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Abstract

Finite-element modelling is a standard way
for simulation of soft tissue deformation. For
proper modelling, triangular surface models
must fulfil requirements of accuracy, smooth-
ness, and conciseness. Several techniques
proposed in the literature do not meet these
requirements. In this paper we extend a new
technique called SurfaceNets, which can create
a globally smooth triangle mesh that retains
fine detail.
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1 Introduction

1.1 Hysteroscopic removal of my-
omata

Over the past few years, endoscopic surgery has
become a well established practice to perform
minimally-invasive surgical procedures. A typi-
cal application is the hysteroscopic removal of
uterine fibroids (or myomata). These benign
tumors are a common gynaecological pathology
causing disturbed pregnancy and excessive men-
strual bleeding.

Conventionally, transvaginal ultrasonic imag-
ing and MRI is applied to diagnose the presence
and extent of myomata. The removal is typi-
cally done through a minimally invasive opera-
tion with a hystero-resectoscope. This instru-
ment consists of a loop electrode mounted on
an endoscopic camera tube. In order to create
a working space for the hysteroscope, the uter-
ine cavity is inflated with a distension medium.
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Next, the fibroid is removed by piecewise cutting
it from the uterus.

While doing so the surgeon has to be very
careful not to perforate the uterine wall. On
the other hand, incomplete removal of the fi-
broid requires additional surgery to remedy the
patient’s complaints. Also, intraoperative navi-
gation is extremely difficult because the uterus
shows a homogeneous area in which there are
very few orientation clues. To plan the opera-
tion the surgeon has to build a mental 3D model
from 2D image slices (MRI or ultrasound). This
process is hampered by the low resolution of the
images, a poor signal to noise ratio and the com-
plex geometry of the organs. Apart from the
inadequate visualization, the usefulness of pre-
operative information is limited, as there will be
considerable deformation of the internal organs
during the operation.

To model organ deformation for intraopera-
tive planning a strategy is adopted consisting of
the following stages:

1. data acquisition through MRI;
2. image segmentation;
3. deformable model generation;

4. model deformation to simulate inflation of
the uterus (using intraoperative calibration
via 3D ultrasound);

5. enhanced intraoperative visualization.

In order to model the tissue deformation,
many authors have proposed finite element rep-
resentations of the relevant structures [3, 2,
9]. Initialization of such models is commonly
achieved through supervised segmentation of
preoperative image data. Often, the latter clas-
sification is accurate at pixel level. Using the
Marching Cubes algorithm [10], the result is
converted to a collection of triangles that rep-
resent the surfaces of relevant organs. This rep-



resentation is well suited to be imported in en-
vironments for finite element analysis.

Requirements which the triangular models
should meet to enable proper modelling for me-
chanical analysis are:

e accuracy the representation of the organ
surface geometry should be sufficiently ac-
curate;

e smoothness sharp corners should be
avoided as these can cause artifacts such as
internal stress concentrations. Therefore,
the model should conform to the smooth
organ boundaries;

e conciseness to achieve fast response times,
the number of elements (triangles) in the
model should be minimal;

e triangle quality the triangles in the mesh
should predominantly have equilateral sides
to avoid visualization artifacts as well as
finite element errors.

As noted previously, segmentation commonly
results in a binary image (i.e., classification at
pixel level). Application of Marching Cubes to
the binary data results in a triangulated model
that is neither smooth nor accurate (assuming
that subpixel accuracy is required).

Some solutions to this problem proposed in
the literature were inadequate. For example,
Gaussian prefiltering of the binary image (before
applying Marching Cubes) reduces the accuracy,
and significant anatomical detail may be lost,
while insufficient smoothness is achieved [7].
In addition, the Marching Cubes surface will
typically have a very large number of trian-
gles. To reduce the number of triangles, vari-
ous mesh decimation techniques have been pro-
posed [6, 11, 1]. However, since the decimation
is applied without the context of the original
data, it yields a reduction in the number of tri-
angles and possibly and increased smoothness
without guaranteeing the accuracy of the sur-
face.

An obvious approach to fulfil the require-
ments is by adjusting the Marching Cubes trian-
gles on the basis of the original greyscale data.
It might be expected that the result can be dec-
imated without sacrificing too much accuracy
due to the smoothness of the mesh.

1.2 Outline

Recently, a technique called SurfaceNets has
been described to optimize a triangle mesh de-
rived from binary data [8]. In this article, this
concept is extended to incorporate greyscale
data. A number of techniques is examined to
smooth triangle meshes without losing accuracy.

The paper is structured as follows. Section 2
gives a global description of the SurfaceNet tech-
nique. Then, in Section 3 the effectiveness with
regard to the requirements mentioned earlier is
evaluated. Finally, in Section 4 we will summa-
rize our findings and draw conclusions.

2 Techniques

2.1 Generating a SurfaceNet

The goal of the SurfaceNet approach is to create
a globally smooth surface that retains the fine
detail present in the original greyscale data. The
generation of a net for binary objects consists of
the following four stages [7]:

1. Identify nodes of the SurfaceNet;
2. Create links between the nodes;

3. Relax node positions to achieve a globally
smooth surface while satisfying constraints
on node movement;

4. Triangulate the SurfaceNet.

In this Section we will present a basic expla-
nation of this strategy (largely following [7]),
i.e., it is assumed that a binary segmentation
of the original data exists. Subsequently, three
improvements will be introduced that utilize the
greyscale image data during relaxation of the
SurfaceNet.

The first step in creating a SurfaceNet is to lo-
cate the cells that contain a surface node. A cell
is defined by 8 neighboring voxels in the binary
segmented data (see Figure 1 presenting the 2D
case as illustration). If all voxels have the same
binary value, then the cell is either entirely in-
side or entirely outside of the object. If, how-
ever, at least one of the voxels has a binary value
that is different from its neighbours, then the
cell is a “surface cell”. The net is initialized by
placing a node at the center of each surface cell
(step 1). Subsequently, links are created with
nodes that lie in adjacent surface cells (step 2).
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(a) Before linking the nodes.
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(b) After linking the nodes.

Figure 1: Building a SurfaceNet. The white squares represent voxels, the thick black line represents
the edge of an object and the gray squares are cells with nodes represented by white circles in the

center.
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Figure 2: Each node can be connected to 6
neighbours, creating 12 possible triangles.

Assuming only face connected neighbours, each
node can have up to 6 links (corresponding to
right, left, top, bottom, front and back neigh-
bours). Once the SurfaceNet has been defined,
each node is moved to achieve better smooth-
ness and accuracy (“relaxation”, step 3) subject
to some constraints. In the following sections we
will elaborate on this.

After relaxation the SurfaceNet can be tri-
angulated in order to form a 3D surface model
(step 4). As illustrated in Figure 2, there are
12 possible triangles joining each node to a pair
of neighbours. By determining which pairs of
neighbours are present, possible surface trian-
gles are identified (see [7] for further details).
The resulting triangle mesh can be rendered us-
ing standard 3D graphics techniques.

2.2 Introducing smoothness

Once a SurfaceNet has been defined (i.e., after
step 2 in the above algorithm), the node po-
sitions are adjusted to “improve” the surface.
This smoothing is desirable to remove furrows
and “terraces” due to quantization. Let us first
only consider the smoothness of the net.

One way to smooth the surface is to move
every node to the average position of its linked
neighbours [5]. The vector @ pointing from the
current position of the node py1q to the average
position is calculated as:

L
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where p; corresponds to the position of a linked
neighbour and N is the total number of neigh-
bours of this node.

It may well be that the average position is out-
side the original cell, thereby diverging from the
initial segmentation. To impose conformance,
the “relocation” vector @ is constrained to stay
within the boundaries of the original cell by the
function ¢ (see also Figure 3):

(2)

Here, cis defined to satisfy the proper constraint
of the node position.

The relaxation is implemented in an itera-
tive manner by considering each node in se-
quence and calculating a relocation vector for
that node. The SurfaceNet is updated only af-
ter each node in the net has been visited. This

ﬁnew = ﬁold +c (a:)
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Figure 3: Position constraint of a node. If py1q+
a is outside the cell boundary, the function c is
used such that pq+c¢(a) is on the cell boundary.

procedure is repeated until the number of iter-
ations exceeds a preset threshold, or when the
largest relocation distance is less than a given
minimum value.

2.3 Increasing accuracy

The smoothing technique described in the previ-
ous Section ignores all greyscale information in
the dataset after building the SurfaceNet. The
nodes shrink-wrap around the object without
considering accuracy. However, this is the best
approximation when the binary segmentation is
the best estimate of the object.

If the object surface can be estimated to lie
at an isosurface of the image data, this isosur-
face can be used to increase the accuracy of the
SurfaceNet. Let us assume that the true ob-
ject surface can be obtained by drawing an iso-
contour (at level [is,) in the original greyscale
data. For instance, in many CT based applica-
tions the Marching Cubes algorithm is used to
approximate the object shape in this way. By
definition, at a given point the greyscale gra-
dient vector is perpendicular to the isosurface
through that point. Thus, to enhance accuracy
a node can be displaced along the gradient vec-
tor to the isosurface. This is expressed as:

§ = SIGN (Iiso -1 (ﬁold)) vﬁ'old (3)

Here, SIGN is a function that returns the sign
of its argument, d is the distance to the iso-
surface, I(po1q) is the interpolated intensity and
Vpoid is the normalized gradient vector in pyq.
The latter vector is obtained either by a central
difference method or by convolution with Gaus-
sian derivatives.

The node position is updated by:

(4)

As in Equation 2, ¢ imposes a position con-
straint on the node to stay within the original

ﬁnew = ﬁold +c (dg)

cell. The distance to the isosurface d can be
estimated by interpolation.

2.4 A combined approach

By combining the methods presented in Sec-
tion 2.2 and Section 2.3, we obtain a surface
that fits the isosurface of the data and is glob-
ally smooth. To combine these features, a node
should be displaced to get the best smoothness
within the isosurface. The combination is made
by first calculating the projection @, of the av-
eraging vector @ on the plane perpendicular to
the gradient g (cf. Equation 1 and 3):

()

Subsequently, the combined displacement
function is defined as:

Gy =i (@)

(6)

This formula combines relocation towards the
isosurface with smoothing in the orthogonal
plane. Again, ¢ ensures that the new position
of the node always lies within the confines of
the original surface cell.

In Section 3 we will evaluate the strategies
now defined.

ﬁnew = ﬁold +c (C_ip + d?f)

3 Results

To evaluate the relative effectiveness of the pre-
sented techniques, the SurfaceNet is compared
with Marching Cubes, which is a standard iso-
surface extraction tool [10]. The effectiveness
of each technique will be tested against the re-
quirements introduced in Section 1. The con-
ciseness is not important for the comparison be-
cause Marching Cubes and SurfaceNets generate
almost equal amounts of triangles. Each of the
remaining requirements is measured as follows.

e A measure expressing the local smoothness
of a polygon mesh is given in [12]. As a first
step, the angles a; of all triangles around
a vertex are summed. If all triangles con-
nected to a vertex are coplanar this sum is
equal to 27. A measure of the local smooth-
ness at a vertex is defined by |27 — 3 o],
which is then averaged over all vertices;

e A simple and direct measure for triangle
quality is found upon division of the small-
est side of each triangle by its largest side.



If the triangle is equilateral this expression
is equal to 1;

e The accuracy is expressed by the modi-
fied Hausdorff distance that represents the
mean distance of the generated mesh to a
reference shape [4]:

Have(Sla SZ) = ]-/N ZpESl 6(p7 SQ) (7)

where e is the minimum distance between a
point and a surface, and S; and Sy are two
surfaces.

Using these measures, the following experi-
ment is conducted. Two volumes, one contain-
ing a greyscale image of a sphere and the other
containing a greyscale image of a cube were cre-
ated. An isosurface is extracted using Marching
Cubes and using a SurfaceNet with each of the
three different relaxation algorithms presented
in Section 2. These surfaces are compared to
the exact reference shape. Next, the number
of triangles in each of the meshes is halved and
quartered (using the Qslim decimator [6]) and
the surfaces are again compared to the reference
shape. The results of all the measurements are
listed in Table 1.

In Table 1 the columns containing Hgye
clearly demonstrate better accuracy of the Sur-
faceNet than Marching Cubes (e.g. compare the
rows MC and SNAG). This effect is particularly
evident for the cube. The averaging method
alone gives rather poor results. This can be ex-
plained by two factors. First, the method disre-
gards all information in the data. Secondly, the
SurfaceNet is shrink-wrapped around the cube
and the sharp corners eventually protrude dur-
ing shrinking. Decimation results in slightly less
accuracy (best illustrated by the sphere, see for
instance SNAG).

Regarding mesh quality, no significant differ-
ences are observed for the cube. However, the
sphere yields slightly better performance (com-
pare MC with SNAG).

The most prominent differences are found in
the columns “smoothness”. The SurfaceNet ap-
proach evidently gives better results.

Finally, it can be seen that the number of tri-
angles generated with the SurfaceNet technique
is slightly higher than with Marching Cubes.

In addition to the presented results, sev-
eral other experiments were performed. Fig-
ure 4 shows the meshes generated by March-
ing Cubes and SurfaceNets from a greyscale

dataset with two overlapping spheres. Figure 5
and Figure 6 respectively show a close-up and
an overview of the meshes generated from a
greyscale 256x256x61 MRI dataset of the ad-
bomen of a female patient. The terracing ef-
fects are clearly visible in the Marching Cubes
mesh, and much less visible in the SurfaceNets
mesh. Finally, Figure 7 shows Marching Cubes
and SurfaceNets meshes generated from a CT-
dataset of an ankle.

4 Conclusions

Finite element modelling is a standard way to
simulate soft tissue deformation. For proper
modelling, triangular mesh models must satisfy
requirements of accuracy, smoothness and con-
ciseness. Several techniques proposed in the lit-
erature do not meet these requirements (e.g.,
Marching Cubes in combination with low pass
filtering or mesh decimation).

In this paper we extended a new technique
called SurfaceNets, and evaluated three vari-
ants. Optimization of a triangle mesh was per-
formed by averaging vertices, stepping in the
direction of the gradient to the isosurface, and
a combined approach. The latter combination
yields more accurate surface descriptions than
Marching Cubes.

From visual inspection of test objects, the
meshes generated by a SurfaceNet appeared
to be of higher quality than those created by
Marching Cubes. However, expressing this by a
quality measure, no significant differences were
found. Also, no significant results were found
regarding the number of triangles. But the
SurfaceNets meshes are more suitable for fi-
nite element modelling as they are significantly
smoother.

We conclude that SurfaceNet creates a glob-
ally smooth surface description that retains fine
detail.
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Table 1: The results using a grayscale cube and a grayscale sphere. The Marching Cubes cube has
864 vertices and 1724 triangles. The SurfaceNet cubes have 866 vertices and 1728 triangles. The
decimated meshes have half and quarter the number of faces of the original mesh. The Marching
Cubes sphere has 4536 vertices and 8204 triangles. The SurfaceNets have 4442 vertices and 8880
triangles. The decimated meshes have 0.5 or 0.25 the number of faces of the original mesh. The
number of SurfaceNet relaxations is fixed to 5 in all cases. (SNA = averaging, SNG = gradient
based, SNAG = averaging and gradient based)

Cube Sphere
Type Have | Quality | Smoothness || Have | Quality | Smoothness
MC 0.1344 | 0.66 0.0145 0.018582 | 0.56 0.6012
MC/2 0.1298 | 0.51 0.4583 0.014100 | 0.71 1.0974
MC/4 0.1291 | 0.39 1.0478 0.019490 | 0.65 1.0475
SNA 0.3198 | 0.68 0.0157 0.200700 | 0.67 0.0044
SNA/2 0.3194 | 0.55 0.0313 0.203800 | 0.64 0.0073
SNA/4 0.3160 | 0.45 0.0621 0.204700 | 0.65 0.0123
SNG 0.0934 | 0.67 0.0145 0.010998 | 0.64 0.0032
SNG/2 0.0932 | 0.53 0.2786 0.01361 | 0.65 0.0057
SNG/4 0.0931 | 0.46 0.3576 0.0215 0.73 0.0122
SNAG 0.0869 | 0.68 0.0147 0.010596 | 0.67 0.0030
SNAG/2 | 0.0847 | 0.59 0.0607 0.012787 | 0.68 0.0057
SNAG/4 | 0.0849 | 0.54 0.0620 0.021316 | 0.71 0.0122

Figure 4: Two spheres partly overlapping. Meshes generated by Marching Cubes (left) and Sur-
faceNet (right). Both meshes have the same number of triangles.

Figure 5: Generated mesh using Marching Cubes (left) and SurfaceNets (smoothing+gradient)
(right). A close-up of a part of the uterus is shown.



Figure 6: View of a bladder extracted using Marching Cubes (left) and using SurfaceNet (right).

Figure 7: Mesh generated by Marching Cubes (left) and SurfaceNet (right) on a grayscale image
of an ankle. The dataset is a CT-scan with dimensions 132 x 141 x 69.
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