INTERACTIVE SOFTWARE PROTOTYPING FOR VR APPLICATIONS

Gerwin de Haan

Michal Koutek

Frits H. Post

Computer Graphics Group, Delft University of Technology
{g.dehaan, m.koutek, f.h.post}@tudelft.nl

Virtual Reality Application Development

The development of domain-specific Virtual Reality applications 1s often
a slow and laborious process. The integration of domain-specific
functionality 1mn an interactive Virtual Environment requires close
collaboration between domain expert and VR developer, as well as of
domain-specific data and software integration in a VR application. The
software environment needs to support the entire software life cycle, from
the early stages of iterative, rapid prototyping to a final end-user
application. In our paper, we propose the use of flexible abstraction layers
that, combined with an interactive development environment, support the
VR application development process.

Development Approach

We propose flexible abstraction layers through a single abstraction
language. In our approach, the abstraction layers are code fragments that
abstract, combine and wrap lower level code. We want to facilitate:

(1) continuous, iterative software development, including features such
as rapid prototyping, profiling and debugging

(2) flexible integration and configuration of heterogeneous VR and
external software

(3) seamless evolution from early software prototypes to flexible end-
user applications and

(4) ease-of-use, lowering the learning curve and empowering end-users.

Software Architecture

A schematic software overview of our Interactive Virtual Reality (1VR)
system 1s shown 1n Figure 1. The set of components and domain-specific
applications, combined with the Python scripting language layer, now
form the basis for creating a VR application. The prototype 1s mainly
intended for experienced VR developers, but some high level features
geared towards end-users are also demonstrated. Furthermore, new
application-specific high level facilities can quickly be developed based
on the new abstraction layers.

Development Environment

The 1VR functionality 1s directly available in the running Python
interpreter after importing its wrapping modules. We use IPython, an
enhanced 1nteractive interpreter to enhance the usability and interactivity
of this process. IPython provides many extra development features,
including object and code inspection, command history, integrated
debugging and saving of interactive prototyping sessions, see Figure 2
(left). We also use an experimental environment for the construction of
Python-based VR code using the Notebook metaphor, see Figure 2 (right).

.

VR application
Pylvr mliy binding J
PyPer Ivr Library \
External
OpenGL Performer PyOpenGL S;(fte‘;;lf -
OpenGL

Hardware Subsystems

Figure I: iVR software layers. The VR application has native access to
various C++ components and external software or through Python. Stars
indicate Python bindings on the underlying libraries. Arches indicate
custom Python layers which provide higher level abstractions.

Building iVR applications

One can directly construct his application by using and extending a set of
standard widgets, graphical objects and interaction techniques. The close
integration of Python and the original C++ code allows us to, gradually,
transform existing code toward Python oriented programming methods.
We currently extend internal functionality for rapid VR development and
integrate several external software libraries, see Figure 3.

\.

M| [=1|E3

I
gl llnn L_.‘

0000 0000 0.0

Figure 2: The interactive Python shell (left) and the notebook editor
(right). The interactive shell can be used while the VR application is
running. The notebook or worksheet (right) shows code editing, loading
and saving operations, integrated graphics, and available documentation
and command completed parameters.

Part of this research has been funded by the Dutch BSIK/BRICKS project.
For more information of our work visit http://visualization.tudelft.nl

.

Figure 3: Demonstration of bi-directional integration of VIK in the VR
environment (left) and interaction prototyping with graphing support
(right). The Python glue facilitates expressive commands that combine VR
and external library statements.

Conclusions and Future work

The current approach improves catalyzes the learning, re-use and re-
design of VR software mechanisms and changes development philosophy,
see also Figure 4. We envision an integrated development and run-time
environment providing interactive control using higher level, visual
programming and debugging tools. We expect the abstraction layering
and 1ntegration of external tools to be key aspects 1n achieving this goal.

5 o .'.
o /
e 4

Figure 4: Interactive application prototyping. During a VR workshop for
PhD students, our prototyping approach was used for interactive
demonstrations (left) and hands-on work on various VR systems (right).

