
Global, Geometric, and Feature-BasedTechniques for Vector Field Visualization ?
Frits H. Post a Wim C. de Leeuw b I. Ari Sadarjoen aFreek Reinders a Theo van Walsum caComputer Science Department, Delft University of TechnologybCentre for Mathematics and Computer Science CWI, AmsterdamcImage Sciences Institute, Utrecht UniversityAbstractVector �eld visualization techniques are subdivided into three categories: global, ge-ometric, and feature-based techniques. We describe each category, and we presentsome related work and an example in each category from our own recent research.Spot Noise is a texture synthesis technique for global visualization of vector �eldson 2D surfaces. Deformable surfaces is a generic technique for extraction and visu-alization of geometric objects (surfaces or volumes) in 3D data �elds. Selective andiconic visualization is an approach that extracts important regions or structuresfrom large data sets, calculates high-level attributes, and visualizes the featuresusing parameterized iconic objects. It is argued that for vector �elds a range ofvisualization techniques are needed to ful�ll the needs of the application.

1 IntroductionVisualization plays an important role in the process of computational science:analysis of data sets that result from computer simulations generally requiressome visualization technique. By applying visualization techniques to theirdata sets, scientists and engineers can literally see the results of the compu-tations, and draw conclusions from it. With the continuing rapid increase ofcomputer power, the complexity and size of numerical simulations increases.Due to these developments the need for appropriate visualization techniqueshas also increased: it is hardly possible to analyze Gbytes of data withoutproper visualization tools.? Color pictures available. See http://www.elsevier.nl/locate/futurePreprint submitted to Elsevier Preprint 20 August 1998



The challenge for researchers in the �eld of visualization is to develop tech-niques that allow a scientist or engineer to extract the information from a largedata set. Spatial domains of computer simulations have three dimensions, andwith dynamic phenomena time is added as a fourth dimension. Several physi-cal quantities are often computed for each grid node and time step, consistingof scalar, vector, and tensor data. Visualization has to deal with this high di-mensionality of the data, as the visual display is usually a 2D screen that candisplay 3D scenes and animations. Especially higher-order data, such as vectorand tensor �elds, are a great challenge to scienti�c visualization, as there areno simple ways to directly visualize these high-dimensional data spaces.In this paper we will focus on visualization of 3D vector �elds, mainly resultingfrom computational 
uid dynamics (CFD) simulations. Vector �elds (in par-ticular velocity �elds) are the main data type resulting from CFD simulations,but often the data sets also contain other types of quantities. A good classi�-cation of existing (and future) types of �eld visualization can be found in [4].Here we will �rst present a threefold classi�cation of visualization techniquesthat has proved useful, and then present some results of our recent researchin each category.� Global techniques: qualitative visualization of a complete data set, or a largesubset of it, at a low level of abstraction. A global view is most useful inthe early stages of exploration to get a general impression; a local viewcan be used later to focus on interesting details. The mapping of data toa visual representation is direct, without complex conversion or extractionsteps. These techniques include color mapping and direct volume renderingfor scalar data �elds, and hedgehogs (arrow plots) and texture-based visu-alization for vector �elds. As an example of the latter Section 2 describesSpot Noise, a stochastic texture generation technique.� Geometric techniques: extraction and visualization of geometric objects (curves,surfaces, solids) of which the shape is fully and directly related to the data.Usually, a speci�c geometry extraction step is needed to generate the ge-ometric objects. This type can be considered as an intermediate-level rep-resentation, both in locality and abstraction level. Examples are iso-curvesand iso-surfaces for scalar �elds, and curves and surfaces (streamlines andstream surfaces) for velocity �elds. Section 3 presents a new surface extrac-tion technique based on adaptively deformable surfaces.� Feature extraction: large numerical data �elds are low-level representationsof physical phenomena, and often they contain only a limited amount ofrelevant information. Thus, it can be useful to extract the high-level infor-mation from these data. Features are high-level, abstract entities in a dataset, represented by quantitative attributes. In feature extraction, empha-sis is on quanti�cation [17], or retrieving high-level quantitative measuresfor more precise evaluation and comparison. Visualization of features can bedone by parameterized iconic objects such as ellipsoids, tubes, or glyphs [19].2



The feature attributes are linked to the object's parameters. Examples inthis category are vector and tensor �eld topology, detection of vortices andshock waves in 
ow �elds, and detection of arteries in angiographic images.Section 4 describes the process of selective and iconic visualization as anexample of this approach to visualization.Each of the visualization techniques that is discussed in the following sectionswill be accompanied by an example, which will show how the technique canbe applied e�ectively.2 Global techniques: Spot NoiseGlobal visualization of a 
ow �eld presents a number of problems: a continuumhas to be represented, structures might occur at various levels of detail andthe dimensionality of the data is high: a 3D domain consisting of vector data.Traditionally, color maps, and arrow plots (hedgehogs) are used as globalvisualization technique. Some drawbacks of arrow plots are cluttering, depthambiguity, and failure to represent the dynamic nature of a 
ow. The use oftexture for 
ow visualization overcomes these drawbacks; texture shows the�eld as a continuum, and the dynamic behavior of the 
uid can be shown byanimation. Furthermore, a scalar value can be mapped on the texture showingadditional data.In this section, we present the Spot Noise technique, a global texture-basedvisualization technique. We also discuss some extensions of this technique thatare focused on interactive display of time-dependent 
ow data.2.1 Related workSeveral researchers have reported on the use of texture for 
ow visualiza-tion [23,2,3]. In two cases, stochastic texture is used to represent data: Lineintegral convolution (LIC) [2] and Spot Noise [23]. The visualization principlefor both techniques is similar [9]: data is represented by the variation of inten-sity, and the value of an isolated pixel is essentially random. Both techniquesproduce textures in which intensity changes are slow in the direction of the
ow and fast in the direction perpendicular to the 
ow, resulting in a stripedpattern. The pattern is similar to photographs in which particles are blurreddue to a long exposure time.The di�erence between the methods is the algorithm used to synthesize thetexture. In LIC a random noise image is �ltered using a convolution �lter3



which has the shape of the streamline through the pixel. At each pixel in thetexture, a streamline is calculated forward and backward for a certain length.The pixel values from the input image along this streamline are convolvedusing a one dimensional �lter kernel. The output of this convolution is usedas the value of the pixel in the texture. The Spot Noise technique is describedbelow. A more in-depth comparison on both techniques can be found in [9].2.2 Spot Noise2.2.1 Basic techniqueA Spot Noise texture is the sum of a large number of small intensity func-tions called spots. Because a large number of spots are used, the individualspots can no longer be distinguished, and a texture is perceived instead (Fig-ure 1). Mathematically a texture can be characterized by a scalar function f
Fig. 1. Principle of Spot Noise: single spot (left) resulting texture (right)of position x. A Spot Noise texture is de�ned as;f(x) =X aih(x� xi) (1)in which h(x) is the spot function. It is a function everywhere zero exceptfor an area that is small compared to the texture size; usually a disc shape isused. ai is a random scaling factor with zero mean, xi is a random position.Spot Noise can be used for visualization by locally adapting the shape of thespot. Flow �elds can be displayed by scaling spots proportional to the mag-nitude of the 
ow and aligning the spot with the direction of the 
ow. In [10]bent spots were introduced which allow Spot Noise to be used in areas wherethe curvature of the vector �eld is high. Instead of using a scaling and rotationonly, bent spots are mapped on to a surface generated by advecting stream-lines in the 
ow. This method greatly enhances the quality of the texture atthe cost of an increase in the computation needed.The dynamic behavior of 
ow can be displayed via an animated sequence ofSpot Noise images. A Spot Noise animation of a stationary 
ow �eld can berealized by associating a particle with each spot position. The next frame in4



the animation sequence is determined by advecting all particles one time stepthrough the 
ow �eld.2.2.2 ZoomingAccurate simulation of 
ow at high Reynolds numbers requires very high res-olution grids, containing millions of cells. At such resolutions the visualizationof a slice of data becomes a problem. The di�erence in size between the small-est details and the whole set is about three orders of magnitude. If a completeslice is shown the smallest detail is smaller than a single pixel on screen. Zoom-ing is essential to inspect data sets of this size. In this section we will showhow zooming can be combined with Spot Noise.The appearance of the �nal Spot Noise texture is based on the size and dis-tribution of the spots. Choosing small spots will result in a more �ne-grainedtexture which shows 
ow patterns at a smaller scale. However, choosing a spotsize that is too small compared to the resolution of the underlying texture re-sults in aliasing. In [23] it was shown that characteristics of the texture arecaptured by the power spectrum Pf (!) of a stochastic function f(t) by:Pf (!) = limT!1 1T jFT (!)j2 (2)in which FT (!) is the Fourier transform of a sample of f(t) with length T .Characteristics of a spot (such as size, shape and direction) directly in
uencethe characteristics of the texture (such as granularity and isotropy).Since the spatial resolution of the texture is limited, zooming in will resultin relatively large texture elements in the image on the screen. We thereforeneed a multi-resolution scheme which allows both global and detailed viewsof the data, without compromising on the texture quality on the screen. Oursolution is to ensure that the power spectrum of the texture visible on thescreen does not change during zooming. This is achieved by two mechanisms.First, the spot size is reduced while zooming in on detail. Second, the region ofthe data which generates the texture image is reduced while zooming in. Thefull texture image is dedicated to this region. Also, the size of the spot, whichis linked to the surface area of the region of interest is adapted automatically.2.2.3 Time-dependent Spot NoiseAnimated textures for steady 
ows can be achieved using advection of spotsalong streamlines. The generation of textures in unsteady 
ow is more com-plicated. The pattern in a single Spot Noise texture results from the spatialcoherence of pixel values across the texture. Animation is based on temporal5



coherence of spot positions. The intensity changes of the texture in successivetexture frames must be such that the pixels in the texture seem to move withthe 
ow.In general, a particle path is calculated by integration:x(t) = x(t0) + tZt0 v(x(t); t) dt (3)where x(t) is the particle position at time t, v(x(t); t) is the velocity of theparticle at time t, and x(t0) is the initial release position of the particle.In a stationary 
ow, where v is independent of time, temporal coherence isobtained by particle advection and cyclic display. Between successive frames,the spots are advected as particles. The intensity of a spot is modulated be-tween zero at its initial position, a maximum value and zero again at its �nalposition. The length of the life cycle is equal for all spots, but the phase ofthe life cycle varies randomly over the spots. A small number of frames (typ-ically less than 10) is generated and played back in a closed loop, which givesexcellent results in animating sequences of stationary 
ow [23].For time dependent 
ow, where v varies with time, temporal coherence isagain obtained if particle paths are used to advect the spots.Spots are regarded again as particles, and their positions on the motion pathare calculated accordingly. However, in this case cyclic animation is not pos-sible. Also, as spots are advected over time, the distribution of spots willnot remain uniform. To maintain a uniform spot distribution, the previouslymentioned life cycle mechanism is extended. Spots are advected from a set ofinitial positions. When a spot reaches the end of its life cycle, it will start anew cycle from its initial position. A life cycle has a typical length of about 15frames. The distance covered by a spot during this period is su�ciently smallto assure a uniform distribution of spots in the texture.2.3 Application: direct numerical simulation of a turbulent 
ow.In [20], methods are discussed for direct numerical simulation of turbulent
ow. The goal of this application is to study the evolution of vortex sheddingbehind a block, and the transition from laminar to turbulent 
ow. Using SpotNoise the data can be interactively analyzed.Figure 2 shows a snapshot of a slice of the 3D data set. The 
ow is from leftto right and impinges on a block placed in the �eld. One can clearly see the6



Fig. 2. Top: direct numerical simulation of the wake behind a block, showing vortexshedding and transition from laminar to turbulent 
ow. Bottom: two detailed viewsfrom the upper image.transition from laminar to turbulent 
ow behind the block. The data is de�nedon a rectilinear grid with a resolution of 278 � 208 cells. Each texture has aresolution of 512 � 512 pixels and uses 40,000 spots. Bent spots were usedbecause of the turbulent nature of the 
ow in which strong 
uctuations forthe 
ow magnitude and direction occur. The lower part of Figure 2 illustratesthe zooming mechanism by two detailed snapshots of the data. The left imageis a detail of the wake behind the block showing a region of 128� 70 cells. Inthe right image a detail of 22� 14 cells is shown. These details give insight inthe generation of vortices in the wake of the block.3 Geometric techniques: deformable surfacesGlobal techniques, as described in the previous section, visualize a large quan-tity of data simultaneously, and let the scientist extract meaningful informa-tion from the presented data. Geometric techniques are based on preprocessingof the data, in order to present relations between (or within) the data more di-rectly. This preprocessing results in geometric objects, such as curves, surfaces,or solids.3.1 Related workThere exists a myriad of geometric techniques, which can be classi�ed basedon the type of �elds they work on, or on the type of geometries they produce.7



For scalar �elds, iso-surfaces are a frequently used technique [11]. For 
ow�elds, there is a large group of algorithms that extract all types of 
ow curves,such as streamlines, path lines, streak lines, and time lines. Other algorithmsextract 
ow surfaces, such as stream surfaces [7] or shock waves [13]. Theseare speci�c techniques that generate speci�c types of surfaces, and that buildgeometries in a single step.The deformable surfaces described below are meant to be more generic, asthey work with di�erent types of �elds and can extract di�erent types ofgeometry [16]. For example, using di�erent application-speci�c criteria, wehave extracted iso-surfaces, separation surfaces, and vortices with one singletechnique. Furthermore, the technique belongs to a class of algorithms thatuses iterative curves or surfaces. These curves or surfaces start from an initialshape which is deformed adaptively in many steps, until the curve or surfacehas reached the desired shape. They are often applied for segmentation ofimages or 3D data sets scanned using CT/MRI/PET techniques [8,12].3.2 Deformable surfacesThe process of generating deformable surfaces consists of three stages: regionselection, initial surface creation, and surface deformation. These stages aredescribed below.3.2.1 Region selectionStarting from an input data set, a region of interest is selected using selec-tion techniques, which are described in more detail in Section 4. Basically, aselection criterion selects the nodes from a grid which satisfy user-speci�edconditions. Next, adjacent selected nodes are grouped into clusters, each rep-resenting a coherent selected region that can be treated as a unit. From theseclusters, one or more can be chosen to be used as the region of interest.3.2.2 Initial surface creationThe initial surface should have a shape related to the selected region. Thisshape might be found by sophisticated shape classi�cation algorithms, suchas skeleton extraction. An alternative is to �t an ellipsoid as a rough approxi-mation of the selected region. In this case, statistical attributes of the selectedpoints are calculated: center, variance and covariance [19]. These attributesde�ne an ellipsoid, of which the center position (x; y; z), the lengths (s1; s2; s3)of the main axes, and three angles (�; �; 
) are used to characterize the po-sition, shape type, and orientation of the selected region. The ellipsoid axis8



lengths determine the shape of a region to be 1D, 2D, or 3D, where a 1Dshape may correspond to a cylindrical tube, a 2D shape to a planar surface,and a 3D shape to a spherical volume. The ellipsoid's position, dimensions,and orientation determine the corresponding parameters of the initial surface.Once the initial surface has been created, it can be deformed to its �nal shape.3.2.3 Surface deformationThe polygonal surface is locally deformed by displacing the polygon vertices ornodes, using a node displacement criterion to govern the �tting of the surfaceto the data �eld. If the displacement direction of the nodes is outward from thecenter, the object grows, and polygon size increases. Whenever faces becometoo large they are re�ned for a better shape approximation.Node displacement is guided by a displacement criterion, which uses a costfunction C based on the physical quantities given in the data set. These quan-tities may be scalars, vectors, or a combination. The criterion tries to reducethe value of the cost function below a speci�ed tolerance �. In any case, theresult is always a displacement step, which has two characteristics: a directiond and a size �. The step direction d may be determined in several ways: byperforming a random search in several directions, by following the �eld gradi-ent, or by following the surface normal. The last method turned out to workbest, because it made the surface grow uniformly in all directions. The stepsize � may be determined in several ways, which result either in the objectgrowing in multiple small steps (see Figure 3a), or in a single large step (seeFigure 3b). Depending on the situation, both methods have their merits.If the faces of a deformable surface become too large, they can be adaptivelyre�ned. By adaptive we mean that only those faces f are re�ned for whichsome re�nement criterion R(f) exceeds a speci�ed threshold �. The re�nementis performed using a scheme based on Miller [12]. Figure 4 illustrates how atriangular face (in grey) is subdivided into four triangles at the edge midpoints,the three adjacent faces (in white) are subdivided into two triangles, to preventhanging nodes.3.3 Application: extracting vortex tubesWe have applied the deformable surface method for extracting vortex tubesfrom numerically simulated 
ows. These are important in many engineeringapplications, such as the design of aircraft. Since it is di�cult to give a formalde�nition of vortices, we use the following informal de�nition: a vortex is aswirling 
ow pattern which will often behave as a coherent structure. Thegeometry to be extracted is an elongated tube, in which all 
uid rotates in9
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(a) In the many-step method, surface points are displaced using smallsteps at a time
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(b) In the one-step method, sur-face points are placed on the tar-get surface in one stepFig. 3. Many-step and one-step methods for iteration
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888

888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888Fig. 4. Face re�nement. The grey face is subdivided into 4 faces, the adjacent facesinto 2.one direction. Often, this tube is constructed around a vortex core, which isextracted �rst. Examples of vortex core and vortex tube algorithms can befound in [1,15,21].The data set used here is the Delta-Wing data set available from NASA [5].It models the 
ow around a delta wing aircraft at a high angle of attack (40degrees). The original �les contain: density, momentum, and stagnation, whichare de�ned on a 56x54x70 structured curvilinear grid. The features in this dataset include vortices on one side of the wing, from which we wish to extractone vortex tube using the deformable surface technique.Region selection criteria are used to �nd the axis and shape of a vortex fea-ture, attributes which are then used to initialize a deformable surface. Then,10



deformation criteria are used to make the surface grow, and to �nd the outsideboundary of the vortex. We used criteria based on vector quantities. Followingthe scheme in Section 3.2, the following steps were performed:

(a) Selected nodes (b) Selected nodes and �tted ellip-soid

(c) Initial vortex tube (d) Final vortex tubeFig. 5. Extraction of a vortex tube with vector deformation criteria. Color indicatesthe value of the cost function C (red = high, blue = low).(1) Region selection: the vortex tube extraction uses the pressure �eld p givenin the data set, as well as additional derived quantities: the vorticityvector �eld ! and its magnitude (!). These were also used in [1,21].The criteria used for the initialization are low pressure and high vorticitymagnitude: p < c1 � min(p) and ! > c2 � max(!) where c1 and c2 areuser-de�nable parameters (0 < c1; c2 < 1). The selected nodes are shownas cross-marks in Figure 5a.(2) Initial surface creation: in the selected region, statistical attributes arecalculated which de�ne the ellipsoid shown in Figure 5b. The ratios ofthe ellipsoid axes result in a 1D object, the cylinder shown in Figure 5c.(3) Surface deformation: the deformation criterion uses the angle � betweenthe local vorticity and the vorticity !c at the vortex core, as shown in11



Figure 6. At the core, this angle is 0 by de�nition. At a surface node n,the vorticity is !s and the angle � = 6 (!s;!c).
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Fig. 6. Vortex-�nding with vector criteriaThe criterion makes the surface grow in the direction where this angleis 90 degrees, or maximal, by de�ning the cost function to be minimizedas the cosine of the angle: C(xn) = cos( 6 (!s;!c)).Figure 5d shows the �nal vortex tube after 16 iterations with the many-stepiteration method. The surface consists of 260 triangles.4 Feature extraction: selective and iconic visualizationThe global techniques leave the extraction of meaningful features to the user.The geometric techniques are an approach to extract and present geometricobjects of which the shape is directly related to the data. Both types of visual-ization leave the extraction of interesting phenomena to the visual inspectionby the scientist. Feature extraction techniques, as described in this section,are an approach to extract these interesting phenomena in an algorithmicway, and to obtain quantitative measures of these features.4.1 Related workThe purpose of feature extraction techniques is to �nd interesting features inthe data more or less automatically, and to determine quantitative character-istics of the features, the so-called attributes. For visualization purposes, theattributes can be mapped onto the parameters of an icon [19], visualizing thefeature in an abstract way: instead of `a visualization with a certain feature',the feature itself is visualized. In this way, feature extraction induces three im-portant advantages: non-relevant data is �ltered out, a quantitative measureis obtained, and a huge data reduction is achieved.Currently, many application-speci�c feature extraction techniques exist, asthe de�nition what is to be considered an `interesting feature' di�ers for each12



application. For 
ow visualization, extraction techniques exist for the visual-ization of 
ow �eld topology [6], vortex tubes [1], and shock waves [14]. Allthese examples are techniques that extract the occurrence of a particular phe-nomenon. Below, we will present a more general process of feature extraction.The method is based on the selective visualization method [22], and is best de-scribed by a pipeline model (see Figure 7), with the following steps: selection,clustering, attribute calculation, and iconic mapping.
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conceptual modelFig. 7. The selective and iconic visualization pipeline.4.2 Selective and iconic visualization4.2.1 SelectionThe �rst step in selective and iconic visualization is the selection of the datapoints (grid nodes) that belong to the feature. We use the term "feature"for any region or node in the data that is of special interest, and assumethat a feature can be distinguished from the rest of the data in some way.Then, a selection of grid nodes can be made that corresponds to the criteriaof interest speci�ed by the scientist. The criteria of interest are expressed ina selection expression, which is a mathematical formulation of the underlyingphysics of the feature. The expression can combine multiple thresholds on rawdata or on derived quantities, its evaluation yields TRUE or FALSE, whichdetermines if a node is selected or not. The expression is formulated in alanguage with operators (boolean, scalar, vector, and matrix operators) andfunctions (gradient, and statistical functions). With this language almost anyselection, depending on the application, can be created based on the datavalues, and on the node positions.4.2.2 ClusteringThe next step is the clustering of the selected nodes. Individual selected nodeshave no other meaning than an indication of the positions where the data13



satis�es the criteria of interest. However, our concern are coherent regionsconsisting of more than one node: regions of interest. Therefore, the task is to�nd clusters of connected nodes that are part of the selection. The clusteringprocedure is based on a connectivity criterion, and it assigns a label thatidenti�es the cluster to each selected node. Each cluster is a region of interest,which is an entity instead of a group of individual selected nodes. They aretreated as separate entities, and therefore we call them features.4.2.3 Attribute calculationOnce the regions of interest have been identi�ed, attributes that characterizethe feature can be calculated. There are many possible sets of attributes,each resulting from its own calculation method. Many methods are derivedfrom other scienti�c areas such as computer vision (object �tting methods)and image processing (morphological operators, skeletonization). A genericway to calculate attributes are volume integrals over the nodes of a cluster,which may result in statistical attributes, such as size, center position, spatialdistribution, average data value, etc. Another example is given by Silver etal. [18], where ellipsoids are �tted to regions of interest resulting in a measureof the position, size, and orientation of a feature.4.2.4 Iconic mappingIn order to visualize a feature, the attribute sets can be mapped on a para-metric icon [19]. An icon is a geometric object with a parametric shape andvisual attributes that can be linked to the attributes of a feature. The relationbetween the parameters of the icon and the attributes is called the mappingfunction. The goal of iconic mapping is to visualize essential elements of a fea-ture in an abstract symbolic representation which should relate to the physicalconcepts and visual languages of the area of application. Like the number offeatures, the number of di�erent types of icons is unlimited, the design of anicon depends on the speci�c application area and research problem.4.3 Application: backward-facing stepAn example that illustrates the results of this visualization process, is ourvisualization of the 
ow in a backward-facing-step geometry. The inlet is atthe boundary near the step (upper left side in Figure 8a), and the outlet isthe other end. In such a 
ow, a region of spiraling 
ow should occur justbehind the step. The goal of the visualization is to visualize streamlines thatstart at the inlet, then 
ow through the spiraling region, and �nally leave thatregion again. This could be visualized by manually probing the dataset until14



such a spiraling streamline is found. However, this is a tedious and di�cultjob, as there are only few locations near the in
ow boundary from wherestreamlines show spiraling behavior. The streamlines have to pass throughthe spiraling 
ow region, therefore this region is the target of our selection.Using a selection expression based on the normalized helicity density hn (seeTable 1), two spiraling regions of interest are found. Starting forward andbackward integrations from positions in these regions, streamlines that gothrough the spiraling regions are easily found.Table 1Selection expressions for selecting nodes with a helicity density larger then 0.66Selection expression Helicity density; calculate the curl (rotation)rotation = rot(velocity); calculate helicity density hdhd = dot(rotation, velocity); normalize helicity density hdnhdn = hd / (len(velocity)*len(rotation)); create the selection select_outselect_out = fabs(hdn) > 0.66
hn = v � (r� v)jvjjr � vj (4)with v velocity, and r� vthe curl of v.Figure 8 visualizes the selected nodes by small cross-marks, the two spiralingregions by ellipsoid icons, and two streamlines through the regions by tubes.The radii of the tubes are inversely proportional to the square root of the localvelocity magnitude, and the color corresponds to the pressure at the centerline.The example shows two advantages of feature extraction: one, the increase invisualization productivity: manually probing the data set would have takenmuch longer then the few minutes it took to generate this visualization, andtwo, it shows the increase in visualization e�ciency: only a few geometricobjects are needed to show exactly what the scientist is looking for.

a) b)Fig. 8. The backward-facing-step spiraling 
ow region.15



5 ConclusionsWe have presented three di�erent techniques for visualization of vector �elds.The techniques each cover their own part of the spectrum of 
ow visualizationtechniques, but also combine certain aspects in their functionality.Spot Noise can be used to give a global view of a 2D time-dependent 
ow �eld.The multi-scale Spot Noise technique that allows the scientist to zoom in ondetails is a good example of how the gap between global and local techniquescan be bridged. Deformable surfaces can be used to extract amorphous re-gions of interest and phenomena from data sets. This technique also works ata more local scale than other surface extraction techniques, and uses selectiontechniques to initialize the deformation process. The selection and iconic vi-sualization approach tries to �nd interesting regions in the data set, based onboolean expressions, and display attributes of these regions as parameterizedicons.As will be clear from the examples shown, the techniques are not interchange-able: each has its own type of applications for which it is particularly suitable.Global techniques are often close to a natural, intuitive representation, butit is di�cult to visualize a solid 3D volume of vector data. Surface-basedgeometric techniques have the advantage that surfaces are ideally suited forvisualization: the human eye is well adapted to perceiving complex shapesfrom re
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