environ-
ment. Therefore we have implemented a moni-
toring function of the user interaction. The prin-
ciple is quite simple. During the runtime of the
application the tracker data and application time-
stamps are written into a file (or sent through a
network) for immediate or later use, such as ani-
mated replay of a workbench session in the RWB
Simulator.

4 The RWB Simulator

We have already mentioned some interesting as-
pects of the RWB Simulator. Basically it is a
desktop development environment for RWB Li-
brary applications. This tool provides applica-
tion support in areas of: development, evaluation,
learning, presentation, navigation assistence and
collaboration in distributed applications.

4.1 The RWB Application Development

Development and implementation of VR appli-
cation should be efficient. We try to minimize
the time spent in immersive VE during develop-
ment, because it is not always convenient and
effective to debug or monitor an RWB applica-
tion on the RWB itself. Sometimes the user per-
forms application-specific tasks, and it is difficult
to see if the task or the underlying algorithm
works properly, when the user is just standing by
the Workbench and wearing the shutter glasses.
Usually, program variables will be written onto
the screen and analyzed. On the real Workbench
you cannot efficiently pause, slowdown and debug
the application. This is even more complex if we
consider the multiprocessing nature of the RWB
application.

The RWB Simulator uses the captured tracker
and application data and highly interactive ap-
plications benefit from it.

Time dependent simulations can make use of the
unified RWB-time and the RWB Simulator can
simulate their run any given speed, usually at
lower speeds so that the developer is able to

check the proper behavior of the simulated pro-
cess. Some simulations can even be traced back-
wards in the RWB Simulator. Using our RWB
Library and Simulator, the process of an applica-
tion development runs as follows.

Figure 6: Application development scheme

First, there must be a clear idea about the RWB
application - the application scenario. The proper
VE metaphor also has to be developed.

The developer prepares a prototype of the appli-
cation: the scene graph of the virtual world, basic
functions and callbacks, the user interface, etc.
During this preparation stage the user compiles
the application in the simulator mode.

In the next step, the user/developer runs the ap-
plication on the real RWB, and performs some
tests and adjustments. The developer can record
tracker data for having some user’s interaction
data, and switches back to the simulator mode.
This process repeats until the implementation is
finished. At later stages of this iterative process
the real users of the RWB application can test
the application and the developer can record their
Workbench sessions. With this real user data
the developer can adjust the implementation and
check whether it will fulfill the real users needs
or interaction abilities without them, because the
developer already has their interaction data.

This way we can much better address the old
problem that the best user of an application is
its developer. With real user data the RWB ap-
plication can be really ”tuned” for the user and
not the developer. We still have to learn a lot
about this user-developer process, but we think
that this might be the right direction.

After the final test of the application on the real



Workbench the RWB Simulator can produce im-
ages and animations for presentations. Also demo
sessions can be produced for the application users
to learn how to use it. These demo sessions can
be previewed with the RWB Simulator version of
the RWB application.

4.2 The RWB Simulator Implementation

The RWB Simulator is in fact a simulation mode
of an application that uses the RWB Library. In
practice it is a C++ compiler and linker option.
There is also the RWB-SIM Library which has a
lot of extra functions for tracing the RWB appli-
cations. The developer has thus two compilations
of the application, one optimized for the work-
bench and the other for the simulator. For the
application developer or the user it is very simple
to use.

In the simulation mode, the tracker data are
not read from the tracker daemon but from the
tracker data file. The application then runs in the
same way as on the real Workbench. On desktop
systems we usually don’t provide stereo.

Figure 7: Molecular dynamics; FOV volume

On the real Workbench the user performs the in-
teraction with the RWB and with the running
application. The user resp. the developer can
start to capture his interactions with the virtual
environment into a file.

Then within the RWB Simulator, the developer
sitting at a common workstation can watch what
was happening on the real RWB. The applica-
tion world is displayed on a top of the model of
the Workbench. The developer can observe the
run of the RWB application, how the user per-
formed with it and the simulator user can nav-
igate around the RWB model with the mouse

via a trackball metaphor. The keyboard can be
used to steer the simulator (e.g. pause, trace
back/forward or reset simulation, reposition the
user’s head or the stylus). In the case when there
are no interaction data for the simulator, the 3D
interaction can be emulated with keyboard and
mouse controls, similar to the CAVE Simulator.

Figure 8: RWBsim: user view

In the RWB Simulator the default viewpoint is
above the Workbench table overseeing the whole
virtual setup with the user and the Workbench,
see Figure 7. There is also the possibility to setup
the view from the user’s eye position, see Figure 8.
Using the track-ball metaphor we can navigate
with mouse around the Workbench model in the
RWB Simulator

A big advantage of the RWB Simulator lies in
its portability. The RWB applications can be
implemented and developed on common graphic
workstations with Iris Performer and the RWB
Library. Currently the library works exclusively
on SGI workstations. Since the Performer is now
available for Linux we work on porting the RWB
Library to a PC environment.

4.3 Presentation of the RWB Application

Another aspect of VR research is demonstration
and presentation of results. It is not possible to
take stereo/immersive pictures of a user working
with an RWB application. Usually, we switch the
projection to a monoscopic mode and then we
adjust the perspective to align the user with the
virtual world, we take a camera and make the
picture. The RWB Simulator is very convenient
for making pictures/animations of the RWB ap-
plication, see Figures 3-12.

4.4 Collaboration in Distributed Applica-
tions

Currently, we experiment with simple collabora-
tions within the SGI workstations in our lab. We
can collaborate on the level of RWB Simulators
with the Responsive Workbench.



Figure 9: Delft WL|Hydraulics: visualiza-
tion of the flooding simulation

We can already mention that the preliminary re-
sults show a potential of the RWB Simulator also
for simulating distributed applications.

5 Examples of RWB Applications

There is a wide range of applications running
on the Responsive Workbench. GIS, architec-
tural, landscape planning/observation applica-
tions profit from the large overview, the high level
of immersion and the 3D interaction. In Figure 5,
the Workbench In Workbench function assists the
navigation in a GIS application. The user is ob-
serving a model of the TU-Delft campus. In Fig-
ure 9, the user performs an interactive visualiza-
tion of a flooding simulation.

The RWB, can also be used for various ex-
perimental simulations and applications such as
shown in Figures 4 and 10, where the dynamic
object manipulation with the spring-based tools
is shown.

In Figures 7 and 8 an interactive molecular
dynamics simulation and visualization is shown.
The user is exploring the kinetic energy data of
the particle system using a data color-slicer. The
variety of visualization techniques can be com-
bined to produce the best visualization for a given
application. The user gets better understanding
of the data thanks to the immersive visualization
and the ability to interact in 3D with the VE.

6 Conclusions and Future Work

In this paper we have presented the RWB Library
and the RWB Simulator, our basic environment
for the development of RWB applications.

With our system, workbench applications can be
developed using desktop systems as well as the
RWB itself. The use of the RWB Simulator
strongly increases the efficiency of application de-
velopment. Most of the development time of the
RWB application can be now spent on a desktop
system and not on a walking between the Onyx
2 console and the Responsive Workbench.

The system provides us with new simulation and
steering capabilities. We can simulate (replay)
RWB applications including the user’s 3D inter-
action at a given speed because of an adjustable
virtual clock mechanism inside the RWB Library.
Thanks to this we can time-correctly debug com-
plex and complicated applications that run fast
on the SGI Onyx 2, but are much slower on SGI
O2s. Even with the simulator running on the
Onyx 2 we could not guarantee the same tim-
ing of the RWB application on the Workbench
and later in the simulator without an adjustable
timer.

We use this system for several research case stud-
ies. Some of them were mentioned in this paper.
The interactively most complex RWB application
that we have tested with the RWB Simulator was
a physics-based world for an assembly task on
which we were designing the spring-based manip-
ulation tools.

Figure 10: RWB-Simulator: the spring-
fork used for manipulation of objects in the
mini-world

Object collisions and the dynamic tools were sim-
ulated in a real time. We have used the RWB
Simulator not only in the process of development
and design of the tools and their application, but
we have also produced a lot of pictures and an-
imations with it. The reader can compare the
images of the same application in the RWB Sim-
ulator (Figure 10) and the real RWB application
image taken by a camera (Figure 11).



Our system is still under development and we are
adding more functionality, such as an interface
for vtk (Visualization Toolkit) [14]. Currently, we
implement on the RWB a system for real-time
concurrent visualization and simulation of parti-
cle systems from molecular dynamics.

Figure 11: RWB-overview: the spring-fork
used for manipulation of objects in the
mini-world

REFERENCES

[1] W. Krüger, B. Fröhlich, C.A. Bohn, H.
Schüth, W. Strauss, G. Wesche, The Respon-
sive Workbench: A Virtual Work Environ-
ment, IEEE Computer, July 1995, pp. 42-48.

[2] P. Dai, G. Eckel, M. Göbel, G. Wesche, Vir-
tual Space: VR Projection System Technolo-
gies and Applications, Internal report on AV-
OCADO framework, GMD, 1997.

[3] C. Cruz-Neira, T.A. Sandin, R.V. de Fanti,
Surround-Screen Projection-Based Virtual
Reality: The Design and Implementation of
the CAVE, Proc. of SIGGRAPH, 1993, pp.
135-142.

[4] M. Koutek, F. H. Post, A Software Environ-
ment for the Responsive Workbench, Proc.
of annual conference of the Advanced School
for Computing and Imaging (ASCI 2001),
Netherlands, 2001.

[5] M. Koutek, F. H. Post, Spring-Based Ma-
nipualtion Tools for Virtual Environments,
Proc. of Immersive Projection Technology
and Virtual Environments 2001, Springer,
Stuttgart, Germany, pp. 61-70

[6] R. van de Pol, W. Ribarsky, L. Hodges, F.
Post, Interaction Techniques on the Virtual
Workbench, Proc. of Eurographics Virtual

Environments ’99 workshop, Springer, Vi-
enna , Austria, 1999.

[7] D. Bowman, L. Hodges, User Interface Con-
strains for Immersive Virtual Environment
Applications, Proc. of IEEE VRAIS, 1997,
pp. 35-38.

[8] S. Bryson, Approaches to the Successful De-
sign and Implementation of VR Applica-
tions, ACM SIGGRAPH’94, Course Notes,
1994.

[9] A. Bierbaum, C. Just, P. Hartling, K. Mein-
ert, A. Baker, C. Cruz-Neira, VR Juggler: A
Virtual Platform for Virtual Reality Appli-
cation Development, Proc. of Virtual Real-
ity Conference 2001, Yokohama, Japan, pp.
89-96

[10] M. Bues, R. Blach, S. Stegmaier, U. Häfner,
H. Hoffman, F. Haselberger, Towards a Scal-
able High Performance Application Platform
for Immersive Virtual Environments, Proc.
of Immersive Projection Technology and Vir-
tual Environments 2001, Springer, Stuttgart,
Germany, pp. 165-174

[11] R.Hubbold, J.Cook, M.Keates,
S.Gibson, T.Howard, A.Murta, A.West and
S.Pettifer; GNU/MAVERIK: A micro-kernel
for large-scale virtual environments, Proc. of
VRST’99, ACM Symposium on Virtual Re-
ality Software and Technology, 1999.

[12] The RWB Library and the RWB Simulator,
http://www.cg.its.tudelft.nl/˜michal/RWBlib

[13] The CAVE Library and the CAVE Simula-
tor, http://www.ncsa.uiuc.edu/VR/

[14] The Visualization Toolkit,
http://www.kitware.com/vtk.html

[15] VR Developers Toolkit,
http://www.lincom−asg.com/VrTool/

[16] The Simple Virtual Env.(SVE) Library,
http://www.cc.gatech.edu/gvu/virtual/SVE/

[17] MR (Minimal Reality) Toolkit,
http://web.cs.ualberta.ca/
//graphics/MRToolkit.html

[18] VRlib, http://www.ait.nrl.navy.mil/
people/ekuo/vrlib-doc

[19] D. Schmalstieg, A. Fuhrmann, Z. Szalavari,
M. Gervautz, ”Studierstube” - An Environ-
ment for Collaboration in Augmented Real-
ity, Virtual Reality - Systems, Development
and Applications, Vol. 3, No. 1, pp. 37-49,
1998.


